• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número1

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número1"

Copied!
4
0
0

Texto

(1)

Plasma Reombination in Runaway

Disharges in Tokamak TCABR

T.K. Soboleva 1

, R.M.O. Galv~ao 2

,S.I. Krasheninnikov 3

,

Yu.K. Kuznetsov 2

, and I.C.Nasimento 2

1

InstitutodeCienias Nuleares,UniversidadNaionalAutonomiade MexioD.F.,Mexio

2

Instituto deFsia,UniversidadedeS~aoPaulo,

C.P.66318, 05315-970,S~aoPaulo,Brasil

3

UniversityofCalifornia,SanDiego,USA

Reeivedon26June,2001

Anewregimeofrunaway dishargeshasbeenobservedintheTCABRtokamak. Oneofthemost

distintivefeaturesofthisregimeistheeetofplasmadetahmentfromthelimiter. This

experi-mentalfatanonlybeexplainedbythevolumereombination,whihrequiresalow-temperature

plasma. Theanalysisoftheenergyandpartilebalaneinthesystemplasma-relativisti runaway

beaminTCABR,whihtakesintoaountonlytheollisionalmehanismoftheheattransferfrom

runaways tothermal eletrons,predits eletrontemperatures Te =0:1 2eV; the temperature

dereases with the neutral density inrease. The reombination proess with the rate onstant

around10 16

m 3

/sis requiredforthe explanationof plasmadensity behavior intheexperiment.

At present, it isdiÆult to onlude about the mehanismof reombination. More reliable and

detailedexperimentaldata,mainlyabouttheplasmatemperature,areneessary.

I Introdution

Anewregimeofrunawaydishargeshasbeenobserved

in TCABR tokamak [1℄, with major plasma radius

R = 0:615 m, minor radius of the limiter a = 0:18

m,toroidalmagnetieldB =1:1T.Oneofthemost

distintivefeaturesofthisregime,omparedto

onven-tional runawaydishargesintokamaks[2℄,istheeet

of plasma detahment from the limiter. This

experi-mental fat anonly beexplainedby athevolume

re-ombination,whihrequiresalow-temperatureplasma.

The present work is regardedto the questionon how

theexisteneofareombinativeplasmaagreeswiththe

energyandpartilebalaneinthepreseneofan

inten-siverelativistibeamof runaway eletrons. Themain

experimentaldatarelatedtothistopiarepresentedin

Setion II.Theanalysisof energyand partilebalane

is performedin Setion III.Theonlusion is givenin

Setion IV.

II Experimental data

A learindiation of the reombinative plasmain the

runawaydishargesobservedinTCABRistheeetof

plasmadetahmentfromthelimiter. Theplasma

den-sityinthesrape-olayer(SOL),measuredbya

Lang-muir probe, starts to derease at the start-up phase

At the same time, the line density measurements by

theinterferometer along dierent vertial hords

indi-ate a shrinkage of the plasma olumn. Indeed, the

plasmaolumn isshifted outward, due to thehigh

ki-neti energy of runaways, and its minor radius is

es-timated from these measurements to be in the range

0:09m a

p

0:14 m. These experimental fats an

be explained only by volume reombination in a

low-temperature plasma. Suh plasma exists in the

run-away disharges due to the low heating power.

Sim-ple estimations indiate that resistive fration of the

plasmaurrent and thus the ohmi heatingpowerare

negligiblesmallatloweletrontemperaturesT

e

<5eV.

Thepowertransferredollisionallyto theplasmafrom

therelativistilow-densityrunawaybeamisalsorather

small. Thelow-temperaturereombinativeplasma

de-tahed from the limiter is kept in equilibrium by the

runawayurrent.

Other distintive feature or this regime is the

re-laxation instability with strong spikesin H

emission

orrelatedwithsawtoothrelaxationofthelinedensity

(seeFigs1and2). Plasma-beaminstabilitiesan

pro-vide an additional plasma heating hannel. We

on-ludefrom theexperimentaldata thatplasma heating

ours in short pulses. Expanding a singlesawtooth,

(2)

0

50

100

0

3

Shot # : 4436

n

p

(10

17

cm

-3

)

TIME (ms)

0

1

n

e

(10

19

cm

-3

)

0

1

H

α

(a.u.)

0

20

V

L

(V)

0

80

I

t

(kA)

Figure1. AnexampleoftherunawaydishargeinTCABR

tokamakwiththeeetofplasmadetahmentfromthe

lim-iter. Parameters presented here are the toroidal urrent,

loopvoltage, H

a

emission, line density for entral vertial

hordaveragedonthelimiterdiameterof0.18m,loal

den-sitymeasuredinSOLbyLangmuirprobe.

40

42

44

46

48

50

0

1

E

C

E (a

.u.)

n

e

(10

19

m

-3

)

H

α

(a

.u.)

V

L

(V)

TIME (ms)

0.0

0.8

0.0

0.4

Shot # : 4436

0

3

78

79

I

t

(k

A

)

Figure2. Expandedspikesrelated tothe relaxation

insta-bilityinthetimewindow40-50msforthedishargeshown

inFig.1. Eletronylotronemission(seondharmoni)is

alsopresented.

beexplainedbyatemperatureinreasetoT

e

15eV,

takingintoaountthattheneutraldensityinthisase

is around 10 19

m 3

. Spikesin H

; eletronylotron

andX-rayemissionsandnegativevoltagespikes,whih

weonsideredasonesrelatedtotheinstabilityproess,

our in time intervalsof tensmiroseonds. Then it

seemsthattheinstabilityisquenhed,theplasma

tem-peraturedropsandthedensitydeaysdueto

reombi-nation.

ExperimentswithgaspuÆngonrm themodelof

low-temperature plasma and give an additional

infor-mation about this regime. The runaway disharge is

muh more stable with respet to the gas puÆng as

omparedtothenormalone. Themaineetsobserved

under inrease of the neutral density, up to 510 19

moleules/m 3

; aretheinreaseof thefrequenyof the

spikesinallsignals,inreaseoftherateofdensitydeay

in therelaxationproess, anddereasein therunaway

urrentandbakgroundplasmadensity.

Currently, we haveno diret measurementsof the

plasma temperature, whih are diÆult due to the

ef-fetofrunawaybeam. Estimationsoftheeletron

tem-peratureintheRADanbeobtainedfromthedeayof

positivevoltagespikes[3℄. This method giveseletron

temperatures0.2-1.5eV[4℄.

Theaverage runawayenergyisdedued from

equi-librium eets. The value of the beta poloidal is

de-terminedfrommagnetidiagnostis. Thentheaverage

energyofrunawaysisestimatedfromthevalueofbeta

poloidalusingtheformula[3℄

p =

I

A I

b

I 2

t

where I

A (kA)

= 17

p

2

1istheAlfvenurrentand

istherelativistifator. Inourase,I

b

= I

t

:Forthe

dishargepresentedin Fig. 1, we obtain,at the quasi

stationary phase, 9, whih orresponds to kineti

energyof4MeV.

III Energy and partile balane

alulations

The plasma is transparent to neutrals in our

ondi-tions. For simpliity, let us onsider zero-dimensional

transportmodel. Energybalaneequationsforthermal

eletronsandionsare

3

2 n

e dT

e

dt =Q

oh +Q

b Q

en Q

ei

(1)

3

2 n

i dT

i

dt =Q

ei Q

in

(2)

where Q are heat uxes aused by ohmi

heat-ing (Q

oh

), runaway-thermal eletrons (Q

b

),

(3)

ollisions. Q

b

hastheform

Q b = e 4 n b n e ln b 4" 2 0 m e (3)

whereCoulomblogarithmisapproximatelyln

b =20:

Weassumen

e =n

i

,i.e. theeetiveionhargeZ

i =1.

Forrelativistirunawaybeam,the runawaydensityis

n b = I b =ea 2 b ; a b

is the beam minor radius. The

runawaybeamdominatesin thetotaltoroidal urrent

I t =I b +I p

; i.e.,weanassumeI

b

= I

t

: Theresistive

(plasma) urrent I

p

is small due to the low valuesof

the loopvoltageand eletrontemperature. The

diu-siveenergylossesarenegleted.

The stationary eletron temperature alulated

from Eqs. (1) and (2) is presented in Fig. 3. Here

weusefor theplasmaradius a

p =a

b

=0:09 0:14m

taking into aount results of hord density

measure-ments. One ansee from Fig. (3) that the ollisional

proessgivesT

e

=0:1 2eVforindiatedbeam-plasma

parameters; T

e

dereases with the neutral density

in-rease. Ohmiheating isneligiblesmall atT

e

<5eV.

Energylossesduetoeletron-ionandion-neutral

olli-sionsdominateatT

e

.2eV.

Attheplasmatemperatures0.1- 2eV,the

mole-ular ativated reombination (MAR) [5,6℄an explain

thedensitybehaviorintheexperiment. Alargeamount

ofhydrogenmoleuleshastobeinthedishargedueto

reyling ofneutralsat thewallswhere atomi

hydro-gen is eetively onverted to moleular oneand also

due to the gas puÆng. Weonsider equations for the

densityofmoleularandatomiions:

dn m i dt =K b n b N K DR n m i n e n m i (K b D n b +K D n e ) (4) dn a i dt =n m i (K b D n b +K D n e ) K MAR Nn a i (5) n m i +n a i =n e (6) whereK b

isthe rateonstantofneutral ionizationby

runawayeletrons, K

DR

is therate onstantof

disso-iative reombination, K b

D

is the rateonstantof H +

2

dissoiationbyrunaways,andK

D

istherateonstant

ofH +

2

dissoiationbyplasmaeletrons.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0

0.5

1.0

1.5

2.0

2.5

a

b

= 9 cm

a

b

= 14 cm

T

e

(eV

)

N (10

19

m

-3

)

Figure3. Stationary eletrontemperaturealulated from

Eqs. (1)and(2)asfuntionoftheneutraldensity.

Thesolutionis:

n e n b = K b K D K MAR K b D 2K MAR (K DR +K D ) + s K b K D K MAR K b D 2K MAR (K DR +K D ) 2 + K b (K b D +K MAR N=n b ) K MAR (K DR +K D ) (7) d

FromEq. (7)forK

b K DR K b D K D 10 14 m 3 /s, K MAR 10 16 m 3

/s and N=n

b

100 we nd

n

e =n

b

50: That meansthat stationary plasma

on-entrationisabout510 18

;whihisinagreementwith

that observedin theexperiment.

Other parameter for omparison with the

experi-mentistherateofdensitydeayobservedinrelaxation

instability. Intheaseof MAR,therequiredrate

on-stantis K MAR = dn e =dt n e n m

Forthedishargeshown in Fig. 2,(dn =dt)=n 500 s 1 andn m 10 19 m 3

;wendK

MAR

0:510 16

m 3

/s, whih is a reasonable value of this parameter

[5,6℄.

However,there exists aserious problem in this

in-terpretationofexperimentaldata. TheMARrate

ru-ially depends on vibrational exitation of hydrogen

moleules [5,6℄. In the ase of no vibrational

exita-tion,theMARrateisnegligiblysmall. Inourase,the

plasma is rather transparentand moleules an loose

vibrationalexitation duetoollisionswiththewalls.

Therateofthedensitydegradationobservedinthe

(4)

three-bodyreombinationat T

e

.0:1eV.Existene ofsuh

low-temperature plasma in our experiments disagrees

with the energy balane alulations for neutral

den-sitylessthan10 19

m 3

andalsowiththetemperatures

deduedfromthevoltagespikeanalysis.

Thus, an additional experimental data, mainly on

theplasma temperature, are neessaryto reah a

er-tainonlusionaboutmehanismofplasma

reombina-tionintheseexperiments.

IV Conlusion

Theanalysis ofthe energyand partilebalanein the

system plasma-relativisti runaway beam in TCABR,

whihtakesintoaountonlytheollisionalmehanism

oftheheattransferfromrunawaystothermaleletrons,

predits the eletron temperatures T

e

= 0:1 2 eV;

thetemperaturedereaseswiththeneutraldensity

in-rease,N =(0:1 1)10 19

m 3

. Ohmiheatingis

neg-ligiblesmall and energylosses dueto eletron-ionand

ion-neutralollisionsdominateat theseparameters.

Theionization by runaway eletronsdominates at

T

e

< 2 eV. The reombination proess with the rate

onstantaround10 16

m 3

/sisrequiredforthe

explana-tionofplasmadensitybehaviorintheexperiment. At

of reombination. More reliable and detailed

experi-mentaldata,rstofallabouttheplasmatemperature,

areneessary.

Aknowledgment

This work has been supported by FAPESP and

by the Brazilian Ministry of Siene and Tehnology

throughthePRONEXProjets.

Referenes

[1℄ R.M.O. Galv~ao, Yu.K. Kuznetsov, I.C.Nasimento et

al.,PlasmaPhys.Control.Fusion,43,1181 (2001).

[2℄ H. Knoepfel and D.A. Spong, Nul. Fusion 19, 785

(1979).

[3℄ I.ElChamaaNeto,Yu.K.Kuznetsov,I.C.Nasimento,

R.M.O.Galv~ao,andV.S.Tsypin,Phys.Plasmas7,2894

(2000).

[4℄ Yu.K.Kuznetsov,I.C.Nasimento,R.M.O.Galv~aoand

V.S.Tsypin,submittedforpubliationinBraz.J.Phys.

[5℄ S.I.Krasheninnikov,A.Yu.Pigarov,andD. J.Sigmar,

Phys.LettersA214,295(1996).

[6℄ A.Yu. Pigarov and S.I. Krasheninnikov, Phys. Lett.

Imagem

Figure 1. An example of the runaway disharge in TCABR
Figure 3. Stationary eletron temperature alulated from

Referências

Documentos relacionados

Sendo assim, podemos concluir que indivíduos que realizaram dieta apresentam mais sentimentos de autocriticismo (e.g., fracasso e raiva), mais dificuldades no controlo

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

Peça de mão de alta rotação pneumática com sistema Push Button (botão para remoção de broca), podendo apresentar passagem dupla de ar e acoplamento para engate rápido

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

Ao Dr Oliver Duenisch pelos contatos feitos e orientação de língua estrangeira Ao Dr Agenor Maccari pela ajuda na viabilização da área do experimento de campo Ao Dr Rudi Arno

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

Apresenta-se nesta seção, uma síntese dos principais resultados levantados de forma a situar o leitor. Em relação ao objetivo “a) Caracterizar os projetos de extensão