QuimFisicaM (Manual Completo).pdf

Texto

(1)

U

NIVERSIDADE

F

EDERAL DA

P

ARAÍBA

– UFPB

D

EPARTAMENTODE

Q

UÍMICA

– DQ/CCEN

FÍSICO-QUÍMICA EXPERIMENTAL

M

ANUAL DE

P

RÁTICAS

C

OMPLETO

(2)

CONTEÚDO:

UTILIZAÇÃO DESTE MANUAL

P

ARTE

1: T

ERMODINÂMICA

Q

UÍMICA

I

PRÁTICA N° 1: LEI DE BOYLE

PRÁTICA N° 2: LEI DE CHARLES E GAY-LUSSAC PRÁTICA N° 3: LEI DE GRAHAM

PRÁTICA N° 4: CALOR ESPECÍFICO DE UM SÓLIDO

PRÁTICA N° 5: CALOR DE NEUTRALIZAÇÃO, DISSOLUÇÃO E DILUIÇÃO PRÁTICA N° 6: FUNÇÕES TERMODINÂMICAS E SOLUBILIDADE

PRÁTICA N° 7: ENTROPIA DE UM PROCESSO IRREVERSÍVEL

PRÁTICA N° 8: CONSTANTE DE EQUILÍBRIO POR FOTOCOLORIMETRIA PRÁTICA N° 9: CONSTANTE DE EQUILÍBRIO POR TITULOMETRIA

1-18;19-47;103;104;105

P

ARTE

2: T

ERMODINÂMICA

Q

UÍMICA

II

PRÁTICA N° 1: VOLUME MOLAR PARCIAL PRÁTICA N° 2: TENSÃO SUPERFICIAL

PRÁTICA N° 3: VISCOSIDADE DE UM LÍQUIDO PRÁTICA N° 4: EQUILÍBRIO SÓLIDO-LÍQUIDO

PRÁTICA N° 5: DISTRIBUIÇÃO DE SOLUTO ENTRE SOLV. IMISCÍVEIS PRÁTICA N° 6: SOLUBILIDADE LÍQUIDOS (SISTEMA BINÁRIO)

PRÁTICA N° 7: SOLUBILIDADE LÍQUIDOS (SISTEMA TERNÁRIO) PRÁTICA N° 8: CONDUTIVIDADE MOLAR

PRÁTICA N° 9: CONSTANTE DE FARADAY E NÚMERO DE AVOGADRO

1-18;48-72;103;104;106

P

ARTE

3: C

INÉTICA

Q

UÍMICA

PRÁTICA N° 1: PARÂMETROS CINÉTICOS PELO MÉTODO DO ISOLAMENTO PRÁTICA N° 2: ORDEM DE REAÇÃO PELO MÉTODO DAS VELOC. INICIAIS PRÁTICA N° 3: CONSTANTE DE VELOC. POR CONDUTIVIMETRIA

PRÁTICA N° 4: PARÂMETROS CINÉTICOS POR FOTOCOLORIMETRIA PRÁTICA N° 5: CONSTANTE DE VELOC. POR TITULOMETRIA

PRÁTICA N° 6: CONSTANTE DE VELOC. POR POLARIMETRIA PRÁTICA N° 7: CATÁLISE ENZIMÁTICA VIA FOTOCOLORIMETRIA PRÁTICA N° 8: ISOTERMA DE ADSORÇÃO VIA TITULOMETRIA

1-18;73-102;103;104;107

F

ÍSICO

-Q

UÍMICA

E

XPERIMENTAL

: P

RÁTICAS

S

UGERIDAS

PRÁTICAS N°: 1.4, 1.5, 1.7, 2.1, 2.2, 2.3, 3.2, 3.3, 3.4

1-18;19;29-31;32-35;38-40;48;49-50;51-53;54-56;73;77-80;81-84;85-88;103;104;108

F

UNDAMENTOS DE

F

ÍSICO

-Q

UÍMICA

: P

RÁTICAS

S

UGERIDAS

PRÁTICAS N°: 1.1, 1.2, 1.4, 1.5, 1.7, 3.2, 3.3, 3.4, 3.6

(3)

ORIENTAÇÕES INICIAIS:

ATITUDES SEGURAS NO LABORATÓRIO E TRATAMENTO DE DADOS

O

BSERVAÇÕES

I

NICIAIS

1. Segurança no Laboratório: A participação nas aulas práticas só será permitida se o aluno estiver portando o seu caderno de laboratório e vestido adequadamente (calça, sapato e bata). É de suma importância que cada aluno se esforce para manter o laboratório limpo e organizado, de forma a permitir o seu uso posterior.

2. Tempo da Atividade: Em todas as aulas práticas os alunos devem trazer seus cadernos de laboratório devidamente organizados, contendo o pré-relatório e as tabelas a serem preenchidas com os dados dos experimentos. A critério do professor, a realização da atividade prática poderá ser suspensa caso o caderno de laboratório pré-organizado não seja apresentado no início da atividade.

3. Avaliação da Prática: O caderno de laboratório também deve conter o tratamento de dados referente a cada prática, cuja cópia deve ser entregue ao professor no início da aula prática seguinte. Este procedimento deve ser feito antes da elaboração do relatório final da atividade prática.

T

RATAMENTO DE

D

ADOS

ALGARISMOS SIGNIFICATIVOS

Em matemática 10 é igual a 10,0. Entretanto, nas ciências experimentais esses números não são necessariamente iguais. Por exemplo, quando se expressa a massa de uma amostra como sendo 10 g significa dizer que a quantidade pesada está entre 11 g e 12 g, enquanto que 10,0 g significa algo entre 9,9 g e 10,1 g.

Os algarismos necessários para expressar o resultado de um experimento, com a mesma precisão que as medidas efetuadas, são chamados algarismos significativos. Por exemplo, ao se escrever que a distância entre dois pontos é de 12,00 cm, a medida está sendo representada por quatro algarismos significativos. Escrevendo que a distância é de 0,1200 m ou 0,0001200 km tem-se tem-sempre quatro algarismos significativos. Note-tem-se que os zeros que precedem o algarismo 1 não fazem parte dos algarismos significativos, porque servem apenas para indicar a posição da vírgula. Os dois zeros seguintes aos algarismos 1 e 2 são significativos, porque indicam que a medida foi feita com precisão da ordem de um décimo de milímetro.

(4)

O experimentador deve registrar os resultados de tal modo que o último algarismo significativo, e apenas ele, seja incerto. A soma algébrica de um algarismo incerto com algarismos exatos é um algarismo incerto. Por exemplo:

104,65 + 0,2248 ---104,87

.

Neste caso o algarismo incerto é o 7, de modo que o resultado deve ser expresso como 104,87. Na multiplicação e na divisão o raciocínio é análogo. Por exemplo:

12,4 x2,54 496 620 248 ---31, 496

,

de modo que o resultado deve ser representado na forma de 31,5.

PRECISÃO & EXATIDÃO

Os termos precisão e exatidão são usados para dar informações sobre a qualidade das medidas e a confiança que se pode depositar nelas. Por exemplo, pesou-se uma amostra sobre duas balanças, de modo que a primeira pesagem indicou 1,25±0,02 g e a segunda 1,2500±0,0002 g. O resultado apresentado pela segunda balança é mais preciso que o da primeira, mas não se tem certeza de qual resultado é o mais exato, visto que uma das balanças pode apresentar um erro sistemático.

Fala-se de precisão quando se considera o número de algarismos significativos e a reprodutibilidade dos resultados, enquanto a exatidão

representa a diferença entre a medida e o seu valor real. Assim, uma medida pode ser muito precisa e pouco exata, mas se a medida for muito exata é provável que seja muito precisa. A precisão depende dos erros acidentais

(devidos ao operador; esses erros são variáveis em grandeza e sinal, e se compensam quando o número de medidas é grande), enquanto a exatidão depende dos erros sistemáticos (independentes do operador; esses erros são constantes em grandeza e sinal e nunca se compensam).

A determinação da precisão é feita pela percentagem de erro da medida. Por exemplo, duas medidas deram 1,25±0,02 g e 1,2500±0,0002 g, de modo que a precisão das medidas é:

1ª Medida: 0,02

1,25 = 0,016 = 1,6 %

2ª Medida: 0,0002

1,2500 = 0,00016 = 0,016% .

(5)

ERRO ABSOLUTO & ERRO RELATIVO

Em uma medida expressa na forma 7,25±0,03 cm, a quantidade 7,25 cm representa o valor absoluto da medida, enquanto que ±0,03 cm representa o

erro absoluto, que é independente do valor da medida. O erro relativo é a fração do erro cometido na medida e depende do valor absoluto. Por exemplo, duas medidas deram 7,25±0,03 cm e 72,50±0,03 cm, de modo que os erros absolutos são os mesmos, mas os erros relativos são:

1ª Medida: 0,03

7,25 = 0,004 = 0,4%

2ª Medida: 0,03

72,50 = 0,0004 = 0,04% .

A análise de erro descrita acima diz respeito a precisão da medida. No entanto, outra análise de erro a ser considerada é feita com base na exatidão, para a qual é necessário um valor de referência (geralmente um valor tabelado em

handbooks ou determinado através de um trabalho científico meticuloso). Para este tipo de análise, o erro absoluto é determinado pela expressão:

Erro =

|

MedidaReferência

|

, e o erro relativo:

%Erro =

|

MedidaReferência

Referência

|

.

FONTES DE DADOS ADICIONAIS

Todos os dados adicionais, necessários para a realização de tratamentos de dados ou determinações de erros experimentais, tais como densidade, tensão superficial e viscosidade em diferentes temperaturas, devem ser obtidos em manuais de constantes físicas e químicas ou em artigos científicos (muitos dos quais são recomendados neste manual, ao final de cada prática).

R

EFERÊNCIAS

1. Bueno, W. A.; Degrève, L.; Manual de Laboratório de Físico-Química, São Paulo, McGraw-Hill, 1980.

2. Silva, R. R.; Bocchi, N.; Rocha Filho, R. C.; Introdução à Química Experimental, São Paulo, McGraw-Hill, 1990.

(6)

ELABORAÇÃO DE PRÉ-RELATÓRIOS:

DOCUMENTAÇÃO ANTERIOR A REALIZAÇÃO DAS PRÁTICAS

O

BSERVAÇÕES

I

NICIAIS

1.

Cada aluno deve preparar um pré-relatório manuscrito em seu caderno de laboratório. O objetivo do pré-relatório é o de permitir que o aluno tome conhecimento dos detalhes do experimento antes de sua ida ao laboratório, bem como possibilitar a execução rápida e eficiente da atividade prática. É de suma importância a preparação antecipada do pré-relatório para a compreensão das bases teóricas e do roteiro da prática para o bom aproveitamento acadêmico.

2. A realização da prática dependerá, a critério do professor responsável, da apresentação do pré-relatório no início das atividades no laboratório.

C

OMPONENTES DO

P

-R

ELATÓRIO

Este material deve conter os seguintes itens:

1. MATERIAIS:

Lista completa de todos os equipamentos e reagentes a serem utilizados.

2. PROCEDIMENTO:

Descrição resumida do procedimento da prática. Deve-se evitar a simples cópia do roteiro da prática.

3. QUESTÕES:

Discussão sobre as questões sugeridas no manual do laboratório.

4. DADOS:

Quando for necessária a preparação de soluções, todos os cálculos relativos a massas e volumes a serem medidos devem constar neste item. Deve-se reservar um espaço para o registro das massas e volumes a serem efetivamente medidos na atividade prática. Quando necessário, tabelas (devidamente legendadas) para o registro dos dados a serem medidos devem ser preparadas e incluídas nesta seção. Deve-se tomar cuidado com o registro correto dos algarismos significativos e unidades de medida.

(7)

Materiais: 2 Béqueres de 250 mL;

2 Pipetas Volumétricas de 50±0,1 mL; 2 Termômetros Digitais (0-100 °C±0,1 °C);

100 mL de Ácido Clorídrico (HCl) 1,0 M; 100 mL de Hidróxido de Sódio (NaOH) 1,0 M; ...

Procedimento: Resumido, mas facilmente compreensível...

Questões: Devidamente respondidas...

Dados: 100 mL HCl 1,0 M.

MHCl = 36,46 g/mol, pHCl = 38 %, ρHCl(Conc.) = 1,181 g/mL

mHCl = cHClMHClVsol/p

VHCl = mHCl/ρHCl =cHClMHClVsol/pρHCl

VHCl = (1,0 mol/L)(36,66 g/mol)(0,100 L)/(0,38)(1,181 g/mL)

VHCl = 8,12 mL

100 mL NaOH 1,0 M.

MNaOH = 40,00 g/mol, pNaOH = 99 %

mNaOH = cNaOHMNaOHVNaOH/p

mNaOH= (1,0 mol/L)(40,00 g/mol)(0,100 L)/(0,99)

mNaOH= 4,04 g

VHCl: ±0,1 mL

mNaOH: ±0,0001 g

Reação entre HCl 1,0 M (50±0,1 mL) e NaOH 1,0 M (50±0,1 mL).

Tempo (s) THCl (°C) TNaOH (°C) Tcalorímetro (°C)

10

...

(8)

ELABORAÇÃO DE RELATÓRIOS:

DOCUMENTAÇÃO POSTERIOR A REALIZAÇÃO DAS PRÁTICAS

O

BSERVAÇÕES

I

NICIAIS

1.

O relatório deve ser, preferencialmente, impresso em papel tamanho A4, com fonte Times 12, Arial 11 ou Verdana 11, espaçamento 1,5 e títulos/subtítulos em negrito e letras maiúsculas.

2.

O relatório deve ser bem organizado e conciso, sem sacrificar a clareza. Atenção especial deve ser dada ao estilo literário científico compatível ao esperado para a disciplina. Ortografia e regras gramaticais não devem ser negligenciadas e serão penalizadas, a critério do professor responsável, caso não atendam a níveis adequados.

3.

Equações matemáticas devem ser acompanhadas de material verbal suficiente para deixar claro os significados dos termos empregados. Gráficos e tabelas devem ser adequadamente legendadas, com especial atenção a algarismos significativos e unidades de medida.

4.

O relatório elaborado deve ser, acima de tudo, um material original. Objetiva-se, com isto, o desenvolvimento da habilidade de escrever de forma concisa e eloquente, obedecendo a padrões rígidos impostos a argumentação científica.

5. O material deve ser elaborado no formato de “relatório completo” ou “relatório curto”, a critério do professor responsável.

R

ELATÓRIO

C

OMPLETO

Este formato deve conter os seguintes componentes:

1. CAPA:

Título e número da prática, identificação do(s) aluno(s) e da turma(s) (ex.: Bacharelado em Química), data da realização do experimento e nome do professor responsável.

2. RESUMO:

Texto contendo entre 5 e 10 linhas resumindo todo o relatório (objetivos, procedimentos e resultados).

3. OBJETIVOS:

Com verbo no infinitivo, indicando o(s) objetivo(s) da prática.

4. INTRODUÇÃO:

Teoria necessária para o entendimento da prática e fundamentação da discussão dos resultados, devendo estar referenciada com numeração sequencial, evitando-se cópia de textos da bibliografia consultada.

5. MATERIAIS E MÉTODOS:

(9)

5.1. Equipamentos: Informar, na forma de itens, todos os materiais e equipamentos utilizados. Ex.:

◦ Chapa Elétrica Aquecedora (ou Bico de Bunsen + Tripé de Ferro); ◦ Termômetro (0-100 °C±0,5 °C).

5.2. Reagentes: Informar, na forma de itens, todos os reagentes utilizados, com formulação e concentração. Ex.:

◦ Ácido clorídrico concentrado (HCl);

◦ Solução aquosa de ácido clorídrico (HCl) 0,50 mol/L.

5.3. Procedimento: Descrever o procedimento experimental realizado, com detalhes, levando-se em conta as possíveis diferenças do roteiro da prática. Os verbos devem estar no passado e de forma impessoal. Ex.: “colocou-se...” ou “foram colocados...”.

6. RESULTADOS E DISCUSSÃO:

Colocar todos os resultados alcançados na ordem em que foram adquiridos, apresentado-os com clareza e organização.

◦ Fazer uso de quadros, tabelas, gráficos e figuras, quando conveniente, devendo ser numerados e mencionados no texto antes de suas colocações no documento. Quadros apresentam as laterais fechadas e as tabelas apresentam as laterais abertas. Figuras facilitam a ilustração de um esquema ou montagem experimental, e gráficos facilitam a ilustração de uma tendência, devendo ser priorizados se os resultados o permitirem. Gráficos devem conter escalas coerentes aos valores mínimos e máximos dos pontos, com eixos rotulados com o símbolo da grandeza ou palavras que a definam, com as unidades indicadas entre parênteses. Em todos os casos deve-se utilizar legendas autoexplicativas, posicionadas na parte superior em tabelas, e na parte inferior em quadros, figuras e gráficos.

◦ Todos os dados numéricos obtidos através de medidas devem apresentar unidades, fazendo-se o uso correto de algarismos significativos. Deve-se informar nesta seção os erros absolutos e relativos (erros relacionados a precisão das medidas). Todos os cálculos relativos ao tratamento de dados devem ser apresentados neste item, atentando-se rigorosamente as regras operacionais de análise dimensional. No caso de cálculos repetitivos, apenas um deve ser realizado em detalhes, e os demais devem ser apresentados em uma tabela. Quando um valor de referência estiver disponível a partir de dados da literatura, deve-se informar nesta seção os erros absolutos e relativos obtidos (erros relacionados a exatidão dos resultados).

(10)

7. CONCLUSÕES:

Apresentar as conclusões de forma clara e resumida a partir dos resultados obtidos. Deve-se indicar os conceitos mais relevantes apreendidos durante a execução do experimento ou durante a elaboração do relatório.

8. QUESTÕES:

Discussão das questões sugeridas no roteiro da prática.

9. REFERÊNCIAS:

Listar as referências consultadas para a realização do relatório de acordo com a ABNT (Associação Brasileira de Normas técnicas), com a numeração adequada. Ex.:

1. SOBRENOME, Iniciais; Título do Livro, Nº da Edição, Local da Publicação, Editora, Páginas Consultadas, Ano.

2. ATKINS, P.W.; Físico-Química, 7ª Ed., RJ, Ed. LTC, p. 84, 2004.

3. CORSARO, G. Colorimetric Chemical Kinetics Experiment. J. Chem. Educ., v. 41, n. 1, p. 48, 1964.

R

ELATÓRIO

C

URTO

Este formato deve conter os seguintes componentes:

1. CAPA:

Título e número da prática, identificação do(s) aluno(s) e da turma(s), data da realização do experimento e nome do professor responsável.

2. DADOS:

Colocar todos os resultados alcançados na ordem em que foram adquiridos, apresentado-os com clareza e organização.(*)

3. TRATAMENTO DE DADOS:

Todos os cálculos relativos ao tratamento de dados devem ser apresentados neste item.(*)

4. ANÁLISE DE ERROS:

Deve-se informar nesta seção os erros absolutos e relativos (relacionados a precisão e exatidão das medidas).(*)

5. CONCLUSÕES:

Apresentar as conclusões de forma clara e resumida a partir dos resultados obtidos.

6. QUESTÕES:

Discussão das questões sugeridas no roteiro da prática.

7. REFERÊNCIAS:

Listar as referências consultadas para a realização do relatório de acordo com a ABNT, com a numeração adequada.(**)

*(*) Vide recomendações para “Resultados e Discussão” do Relatório Completo.

(11)

M

ODELO DE

R

ELATÓRIO

UNIVERSIDADE FEDERALDA PARAÍBA – UFPB

Departamento de Química – DQ/CCEN

Prática Nº 1: Determinação do

Calor de Neutralização

Grupo: Fulano de Andrade Sicrano de Bezerra

Turma: Bacharelado em Química

Data: 27 de agosto de 2014

(12)

R

ESUMO

Neste experimento, utilizou-se um calorímetro adiabático (constituído de uma garrafa térmica e um termômetro digital) para a determinação do calor liberado em uma reação de neutralização entre o ácido clorídrico (HCl 0,1 M) e hidróxido de sódio (NaOH 0,1 M) concentrados. Os resultados obtidos indicam que, apesar da simplicidade da montagem experimental, é possível obter uma boa concordância com resultados tabelados.

O

BJETIVOS

Determinar o calor de neutralização em uma reação ácido-base a partir de um simples experimento de calibração de um calorímetro.

I

NTRODUÇÃO

A calorimetria permite determinar a troca de calor envolvida em um processo químico ou físico. O conhecimento deste tipo de dado pe muito importante em diversas áreas, como a indústria química (calor liberado ou absorvido em um processo) e alimentícia (onde se determina o “teor calórico” de alimentos). Um calorímetro é um aparelho simples, termicamente isolado, que possibilita medir a quantidade de calor envolvida em um processo a partir da determinação da variação de temperatura medida em seu interior. Conhecendo-se a capacidade calorífica Ccal do calorímetro é possível determinar

a quantidade de calor qproc envolvida no processo a partir da determinação da

variação de temperatura ΔT medida no calorímetro e da aplicação da 1ª Lei da Termodinâmica, segundo a qual:

Calor do Processo = −Calor do Calorímetro ⇒ qproc = −CcalΔT .

(...)

M

ATERIAIS

& M

ÉTODOS EQUIPAMENTOS

• 01 Garrafa Térmica de 500 mL;

• 01 Béquer de 200 mL;

• 01 Proveta de 100 mL;

• 01 Chapa Elétrica Aquecedora;

• 02 Termômetros Digitais (0-100 °C±0,1 °C).

REAGENTES

• HCl 1,0 mol/L;

(13)

PROCEDIMENTO

Inicialmente, procedeu-se a calibração do calorímetro, constituído de uma garrafa térmica e 100 mL de água destilada. Colocou-se 100 mL de água destilada, sob temperatura ambiente, no interior da garrafa térmica (recipiente calorimétrico) e anotou-se a temperatura (T1(1)) de equilíbrio. Em seguida,

aqueceu-se 100 mL de água destilada em um béquer de 200 mL até ~80 °C. Transferiu-se 50 mL da água aquecida para uma proveta de 100 mL e devolveu-se a água ao béquer. Repetiu-devolveu-se este procedimento 3 vezes de modo que a proveta entrasse em equilíbrio térmico com a água aquecida. Finalmente, coletou-se 50 mL da água aquecida com a proveta, anotou-se a temperatura (T2(1)) e transferiu-se a água aquecida para o interior do calorímetro. Esperou-se

o equilíbrio térmico ser alcançado e anotou-se a temperatura de equilíbrio (Tf(1)).

Em seguida, esvaziou-se o calorímetro, que foi lavado com bastante água da torneira e depois com água destilada. Com o calorímetro lavado, colocou-se 50 mL de uma solução de NaOH 1,0 mol/L em seu interior e anotou-se a temperatura (Ti(2)). Pegou-se 50 mL de uma solução de HCl 1,0 mol/L, sob a

mesma temperatura do interior do calorímetro (Ti(2)), e colocou-se esta solução

sobre a solução de hidróxido de sódio do calorímetro. Esta última etapa restaurou o volume inicial do calorímetro. Agitou-se suavemente a mistura e anotou-se a temperatura de equilíbrio (Tf(2)).

R

ESULTADOS E

D

ISCUSSÃO DADOS

VHCl = 8,1 mL (±0,1 mL)

cHCl = VHClpρHCl/MHClVsol

= (8,1 mL)(0,38)(1,181 g/mL)/(36,66 g/mol)(0,100 L) = 0,9916 mol/L

Vsol(1) = 50,0 mL (±0,1 mL)

s(VHCl) = 0,1/8,1 = 1,2 % [Erro Relativo (Precisão)]

mNaOH = 4,0381 g (±0,0001 g) [s(mNaOH) = 0,1/8,1 = 1,2 %]

cNaOH = mNaOHp/MnaOHVsol

= (4,0381 g)(0,99)/(40,00 g/mol)(0,100 L) = 0,9949 mol/L

Vsol(2) = 50,0 mL (±0,1 mL)

(14)

Tabela 1: Temperatura da água aquecida utilizada para a calibração do Calorímetro e temperatura da mistura calorimétrica até equilibração.

Tempo (s) TÁgua (°C) TCal (°C) TCal+Água (°C)

0 76,5 (±0,1) 28,0 (±0,1)

---30 76,4 (±0,1) 28,0 (±0,1)

---60 76,3 (±0,1) 28,0 (±0,1)

---… … … …

180 76,1 (±0,1) 28,0 (±0,1)

---190 --- --- 44,3 (±0,1)

200 --- --- 44,4 (±0,1)

210 --- --- 44,5 (±0,1)

… … … …

330 --- --- 44,5 (±0,1)

340 --- --- 44,5 (±0,1)

350 --- --- 44,4 (±0,1)

--- --- ---

---TÁgua (°C) TCal (°C) TCal+Água (°C)

(15)

Tabela 2: Temperatura da solução de HCl 1,0 M (50±0,1 mL) e NaOH 1,0 M (50±0,1 mL) antes da mistura e temperatura da solução calorimétrica até equilibração.

Tempo (s) THCl (°C) TNaOH (°C) TCal (°C)

0 28,7 (±0,1) 28,4 (±0,1)

---30 28,6 (±0,1) 28,3 (±0,1)

---60 28,5 (±0,1) 28,2 (±0,1)

---… … … …

180 28,0 (±0,1) 28,0 (±0,1)

---190 --- --- 28,1 (±0,1)

200 --- --- 28,2 (±0,1)

210 --- --- 28,3 (±0,1)

… … … …

330 28,7 (±0,1)

340 28,7 (±0,1)

350 28,6 (±0,1)

--- --- ---

---THCl (°C) TNaOH (°C) TCal (°C)

(16)

TRATAMENTODE DADOS

Capacidade Calorífica do Calorímetro:

cÁgua = 4,201±0,002 J/g°C[1]

ρÁgua = 9,9568±0,0022 g/mL (a 30 °C)[1]

VÁgua = 50,0±0,1 mL

ΔTÁgua = 44,5-76,1 °C = -31,6 °C ± sT)[*]

ΔTCal(1) = 44,5-28,0 °C = +16,5 °C ± sT)[*]

Ccal = -ρÁguaVÁguacÁguaΔTÁgua/ΔTCal(1)

= -(4,201 J/g°C)(9,9568 g/mL)(50,0 mL)(-31,6 °C)/

= -(+16,5 °C)

= -4.005,397 J/°C = 4,01 kJ/°C ± s(Ccal)[**]

sT) = √[(0,1 °C)²+(0,1 °C)²] = 0,1 °C

sr(Ccal) = √[(0,0022/9,9568)²+(0,1/50,0)²+(0,002/4,201)²+ = √(0,1/31,6)2+(0,1/16,5)2] = 0,007

s(Ccal) = Ccal× sr(Ccal)

= 4.005,397 J/°C × 0,007

= 28,0 J/°C → Ccal = 4.005±28 J/°C

[*] Diferença: → desvio padrão absoluto (s)

[**] Produto: → desvio padrão relativo (s r) → (s)

Entalpia de Neutralização Molar:

nHCl = cHClVsol(1)

= (0,9916 mol/L)(0,050 mL) = 0,0495 mol ± s(nHCl)

nNaOH = cNaOHVsol(2)

= (0,9949 mol/L)(0,050 mL) = 0,0497 mol ± s(nNaOH)

nNeu = 0,0495 mol ± s(nNeu) [Menor valor]

ΔTCal(2) = 23,7-23,0 °C = +0,7 °C ± sT)

ΔHNeu(Exp) = -CCalΔTCal(2)/nNeu

= -(4.005 J/°C)(+0,7 °C)/(0,0495 mol) = -56,636 kJ/mol ± sHNeu)

ΔHNeu(Ref) = -57,300 kJ/mol ± 0,012[2-3]

(17)

DISCUSSÃO

A variação temporal abrupta da temperatura é devida a rápida reação de neutralização de um ácido forte e uma base forte. Por outro lado, a relativa estabilidade da temperatura por alguns minutos após a neutralização sugere que, apesar da simplicidade da montagem experimental, a mesma serve para dar um resultado aproximado para a entalpia molar da reação em estudo. O valor negativo obtido para a entalpia molar é consistente com o esperado para uma reação exotérmica como a de neutralização. (...)

Figura 1: Variação temporal da temperatura devida a reação de neutralização HCl 1,0 M + NaOH 1,0 M.[***]

(***) Este gráfico foi utilizado aqui apenas como ilustração. No entanto, neste caso

específico a sua utilização em um relatório real seria inadequada, uma vez que apenas repete os dados da Tabela 2.

ANÁLISEDE ERROS

Uma análise das diversas fontes de erro (a partir dos limites de precisão das diferentes quantidades medidas) indica que as ordens de grandezas das diferentes contribuições são bem diferentes, de modo a contribuírem em diferentes escalas para a exatidão do resultado final. Por exemplo, a incerteza nas medidas de volume (1,2 %) são muito maiores que as relativas as massas (0,0025 %). Portanto, é de se esperar que a utilização de balanças mais precisas não deve contribuir para a melhoria dos resultados experimentais. (...)

eHNeu) = |ΔHNeu(Exp)-ΔHNeu(Ref)| [Erro Absoluto (Exatidão)]

= |-56,636+57,300| kJ/mol = 0,664 kJ/mol

er(ΔHNeu) = |ΔHNeu(Exp)-ΔHNeu(Ref)|/ΔHNeu(Ref) [Erro Relativo (Exatidão)]

= (0,664)/(57,300) = 0,0116 = 1,16 %

180 200 220 240 260 280 300 320 340 360 28,0

28,1 28,2 28,3 28,4 28,5 28,6 28,7 28,8

Tempo (s)

Te

m

p

e

ra

tu

ra

(

°C

(18)

Q

UESTÕES

1. Os resultados obtidos são satisfatórios?

Razoáveis, uma vez que o erro obtido para a entalpia molar de neutralização difere do valor de referência na ordem de, apenas, 1 %.

(...)

R

EFERÊNCIAS

1. LENNON, J.; Handbook of Chemistry and Physics, p. 321, 2001.

2. MCCARTNEY, P.; Thermochemical Experiment, J. Chem. Educ., 1(2), 34, 2002.

3. HARRISON, G.; Experimental Physical Chemistry, J. Chem. Educ., 5(6), 78, 2003.

(19)

PARTE 1

(20)

PRÁTICA N° 1:

VERIFICAÇÃO DA LEI DE BOYLE

O

BJETIVO

Determinar experimentalmente a relação entre a pressão e o volume de uma amostra de ar à temperatura constante.

I

NTRODUÇÃO

Boyle e Mariotte enunciaram, a partir de resultados experimentais, uma lei que rege as variações de volume e de pressão, à temperatura e composição constantes. Esta lei é válida para os gases ideais e, experimentalmente, é comprovada variando-se a pressão de um gás, à temperatura constante, e determinando o seu volume. Esta lei pode ser expressa da seguinte maneira: “À temperatura constante, o produto da pressão de uma determinada amostra de um gás pelo seu volume é constante”. Matematicamente: pV = constante, onde

p é a pressão exercida sobre o gás e V o volume da amostra gasosa.

A amostra de ar é mantida a uma temperatura constante e varia-se seu volume. A pressão é medida por um manômetro a água. A pressão da amostra de ar é igual à pressão da coluna d’água mais a pressão atmosférica, que é lida no barômetro do laboratório em milímetros de mercúrio e deve ser convertida em centímetros de água. A pressão medida inclui a pressão de vapor da água. Para obter a pressão do ar seco, deve-se subtrair a pressão de vapor da água na temperatura do experimento.

(1) Balão de nível.

(2) Balão contendo o gás. (3) Bureta.

Figura 1: Sistema com manômetro a água para medir a pressão de uma amostra de ar, à temperatura constante.

(21)

01 Balão volumétrico; 01 Bureta;

02 Mangueiras de silicone;

Água destilada.

P

ROCEDIMENTO

PARTE A: MONTAGEM EXPERIMENTAL

1. Para obter o volume do ar contido no balão e no tubo de borracha até o zero da bureta de gás (volume morto), desconecte o tubo de borracha no ponto A. Encha o balão, o tubo de borracha e a bureta, até o zero, com água destilada. Elimine bolhas de ar comprimindo o tubo de borracha. Transfira a água cuidadosamente, evitando perdas, para um bécher previamente tarado. Pese o bécher com a água (utilize a balança mecânica de contrapesos).

2. Reconecte o tubo de borracha em A. Desconecte agora o tubo de borracha no ponto B. Encha o balão de nível até à metade com água destilada. Não deixe bolhas de ar. Ajuste a altura do balão de nível de modo que a bureta fique com água pela metade.

3. Reconecte o tubo de borracha ao ponto A. Verifique se o balão ficou bem fechado.

4. Prepare uma tabela no seu caderno de laboratório com uma coluna para volumes em mililitros e duas colunas para alturas em centímetros.

PARTE B: COLETADE DADOS

1. Comprima a amostra de ar elevando o balão de nível até que o nível d’água na bureta fique a um ou dois milímetros da marca superior. Anote a altura da água no balão de nível (h2) e na bureta (h1). Se necessário,

extrapole a escala da bureta com o auxílio de uma régua graduada.

2. Faça de cinco a dez medidas, baixando o balão de nível até que todo o volume da bureta seja utilizado.

3. Obtenha a temperatura e a pressão atmosférica sob a qual o experimento foi realizado. Com essas informações, determine a pressão de vapor da água e a densidade da água e do mercúrio na temperatura do experimento.

T

RATAMENTO DE

D

ADOS

1. Apresente os dados obtidos em uma tabela de pressão em função do volume.

(22)

densidade da água na temperatura do experimento. Cada amostra de ar terá o volume medido na bureta mais o volume morto.

3. Calcule a pressão total do ar seco em centímetros de água, subtraindo, para cada medida, a pressão de vapor da água. Some a cada valor a pressão da atmosfera (lida no barômetro do laboratório), convertida de milímetros de mercúrio para centímetros de água. Utilize, para a conversão de unidades, a relação: p = ρgh.

4. Apresente tabelas de pressão (em centímetros de água) em função do volume, e calcule o produto pV em função da pressão para cada medida. 5. Trace o gráfico 1/V = f(p) e encontre a melhor reta.

6. Trace o gráfico pV = f(p) e determine o valor médio da constante.

7. Discuta os resultados, apontando possíveis causas de desvios em relação à lei de Boyle, caso elas sejam observadas.

Q

UESTÕES PARA O

R

ELATÓRIO

1. Que tipos de curvas foram obtidas a partir do tratamento dos dados?

2. Faça uma regressão linear para o gráfico do item 6 e obtenha a equação que melhor descreve os seus resultados. Faça uma comparação com a Lei de Boyle.

3. Quais as possíveis fontes de erro ou limitações neste experimento? Para cada uma, tente dizer que efeito elas terão no resultado esperado dos experimentos.

4. Como o objetivo da prática é verificar se o produto pV é constante, é interessante verificar o quanto as medidas experimentais se distanciam de um valor médio.

5. Caso as medidas experimentais não confirmem a lei de Boyle, indique uma maneira de verificar o quanto as medidas se distanciam do desejado.

B

IBLIOGRAFIA

1. ATKINS, P.W.; Físico-Química, 7ª Ed., RJ, Ed. LTC, 2004.

(23)

PRÁTICA N° 2:

VERIFICAÇÃO DA LEI DE CHARLES E GAY-LUSSAC

O

BJETIVO

Verificar a validade da lei de Charles e Gay-Lussac para uma amostra de ar, utilizando um sistema hidrostático.

I

NTRODUÇÃO

Para verificar experimentalmente a lei de Charles e Gay-Lussac, mede-se a pressão de uma amostra de ar, mantida a volume constante no sistema hidrostático da figura 1, a diferentes temperaturas. O balão 1 é imerso em um banho de água (não ilustrado na figura) de modo que a temperatura da amostra de ar pode ser variada adicionando-se água quente, água fria ou gelo triturado ao banho. A pressão do ar será igual à pressão da coluna d’água (diferença entre os dois níveis de água no sistema: ∆h = h2 - h1) mais a pressão atmosférica. A

pressão da atmosfera é lida no barômetro do laboratório, em milímetros de mercúrio, e deve ser corrigida para centímetros de água. A pressão medida inclui a pressão de vapor da água. Para obter a pressão do ar seco, deve-se subtrair do valor medido a pressão de vapor da água a cada temperatura do experimento.

(1) Cuba contendo água; (2) Balão contendo o ar; (3) Bureta;

(4) Termômetro;

(5) Resistência elétrica para aquecimento; (6) Régua;

(7) Balão de nível.

(24)

M

ATERIAIS

: E

QUIPAMENTOS

& R

EAGENTES 01 Balão de nível;

01 Balão volumétrico; 01 Bureta;

01 Termômetro;

01 Resistência elétrica; 02 Mangueiras de silicone; 01 Régua graduada;

Água destilada.

P

ROCEDIMENTO

PARTE A: MONTAGEM EXPERIMENTAL

1. Monte o sistema hidrostático da figura 1. Mantenha o balão contendo ar imerso em um banho de água à temperatura ambiente. Agite a água do banho com um bastão de vidro para homogeneizar a temperatura.

2. Encha o balão de nível até a metade com água destilada. Abaixe-o até que o nível de água na bureta de gás fique entre 10 e 15 mililitros. Ajuste a altura do balão de nível até que a água fique à mesma altura nos dois lados do tubo em U (faça marcas para se orientar).

PARTE B: COLETADE DADOS

1. Registre em uma tabela os dados, colocando colunas para a temperatura e para as alturas do nível da água na bureta (h1) e do balão de nível (h2).

2. Misture água gelada ao banho até conseguir uma temperatura razoavelmente constante, em torno de 20 °C.

3. Ajuste a altura do balão de nível para que o volume fique constante, mantendo os níveis de água no tubo em U sempre nas marcas.

4. Anote a temperatura e as novas alturas h1 e h2.

5. Repita o procedimento, acrescentando gelo ao banho, variando a temperatura em cerca de 5 oC para cada ponto, anotando a temperatura e

as alturas em cada etapa.

6. Remova o gelo e aqueça o banho suavemente, com cuidado para manter o nível de água no tubo em U, e meça as alturas, como anteriormente, variando a temperatura em cerca de 5 oC para cada ponto.

(25)

T

RATAMENTO DE

D

ADOS

1. Apresente os dados obtidos em uma tabela: temperatura (T), altura da coluna de água na bureta (h1) e altura da coluna de ar no balão de nível

(h2).

2. Para cada temperatura, calcule a pressão total do ar úmido e corrija-a, subtraindo a pressão de vapor da água para obter a pressão do ar seco. Adicione a pressão atmosférica, convertida de milímetros de mercúrio para centímetros, de água. Apresente os dados calculados em uma tabela. 3. Trace o gráfico da pressão do ar seco (em centímetros de água) em função

da temperatura (em °C).

4. Obtenha a melhor reta (p = kt(oC) + kT

0) pelo método dos mínimos

quadrados (regressão linear) e encontre T0.

5. Compare seu resultado com o valor 273,15 e discuta, calculando erros.

Q

UESTÕES PARA O

R

ELATÓRIO

1. Que tipos de curvas foram obtidas a partir do tratamento dos dados?

2. Faça uma regressão linear para o gráfico e obtenha a equação que melhor descreve os seus resultados. Faça uma comparação com a Lei de Charles. 3. Quais as possíveis fontes de erro ou limitações neste experimento? Para

cada uma, tente dizer que efeito elas terão no resultado esperado dos experimentos.

4. Como o objetivo da prática é verificar se V é proporcional a T, é interessante verificar o quanto as medidas experimentais se distanciam de um valor médio.

5. Caso as medidas experimentais não confirmem a lei de Charles, indique uma maneira de verificar o quanto as medidas se distanciam do desejado.

B

IBLIOGRAFIA

1. ATKINS, P.W.; Físico-Química, 7ª Ed., RJ, Ed. LTC, 2004.

(26)

PRÁTICA N° 3:

VERIFICAÇÃO DA LEI DE GRAHAM

O

BJETIVO

Determinar a velocidade de efusão de um gás desconhecido à baixa pressão a partir de dados sobre uma amostra conhecida.

I

NTRODUÇÃO

Um gás tem a capacidade de se efundir, ou seja, passar através de um orifício. A lei de efusão de Graham relaciona velocidades de efusão e densidades para dois gases diferentes à mesma temperatura e pressão. A velocidade de efusão pode ser determinada com um dispositivo de montagem simples, chamado efusiômetro. O efusiômetro permite isolar certo volume de gás e medir o tempo que este gás leva para passar através de um pequeno orifício. Pela lei de Graham as razões entre as velocidades de efusão de dois gases à mesma pressão e temperatura é o inverso da razão entre as raízes quadradas de suas densidades, ou seja:

v = ΔV Δt =

Volume

Tempo , (1)

onde vi e ρi são a velocidade de efusão e a densidade do gás i, respectivamente.

A proporcionalidade é perfeita se os gases se comportarem idealmente e se a seção reta do orifício for pequena em relação à distância média que uma molécula percorre antes de colidir com outra (percurso livre médio).

A partir da lei de Graham é possível deduzir uma relação entre tempos de efusão e massas molares. Se a massa molar de um dos gases for conhecida pode-se determinar a massa molar do outro. Da definição de velocidade:

v1 v2 =

ρ2

ρ1 , (2)

e da consideração de que o volume que efunde é o mesmo para o dois gases (ΔV1 = ΔV2), tem-se:

ΔV1/ Δt1

ΔV2/ Δt2

=

ρ2

ρ1 ⇒

Δt2

Δt1

=

ρ2

ρ1 . (3)

Sendo as densidades proporcionais as massas dos gases, pode-se obter uma relação entre os tempos de efusão e as massas molares, desde que os volumes molares Vm dos dois gases sejam iguais:

ρ = m V =

M Vm

⇒ Δt2

Δt1

=

M2

M1

(27)

M

ATERIAIS

: E

QUIPAMENTOS

& R

EAGENTES 01 Proveta de 1000 mL;

01 Bureta de 50 mL; 01 Bico de efusão; 01 Suporte de metal; 01 Cronômetro;

01 Cilindro de gás (Argônio ou Nitrogênio).

P

ROCEDIMENTO

PARTE A: MONTAGEM EXPERIMENTAL

1. Adapte o tubo de borracha com o pequeno orifício à torneira da bureta. Mergulhe a bureta invertida na proveta cheia de água destilada, mantendo a torneira fechada de modo a não permitir o escape de ar. Verifique o nível da bureta que está imerso na água.

PARTE B: COLETADE DADOS

1. Ajuste o volume de ar entre os traços de aferição. Dispare o cronômetro ao mesmo tempo em que abre a torneira, deixando o ar escapar. Registre o tempo gasto para que a água suba até o traço de aferição superior (escolhido arbitrariamente).

2. Abra a torneira, suspenda a bureta e deixe sair toda a água de volta para a proveta, sem perdas.

3. Com a bureta cheia de ar e sem gotículas de água aderidas à sua parede interna, feche a torneira e recoloque a bureta na água, mantendo o mesmo nível da etapa anterior. Meça novamente o tempo de efusão, repetindo toda a operação ao menos três vezes.

4. Para medir tempos de efusão para outros gases, adapte um tubo de borracha ou plástico à saída do gás encanado e conecte a outra extremidade desse tubo à torneira da bureta. Borbulhe o gás por cerca da 3 minutos.

5. Deixe o gás ocupar o volume desejado. Feche a torneira da bureta. Desconecte a fonte do gás e adapte o tubo com o orifício.

(28)

T

RATAMENTO DE

D

ADOS

1. Determine as velocidades de efusão dividindo o volume de gás efundido pelo tempo de efusão medido. Obtenha os valores médios para as velocidades de efusão do ar e do gás encanado.

2. Use a lei de Graham para encontrar a densidade do gás desconhecido, sabendo que a densidade do ar é de 0,0012 g/mL (valor médio).

3. Considerando a massa molar do ar igual a 28,88 g/mol (massa média), manipule convenientemente a equação para obter a massa molar do gás encanado.

4. Dê uma explicação para os dados obtidos, verificando na literatura se de fato o percurso livre médio das moléculas é maior do que a seção reta do orifício do efusiômetro.

Q

UESTÕES PARA O

R

ELATÓRIO

1. Os valores obtidos são satisfatórios?

2. Quais as possíveis fontes de erro ou limitações neste experimento? Para cada uma, tente dizer que efeito elas terão no resultado esperado dos experimentos.

B

IBLIOGRAFIA

1. ATKINS, P.W.; Físico-Química, 7ª Ed., RJ, Ed. LTC, 2004.

(29)

PRÁTICA N° 4:

DETERMINAÇÃO DO CALOR ESPECÍFICO DE UM SÓLIDO POR CALORIMETRIA

O

BJETIVO

Determinar o calor específico de um sólido a partir de um simples experimento de calibração de um calorímetro.

I

NTRODUÇÃO

Calor pode ser definido como uma quantidade que se transfere de um corpo a outro como consequência exclusiva de uma diferença de temperatura entre ambos. A experiência mostra que a quantidade de calor recebida por um sistema, sob pressão constante, é proporcional ao acréscimo de temperatura produzido, ou seja:

q = C ×(T2T1) , (1)

onde T1 e T2 são as temperaturas inicial e final do sistema, respectivamente, e C

é uma constante de proporcionalidade, denominada capacidade calorífica média, a qual depende da natureza, do estado físico e do tamanho do sistema. Se dividirmos a capacidade calorífica pela massa do sistema, obtém-se a

capacidade calorífica específica, ou simplesmente calor específico, do sistema, c:

c = C

mC = mc . (2)

De acordo com a primeira lei da termodinâmica, quando dois sistemas interagem e trocam energia, um deles ganha e o outro perde a mesma quantidade de energia. Desta forma, se os sistemas estiverem em temperaturas diferentes, a quantidade de energia trocada pode ser representada da seguinte forma:

q1 = −q2q1 + q2 = 0 , (3)

onde q1 é a quantidade de energia perdida pelo corpo 1 e q2 a quantidade de

energia ganha pelo corpo 2. Se substituirmos q1 e q2, teremos:

C1×(TfT1) = −C2×(TfT2) , (4)

onde C1 e C2 são as capacidades caloríficas dos sistemas 1 e 2, T1 e T2 as

temperaturas iniciais dos sistemas 1 e 2 e Tf a temperatura final (de equilíbrio).

(30)

M

ATERIAIS

: E

QUIPAMENTOS

& R

EAGENTES 01 Calorímetro adiabático de isopor; 01 Copo de alumínio.

01 Esfera de ferro metálico; 01 Esfera de chumbo metálico; 01 Proveta de 250 mL;

01 Chapa Elétrica Aquecedora (ou Bico de Bunsen + Tripé de Ferro); 01 Balança mecânica;

02 Termômetros (0-100 °C±0,5 °C).

P

ROCEDIMENTO

PARTE A: CALIBRAÇÃO DO CALORÍMETRO

1. Coloque 200 mL de água destilada no interior do sistema calorimétrico e deixe-o alcançar o equilíbrio térmico. Anote a temperatura.

2. Pese uma quantidade de ferro metálico (c = 0,106 cal/g°C) em balança adequada (mecânica). Aqueça-a em água destilada até que esta entre em ebulição e anote a temperatura. Em seguida, transfira rapidamente o ferro metálico para o sistema calorimétrico, espere o equilíbrio térmico ser alcançado e anote a temperatura de equilíbrio.

3. Utilize estes dados para calcular a capacidade calorífica do sistema calorimétrico.

PARTE B: DETERMINAÇÃO DO CALOR ESPECÍFICO DE UM SÓLIDO

1. Esvazie e lave o calorímetro.

2. Repita o procedimento anterior, utilizando uma amostra de chumbo metálico.

T

RATAMENTO DE

D

ADOS

(31)

2. Utilizando a equação (4), os dados da segunda parte e o resultado anterior, determine o calor específico do chumbo.

3. Compare seus resultados com os da literatura. Calcule o erro relativo e o absoluto e discuta sobre as diferenças.

Q

UESTÕES PARA O

R

ELATÓRIO

1. Os valores obtidos são satisfatórios?

2. Quais as possíveis fontes de erro ou limitações neste experimento? Para cada uma, tente dizer que efeito elas terão no resultado esperado dos experimentos.

B

IBLIOGRAFIA

1. ATKINS, P.W.; Físico-Química, 7ª Ed., RJ, Ed. LTC, 2004.

(32)

PRÁTICA N° 5:

DETERMINAÇÃO DO CALOR DE NEUTRALIZAÇÃO, DISSOLUÇÃO E DILUIÇÃO

O

BJETIVO

Determinar o calor de neutralização (em uma reação ácido-base) e dissolução (na solubilização de um soluto em água).

I

NTRODUÇÃO

Calor pode ser definido como uma quantidade que se transfere de um corpo a outro como consequência exclusiva de uma diferença de temperatura entre ambos. A experiência mostra que a quantidade de calor recebida por um sistema, sob pressão constante, é proporcional ao acréscimo de temperatura produzido, ou seja:

q = C ×(TfTi) , (1)

onde Ti e Tf são as temperaturas final e inicial do sistema, respectivamente, e C é

uma constante de proporcionalidade, denominada capacidade calorífica média, a qual depende da natureza, do estado físico e do tamanho do sistema. Se dividirmos a capacidade calorífica pela massa do sistema, obtém-se a

capacidade calorífica específica, ou simplesmente calor específico, do sistema, c:

c = C

mC = mc . (2)

De acordo com a primeira lei da termodinâmica, quando dois sistemas interagem e trocam energia, um deles ganha e o outro perde a mesma quantidade de energia. Desta forma, se os sistemas estiverem em temperaturas diferentes, a quantidade de energia trocada pode ser representada da seguinte forma:

q1 = −q2q1 + q2 = 0 , (3)

onde q1 é a quantidade de energia perdida pelo corpo 1 e q2 a quantidade de

energia ganha pelo corpo 2. Se substituirmos q1 e q2, teremos:

C1×(TfT1) = −C2×(TfT2) , (4)

onde C1 e C2 são as capacidades caloríficas dos sistemas 1 e 2, T1 e T2 as

temperaturas iniciais dos sistemas 1 e 2 e Tf a temperatura final (de equilíbrio).

A quantidade de calor trocada entre um sistema e o meio externo é medida por meio de um calorímetro, que é um reservatório de calor de capacidade calorífica conhecida, cujas variações de temperatura fornecem as quantidades de calor recebidas de um sistema ou transferidas para este.

(33)

H(+aq) + Cl

(aq)

- + Na

(aq)

+ + OH

(aq)

- Na

(aq)

+ + Cl

(aq)

- + H

2O(ℓ) . (5)

Observa-se experimentalmente que reações entre soluções diluídas de ácidos fortes e bases fortes são sempre acompanhadas do mesmo efeito térmico, e este, por sua vez, é totalmente devido à formação da água. Porém, se um ácido fraco for neutralizado por uma base forte, ou vice-versa, o efeito térmico será completamente diferente. Isto ocorre devido a vários processos simultâneos: alguns são exotérmicos, como a neutralização, e outros endotérmicos, como a ionização do ácido e da base. O calor medido é a soma de todos os processos: neutralização, ionização, solvatação, diluição, entre outros.

Calor integral de dissolução é a variação de entalpia associada com a adição de certa quantidade de um soluto a uma determinada quantidade de solvente, à temperatura e pressão constantes. Exs.:

I: HCl(g) + 10H2O() → HCl·10H2O()HI = -16,608 kcal.mol-1. (6)

II: HCl(g) + 25H2O() → HCl·25H2O()HII = -17,272 kcal.mol-1. (7)

Os processos acima representam os calores integrais de dissolução do HCl na água, à 25 °C. A diferença entre os processos Ι e ΙΙ é a quantidade do solvente. Portanto, ∆HΙΙ - ∆HΙ representa o calor integral de diluição do HCl quando se

acrescentam 15 mols de água à solução de HCl do processo I.

A determinação do calor de neutralização e do calor integral de dissolução

é feita a partir de um sistema calorimétrico, de acordo com:

ΔHr = qr

n , qr = −qcal = −CcalΔT ⇒ ΔHr =

CcalΔT

n , (8)

onde ∆Hr e qr são a entalpia e o calor da reação (neutralização e dissolução),

respectivamente, n o número de mols neutralizados e Ccal a capacidade calorífica

do calorímetro.

M

ATERIAIS

: E

QUIPAMENTOS

& R

EAGENTES

01 Frasco de Dewar (Garrafa Térmica/Calorímetro) de 500 mL; 01 Béquer de 200 mL + Proveta de 50 mL (ou 100 mL) + Funil; 01 Chapa Elétrica Aquecedora (ou Bico de Bunsen + Tripé de Ferro); 02 Termômetros (0-100 °C±0,5 °C);

HCl 1,0 mol/L + NaOH 1,0 mol/L (prepare-as se necessário); Nitrato de Sódio (NaNO3) ou Nitrato de Potássio (KNO3).

P

ROCEDIMENTO

PARTE A: CALIBRAÇÃO DO CALORÍMETRO

(34)

100 mL de água a temperatura ambiente) constitui o calorímetro a ser utilizado em todas as demais etapas da prática.

2. Aqueça 100 mL de água destilada até ~80 °C. Coloque 50 mL da água aquecida em uma proveta e a devolva. Repita este procedimento 3 vezes de modo que a proveta entre em equilíbrio térmico com a água aquecida. Finalmente, colete 50 mL da água aquecida em uma proveta, anote a temperatura (T2) e a transfira para o interior do calorímetro.

3. Espere o equilíbrio térmico ser alcançado e anote a temperatura (Tf).

PARTE B: CALORDE NEUTRALIZAÇÃODE UM ÁCIDO FORTE PORUMA BASE FORTE

1. Esvazie o calorímetro e lave-o cuidadosamente (com bastante água da torneira e depois com água destilada). Em seguida, coloque 50 mL de uma solução de NaOH 1,0 mol/L no interior do calorímetro e anote a temperatura (Ti) quando esta estiver constante.

2. Pegue 50 mL de uma solução de HCl 1,0 mol/L, à temperatura conhecida e igual à do interior do calorímetro (Ti; caso as temperaturas não sejam

iguais, deve-se esperar que até que as temperaturas estabilizem até atingirem a temperatura ambiente), e coloque-a (com auxílio de um funil, se necessário) sobre a solução de hidróxido de sódio do calorímetro.

3. Agite suavemente a mistura e anote a temperatura de equilíbrio (Tf). Note

que os 100 mL de água no interior do calorímetro foram restaurados.

PARTE C: DETERMINAÇÃODO CALOR INTEGRALDE DISSOLUÇÃO(*)

1. Esvazie o calorímetro e lave-o cuidadosamente. Coloque 100 mL de água destilada no interior deste e anote a temperatura de equilíbrio.

2. Pese cerca de 2,5 g de NaNO3 (ou KNO3) e transfira para o interior do

calorímetro. Feche-o, homogeneíze a mistura e anote a temperatura de equilíbrio.

PARTE D: DETERMINAÇÃO DO CALOR INTEGRALDE DILUIÇÃO(*)

1. Retire 50 mL da solução do interior do calorímetro e deixe esfriar até a temperatura inicial (ambiente). Descarte o restante da solução do calorímetro e lave-o cuidadosamente.

2. Devolva os 50 mL de solução para o calorímetro. Leia a temperatura de um em um minuto e anote a temperatura de equilíbrio.

3. Adicione 50 mL de água destilada à solução contida no calorímetro. A temperatura deve ser igual à da solução do interior do calorímetro.

4. Leia a temperatura a cada minuto e anote a temperatura de equilíbrio.

(*) Etapa opcional na disciplina de Fundamentos da Físico-Química Experimental.

T

RATAMENTO DE

D

ADOS

(35)

2. Com os valores de temperatura obtidos na parte B e a capacidade calorífica do sistema calorimétrico, calcule o calor de neutralização (em J/mol) a partir da relação: ∆H = -Ccal∆Tcal/n, onde n é o número de mols

neutralizados.

3. Com os valores de temperatura obtidos na parte C e a capacidade calorífica do sistema calorimétrico, calcule o calor integral de dissolução do sal (NaNO3 ou KNO3).

4. Com os valores de temperatura obtidos na parte D e a capacidade calorífica do sistema calorimétrico, calcule o calor integral de diluição do sal.

5. Compare seus resultados com os da literatura. 6. Calcule o erro relativo em cada caso e discuta.

Q

UESTÕES PARA O

R

ELATÓRIO

1. Se a quantidade de massa de cada composto fosse reduzida à metade, o calor de dissolução também seria reduzido à metade?

2. Explique o que aconteceria, em relação ao calor de dissolução, se a quantidade de solvente fosse o dobro da que foi usada no experimento. 3. Os valores obtidos são satisfatórios?

4. Quais as possíveis fontes de erro ou limitações neste experimento? Para cada uma, tente dizer que efeito elas terão no resultado esperado dos experimentos.

B

IBLIOGRAFIA

1. ATKINS, P.W.; Físico-Química, 7ª Ed., RJ, Ed. LTC, 2004.

(36)

PRÁTICA N° 6:

DETERMINAÇÃO DE FUNÇÕES TERMODINÂMICAS PELA SOLUBILIDADE DE UM SAL

O

BJETIVO

Calcular várias funções termodinâmicas (∆H, ∆S e ∆G) a partir de um simples processo de dissolução.

I

NTRODUÇÃO

Para o processo de dissolução:

KNO3(s) + H2O() K(+aq) + KNO

3(aq)

-(1)

a constante de equilíbrio tem a forma:

K = [K+][NO 3

-] = s×s = s2

, (2)

onde s é a solubilidade do sal (em mol por litro). Considera-se que o sistema se encontra em equilíbrio quando o sólido está em contato com a solução saturada, ou seja, justamente quando os primeiros cristais são formados.

A solubilidade do composto será medida para seis ou sete temperaturas, em um intervalo de 40 – 60oC. Estes valores serão, então, usados para calcular as

variáveis termodinâmicas, utilizando as equações:

ΔG0 = −RTlnK (3)

ΔG0 = ΔH0 − TΔS0 (4)

lnK = −ΔH

0

RT + ΔS0

R . (5)

Existem duas hipóteses simplificadoras neste tratamento: (i) as atividades dos íons e a força iônica não são consideradas; (ii) as temperaturas nas quais os cristais se tornam visíveis é, provavelmente, menor que a de equilíbrio.

M

ATERIAIS

: E

QUIPAMENTOS

& R

EAGENTES

01 Proveta de 25 mL + Pipetas de 1 e 10 mL; 05 Tubos de ensaio + Agitador de vidro; 01 Banho Maria;

02 Termômetros (0-100 °C±0,5 °C).

(37)

P

ROCEDIMENTO

1. Pese 10 g de nitrato de potássio (KNO3) e transfira para um tubo de ensaio.

2. Adicione 10 mL de água destilada e aqueça o tubo em um banho de água, agitando até a completa dissolução do sal.

3. Determine e registre o volume da solução de nitrato. Isto pode ser feito enchendo outro tubo de ensaio, igual ao anterior, com água, até o volume em ambos os tubos se tornarem iguais. Meça o volume da água do segundo tubo com uma proveta.

4. Insira um termômetro na solução. Remova o tubo com a solução do banho de água e deixe-o esfriar, agitando suavemente a solução. Registre a temperatura de aparecimento dos primeiros cristais. Supõe-se que nesta temperatura o sistema se encontra em equilíbrio e é possível calcular a concentração dos íons.

5. Adicione 2 mL de água à solução e aqueça a mistura até a completa dissolução. Determine o volume da solução como antes e anote.

6. Resfrie e registre a temperatura de aparecimento dos primeiros cristais. 7. Repita o ciclo mais 4 vezes, adicionando sempre 2 mL de água.

Obs.: Alternativamente, pode-se trabalhar com 10 g de nitrato de sódio (NaNO3) em 7 mL de água, adicionando-se 1 mL para cada ponto.

T

RATAMENTO DE

D

ADOS

1. Calcule K a partir da equação (2) e ∆G° a partir da equação (3), para cada

temperatura.

2. Utilizando a equação (5), faça um gráfico de ln(K) × 1/T e determine ∆H°

para o processo, a partir da inclinação da reta.

3. Utilizando a equação (4), com os valores de ∆G° e H°, calcule S° para

cada temperatura.

4. Compare seus resultados com os da literatura e comente.

Q

UESTÕES PARA O

R

ELATÓRIO

1. Os valores obtidos são satisfatórios?

2. Quais as possíveis fontes de erro ou limitações neste experimento? Para cada uma, tente dizer que efeito elas terão no resultado esperado dos experimentos.

B

IBLIOGRAFIA

1. ATKINS, P.W.; Físico-Química, 7ª Ed., RJ, Ed. LTC, 2004.

(38)

PRÁTICA N° 7:

DETERMINAÇÃO DA ENTROPIA DE UM PROCESSO IRREVERSÍVEL

O

BJETIVO

Calcular a variação de entropia para um processo irreversível.

I

NTRODUÇÃO

A variação da entropia é definida por

dSdqrev

T , (1)

em que a igualdade vale para processos reversíveis e a desigualdade para processos irreversíveis. Para uma transformação finita, a variação de entropia é dada pela integral:

ΔS =

1

2 dq

rev

T , (2)

que é a soma das variações de entropia para cada uma das etapas infinitesimais que compõem o processo irreversível. Sob pressão constante, o calor desenvolvido em cada etapa infinitesimal é:

dqrev = CpdT , (3)

onde dqrev é o calor trocado sob pressão constante, dT a variação de temperatura

e Cp a capacidade calorífica a pressão constante. Substituindo (3) em (2) tem-se:

ΔS =

1

2 C

pdT

T = Cpln

(

T2

T1

)

, (4)

que fornece a variação da entropia do processo.

O processo em estudo é a mistura de duas amostras de água a diferentes temperaturas em um calorímetro adiabático: em uma etapa procede-se o resfriamento de uma amostra de água quente, com aquecimento do conjunto calorimétrico; em uma segunda etapa promove-se o aquecimento de uma amostra de água fria, com resfriamento do conjunto calorimétrico. O calor absorvido ou cedido pelo calorímetro é dado por:

qcal = CΔT , (5)

onde C é a capacidade calorífica do sistema calorimétrico (equivalente d’água do calorímetro) e ΔT é a variação de temperatura. Devido à Primeira Lei:

(39)

M

ATERIAIS

: E

QUIPAMENTOS

& R

EAGENTES 02 Béqueres de 200 mL;

02 Provetas de 50 mL; 02 Provetas de 100 mL;

01 Chapa Elétrica Aquecedora (ou Bico de Bunsen + Tripé de Ferro); 01 Frasco de Dewar (Garrafa Térmica/Calorímetro) de 500 mL; 02 Termômetros (0-100 °C±0,5 °C).

P

ROCEDIMENTO

PARTE A: CALIBRAÇÃO DO CALORÍMETRO

1. Meça com uma proveta 100 mL de água destilada e a transfira para o calorímetro. Com um termômetro leia a temperatura da água no calorímetro a cada minuto até que esta estabilize.

2. Em um béquer de 200 mL aqueça ~100 mL de água destilada a ~90 °C. Encha uma proveta de 50 mL com a água quente e, em seguida, devolva-a para o béquer. Repita esta operação mais duas ou três vezes até que a temperatura da água na proveta atinja ~80 °C. Anote a temperatura e, em seguida, transfira os 50 mL da proveta para o calorímetro.

3. Tampe o calorímetro com uma tampa contendo um termômetro e meça a temperatura do sistema (calorímetro+água quente) a cada minuto até que esta estabilize.

PARTE B: COLETADE DADOS

1. Esvazie o calorímetro. Novamente, meça com uma proveta 100 mL de água destilada e a transfira para o calorímetro. Com um termômetro leia a temperatura da água no calorímetro a cada minuto até que esta estabilize. 2. Em um béquer de 200 mL resfrie ~100 mL de água destilada a ~0 °C.

Encha uma proveta de 50 mL com a água gelada e, em seguida, devolva-a para o béquer. Repita esta operação mais duas ou três vezes até que a temperatura da água na proveta atinja ~5 °C. Anote a temperatura e, em seguida, transfira os 50 mL da proveta para o calorímetro.

(40)

T

RATAMENTO DE

D

ADOS

1. Procure no manual de constantes físicas e químicas a densidade e o calor específico da água a pressão constante na temperatura em que você trabalhou. A partir destes dados e da utilização da equação (6), determine a capacidade calorífica do calorímetro.

2. A partir da equação (4), encontre ∆S para o aquecimento da água fria, para o resfriamento da água quente e o ∆S total para o conjunto calorimétrico nas etapas de calibração e de coleta de dados (partes A e B do procedimento). Apresente seus resultados em unidades SI.

Q

UESTÕES PARA O

R

ELATÓRIO

1. Os processos de mistura (partes A e B) são espontâneos? Justifique. 2. Os valores obtidos são satisfatórios?

3. Quais as possíveis fontes de erro ou limitações neste experimento? Para cada uma, tente dizer que efeito elas terão no resultado esperado dos experimentos.

B

IBLIOGRAFIA

1. ATKINS, P.W.; Físico-Química, 7ª Ed., RJ, Ed. LTC, 2004.

Imagem

Tabela 1: Temperatura da água aquecida utilizada para a calibração do Calorímetro e temperatura da mistura calorimétrica até equilibração.

Tabela 1:

Temperatura da água aquecida utilizada para a calibração do Calorímetro e temperatura da mistura calorimétrica até equilibração. p.14
Tabela 2:   Temperatura   da   solução   de   HCl   1,0 M   (50±0,1 mL)   e   NaOH 1,0 M   (50±0,1 mL)   antes   da   mistura   e   temperatura   da   solução calorimétrica até equilibração.

Tabela 2:

Temperatura da solução de HCl 1,0 M (50±0,1 mL) e NaOH 1,0 M (50±0,1 mL) antes da mistura e temperatura da solução calorimétrica até equilibração. p.15
Figura  1:   Variação   temporal   da   temperatura   devida   a   reação   de neutralização HCl 1,0 M + NaOH 1,0 M

Figura 1:

Variação temporal da temperatura devida a reação de neutralização HCl 1,0 M + NaOH 1,0 M p.17
Figura 1: Sistema com manômetro a água para medir a pressão de uma amostra de ar, à temperatura constante.

Figura 1:

Sistema com manômetro a água para medir a pressão de uma amostra de ar, à temperatura constante. p.20
Figura 1: Sistema com manômetro a água para medir a pressão de um gás a volume constante.

Figura 1:

Sistema com manômetro a água para medir a pressão de um gás a volume constante. p.23
Figura 1: Viscosímetro de Ostwald.

Figura 1:

Viscosímetro de Ostwald. p.55
Figura 1: Representação de um diagrama ternário.

Figura 1:

Representação de um diagrama ternário. p.65
Figura 1:   Dependência   da   velocidade com a concentração do substrato.

Figura 1:

Dependência da velocidade com a concentração do substrato. p.95
Figura 2:   Gráfico   de   Lineweaver-Burk , onde se obtém os parâmetros v max  e K M

Figura 2:

Gráfico de Lineweaver-Burk , onde se obtém os parâmetros v max e K M p.95

Referências