• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.26 número2

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.26 número2"

Copied!
8
0
0

Texto

(1)

w ww . e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Anti-inflammatory

activity

and

acute

toxicity

studies

of

hydroalcoholic

extract

of

Herissantia

tiubae

Ana

L.A.

Lima

a

,

Adriano

F.

Alves

a

,

Aline

L.

Xavier

a

,

Talissa

Mozzini-Monteiro

a

,

Theresa

R.R.

Oliveira

b

,

Fagner

C.

Leite

a

,

Wemerson

N.

Matias

a

,

Marianna

V.S.C.

Branco

a

,

Maria

F.V.

Souza

a

,

Marcia

R.

Piuvezam

a,∗

aProgramadePós-graduac¸ãoemProdutosNaturaiseSintéticosBioativos,CentrodeCiênciasdaSaúde,UniversidadeFederaldaParaíba,JoãoPessoa,PB,Brazil bDepartamentodeImunologia,InstitutodeCiênciasBiomédicas,UniversidadedeSãoPaulo,SãoPaulo,SP,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received1October2015 Accepted9November2015 Availableonline19December2015

Keywords:

Malvaceae

Herrisantiatiubae

Acuteinflammation Acutetoxicity

Anti-inflammatoryactivity Mice

a

b

s

t

r

a

c

t

HydroalcoholicextractofaerialpartsofHerissantiatiubae(K.Schum.)Brizicky,Malvaceae,was

eval-uatedinexperimentalmodelsofinflammationandtoxicity.Fortoxicityassays,maleandfemaleSwiss

micewereorallytreatedwithhydroalcoholicextractofH.tiubae(2000mg/kg)andanalyzedby

consump-tionofwaterandfood,bodyweight,mortalityandratesofmajororganweights,aswellasbiochemical

andhematologicalindexes.Foranti-inflammatoryeffect,phlogisticagentssuchascarrageenanoracetic

acidwereusedtoevaluatepawedema,cellmigrationandcytokineproduction.Itwasalsoinvestigated

thehydroalcoholicextractofH.tiubaeinRAW264.7macrophagelineagebynitricoxideandcytokine

productions.SwissmicetreatedwithhydroalcoholicextractofH.tiubaeshowedlowtoxicityand(50or

100mg/kg)wasabletoreducesignificantly(p<0.01,p<0.001)polymorphonuclearcellmigration,TNF-␣

andIL-1␤productioninthecarrageenan-inducedperitonitis.HoweverthehydroalcoholicextractofH.

tiubae(50,100or200mg/kg)didnotreducecarrageenan-inducedpawedema.Additionally,

hydroal-coholicextractofH.tiubaedidnotpresentcytotoxicityatconcentrationsof6.25,12.5,25or50␮g/ml

butinducedsignificantlydecreaseofNO,TNF-␣andIL-6productioninmacrophagelineage.Thisstudy

suggeststhathydroalcoholicextractofH.tiubaehasanti-inflammatoryactivitybyinhibitingcell

migra-tionmainlybydecreasingtheinflammatorycytokinelevelsattheinflamedsiteindependentlyofthe

anti-edematogeniceffect.

©2015SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

Malvaceae family hasa wide variety of natural compounds withpharmacologicalpropertiessuchasanti-inflammatory, anal-gesic, anti-rheumatic, among others (Falcão-Silva et al., 2009). HerissantiatiubaeK.Schum.)Brizickyisoneofthespeciesofthis botanicfamilylargely foundin tropicalregions ofSouth Amer-ica,especiallyinnortheasternBrazilanditispopularlyknownas “mela-bode”or“lava-prato”.Theplantisusedinfolkmedicineto treatinfluenzaandfever(Albuquerqueetal.,2007).Phytochemical investigationofH.tiubaedemonstratedthepresenceof polyoxy-genflavonoids,triterpenes,steroid,phenoliccompoundsandtwo glycosylated flavonoids (kaempferol 7-O-␣-l-rhamnopyranoside and 4′,5-dihydroxy-3,6,7,8,3-pentamethoxyflavone)(Silva etal.,

∗ Correspondingauthor.

E-mail:mrpiuvezam@ltf.ufpb.br(M.R.Piuvezam).

2009). Therefore, the aim of this study was to investigate the anti-inflammatoryactivityofthehydroalcoholicextractoftheaero partsoftheH.tiubae(HtE)anditstoxicityusingdifferent experi-mentalmodels.

Materialandmethods

Animals

Male and female Swiss mice (n=6/per group, 6–8 weeks, 25–30g)wereusedthroughoutthestudy.Theanimalswere pro-videdfromProf.ThomasGeorgeVivariumof theBiotechnology Center (CBiotec)from Federal University ofParaíba (UFPB), PB, Brazil.Allexperimentalprotocolswereapprovedandperformedin accordancewiththerecommendationsofCommissionofEthicsfor UseofAnimals(CEUA)fromUFPB,whichwasrecordedunder num-ber0508/12.Animalswerekeptinpolypropylenecage,atroom

http://dx.doi.org/10.1016/j.bjp.2015.11.001

(2)

temperature(25±2◦C),under12hlight/darkcycle,andfreeaccess tofoodandwater.

Plantmaterialandpreparationofhydroalcoholicextract

AerialpartsofHerissantiatiubae(K.Schum.)Brizicky,Malvaceae, werecollectedinJanuary2010inthecityofJuazeirinho,Paraiba, Brazil.ItwasidentifiedbyDr.MariadeFatimaAgrafromUFPB.A voucherspecimen(n◦2434)isdepositedintheHerbariumLauro PiresXavier– JPBatthesameUniversity.TheaerialpartsofH. tiubae(1kg)weredriedat40◦Cinacirculatingairovenfor96h andgroundtopowder.Driedandpowderedplantmaterialwas sub-mittedtoextractionbymacerationwithethanol–water(70:30)as asolventatroomtemperaturefor72h.Theratioofplant mate-rial:solventwas20:80(w/v)and atthefinal extractionprocess thematerialwasfilteredandconcentratedinrotaevaporator,thus obtainingtheHtE.

ChromatographyoftheHtE

HtEwassuccessivelypartitionedwithhexane,CHCl3,EtOAcand butanol.Kaempferolwasisolatedfromtheethylacetateextract andsubjectedtoaSephadexLH-20gelcolumnelutedwithMeOH. Kaempferolwasquantifiedby meansofHigh Performance Liq-uidChromatography(HPLC)withultravioletdetection.Calibration curvestokaempferolwereconstructedbyusingthestandard addi-tionmethod.Theseparationofkaempferolwasachievedusinga ProminenceChromatographicSystem(Shimadzu®,Tokyo,Japan) equippedwithLC-20ATmultisolventdeliverysystem,degassing systemDGU-20A5, autoinjectorSIL-20A, ovenCTO-20A column anddetectionbyelectronspectroscopyintheultraviolet-visible regionwithdiodearraySPD-M20AUV-VIS.Data werecollected andintegratedthroughsoftwareClassVPV6.14SP1.Themobile phaseconsistedofamixtureofmethanol:water:H3PO4(1:1:0.01, v/v)pHcontrolledat3.1andtheflowrateof1.2ml/mininthe gradi-entmode,wheretheproportionoftheorganicphaseconstitutions by47%for18min,from80%in23minandreturningto47%after 28min.Toperformthechromatographicruns,weusedaC18 col-umn(Phenomenex®)dimensions25cm

×4.6mm×5␮m,theUV detectorwiththewavelengthof351nm,injectionvolumeof10␮l temperature50◦C.

TreatmentwithHtE

Forinvivoexperiments,theHtEin2%Tween20(Vetec®)and distilledwater(vehicle)wasorally(p.o.)administeredatdosesof 50,100or 200mg/kg. The untreatedcontrol groupreceivedan equalvolumeofthevehicle.Forinvitroexperiments,theHtEwas dissolvedindimethylsulfoxide(DMSO),thestocksolutionwas ster-ilizedusingadisposablefilterunitof0.22mminporosity(Millipore MillexTM)andusedinthefollowrangeofconcentrations0,6.25, 12.5,25,50,100,200or400␮g/ml.

Acutetoxicologicaltest

Groupsofmaleandfemale(n=6)Swissmiceweretreatedorally withHtE(2000mg/kg)orvehicle.Theanimalswereobservedfor signsof generaltoxicity in intervalsof 0, 15,30 and 60min,4 and24hlateranddailyfor14 days(Hibbsetal.,1988).During thesetimes,occurrenceof centralnervoussystemchangeswas analyzed:hyperactivity,irritability,aggressiveness,tremors, con-vulsions,catatonia,analgesia,anesthesia,ptosis,decreasedtouch response,ambulation,cleaningcapacity,raise,andautonomic ner-voussystemchanges:diarrhea,constipation,defecation,urination, muscletone,amongothers(Almeidaetal.,1999).Throughoutthe experiment,theconsumptionofwaterandfoodintakeandweight

gainwereobserved. Onday14th,thetreatedanimalsand non-treatedanimalswereeuthanizedbyanesthetic:sodiumthiopental (ThiopentaxR,Cristalia–PharmaceuticalChemicals)andorgans wereremoved:heart,liver,kidneys,spleenandthymusto deter-mineitsindexes.Theweightgainforeachanimalwasdetermined usingtheformula:

%ofweightgain=

animalweightonfirstchallenge

animalweightonlastchallenge

−1×100 Theindexoftheweightorganswascalculatedfollowingthe formulabelow:

Index= organweight(mg)

animalweight(g)

Evaluationofbiochemicalandhematologicalparameters

Onthe14thdayanimalsfastedfor6hwereanesthetizedwith sodiumthiopentalandorbitalsinusbloodwascollectedusinga heparinizedPasteurpipetteandtransferredintotubes(Eppendorf). Thebloodwasanalyzedforhematological(erythrocyteand leuko-cytecounts) and biochemicalparameters (urea, creatinine,uric acid,alaninetransaminase-ALT,aspartatetransaminase-AST, albu-min,totalprotein,triacylglycerides,glucoseandtotalcholesterol).

Carrageenan-inducedmicepawedema

GroupsofSwissmice(n=6)weretreated(p.o.)withvehicle, indomethacin(10mg/kg-Roche®)orHtE(50,100or200mg/kg) 1hbeforeadministrationofcarrageenanat2.5%(Sigma-Aldrich®) injectedsubcutaneouslyintotheplantarregionofthelefthindpaw andphosphatebuffersaline(PBS)inrighthindpaw.Negative con-trolgroupreceived20␮lPBSinjectionsinbothpaws.Pawdiameter wasmeasuredwithadigitalmicrometerat1,2,3,4,6and24h afterstimulation.Resultswereexpressedasdifferencebetween thediameterofleftandrightpaws(DeVasconcelosetal.,2011).

Carrageenaninducedperitonitis

Mice(n=6)wereorallytreated withHtE(50or 100mg/kg), indomethacin 10mg/kg or vehicle 1hbefore carrageenan (1%) intraperitoneal injection. The basal groupreceivedsaline. After 4htheanimalswereeuthanizedbyxylazineandketamine over-doseandtheperitonealcavitywashed with2ml ofsterilecold PBS,followedby aone-minmassageand collectionofthefluid (Guerra et al., 2011;Pinheiro et al.,2013).Exudates were cen-trifuged(10min,266g,4◦C)andthepelletofcellsresuspended in1mlofPBS(4◦C),dilutedinTurksolutionintheratioof1:40 andtotalcellswerecountedinatNeubauercameraunderoptical microscope(NikonE200,Melville,NY–EUA).Differentialcell mea-surementwasmadeincytocentrifuge–254×g,15min(Cytospin –BioResearch,Washington–USA),slidestainedinFastPanoptic (RenyLab)andcountedunderopticalmicroscope(100×objective). For eachslide aminimum of100cells werecountedinoptical microscopeunder1000magnification(Sousaetal.,2010).

Cytotoxicassay

(3)

Minutes

50000

B

40000

30000

20000

10000

0

0 10 20

Kaempferol

30

mA

U

A

40000

30000

20000

10000

0

0 10 20

Kaempferol

30 40

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

0.5 1.0 2.0 3.0 4.0 5.0 4.5 3.5 2.5 1.5 0.0 15.25 15.50 15.75 mn0.0

1.0 2.0 3.0 4.0 5.0 mAU 0.7

0.6 0.5 0.4 0.3 0.2 0.1 0.0

7 8 6 5 4 3 2 1 0

15.25 15.50 15.75 16.00 mn 15.25 15.50 15.75 16.00 mn

17.25 17.50 17.75 18.00 mn 0.0

2.5 5.0 7.5 mAU

Minutes

mA

U

Fig.1.Chromatographicprofileat370nmof(A)samplesolutionofkaempferolstandardUSPandyourDADspectrumand(B)sampleofthehydroalcoholicextractofthe aeropartsoftheHerissantiatiubae(HtE)andyourDADspectrum.

Table1

EffectofhydroalcoholicextractoftheaeropartsoftheHerissantiatiubae(HtE)ontoxicalparametersofmaleandfemaleSwissmice.

Parameter(unit) Male(control) Male(HtE) Female(control) Female(HtE)

Feedintake(g) 41.88±2.98 38.13±1.15 37.08±2.73 42.79±1.36 Waterconsumption(ml) 67.50±3.89 59.29±3.05 40.00±4.42 52.29±2.56**

Initialweight(g) 28.60±1.26 25.50±1.29 30.05±0.98 28.17±1.01

Finalweight(g) 38.05±3.22 39.98±1.27 33.14±2.31 33.15±1.07

Weightgain(%) 41.06±6.15 50.19±5.03 14.43±3.46 17.79±1.48

Indexheart(mg/g) 3.93±0.08 4.01±0.17 4.14±0.18 4.08±0.16

Indexliver(mg/g) 61.27±3.71 56.89±1.11 56.53±2.15 56.25±1.78

Indexkidneys(mg/g) 12.66±1.22 11.86±0.99 11.09±0.24 10.70±0.32

Indexspleen(mg/g) 5.59±0.21 6.45±0.53 7.56±0.59 6.97±0.62

Indexthymus(mg/g) 2.94±0.34 2.84±0.24 3.33±0.23 3.89±0.27

Dataareexpressedasmean±S.E.M.andweresubjectedtoanalysisofvarianceofStudent’st-test.

**p<0.01whencomparedtofemalecontrolgroup.Thedataarerepresentativeoftwoexperimentswithn=6(pergroup).

25,50,100,200or400␮g/ml)at37◦Cin5%CO2 for24h.After 24h,100␮lof5mg/mlMTTsolution(Sigma-Aldrich®)wasadded toeachwell,followedbyincubationfor4h.Themediumwas aspi-rated,andtheformazancrystalsweredissolvedin100␮lofDMSO for15min.Theopticaldensityofeachwellwasmeasuredat570nm inamicroplatereader(Bio-Radmodel550, Japan).Treatedcells werecomparedtonon-treatedcells.

NOproduction

TheproductionofNOwasdeterminedbymeasuringthe accu-mulatedlevelofnitriteonRAW264.7macrophagesupernatants. Afterpre-incubationofcells(2×105cells/well)at37Cin5%CO2 for4h,theplantextract(0,6.25,12.5,25or50␮g/ml)wasadded andco-stimulatedor notwithlipopolysaccharide-LPS (1␮g/ml) plusINF-␥(10ng/ml).Thecellswerefurtherincubatedfor24h. AmountsofnitriteweremeasuredusingGriessreagent. Briefly, 50␮lof cell culture medium was mixed with100␮l of Griess reagent.Subsequently,themixturewasincubatedatroom tem-peraturefor10minandtheabsorbanceat540nmwasmeasured inamicroplatereader(Bio-Radmodel550,Japan).Thequantityof nitritewasdeterminedfromasodiumnitritestandardcurve(Green etal.,1982).

Cytokineassays

IL-1␤,TNF-␣and IL-6from cellsupernatantsand peritoneal lavagesweremeasuredbyELISA,usingtherecommended proto-colfromthe antibodies’suppliers.Antibodypairs and standard recombinant cytokines for ELISA assay were purchased from eBiosciences.

Statisticalanalysis

Data were analyzedby Student’s t-test, ANOVAfollowed by Tukeypost-test usingsoftwareGraphPad Prism(GraphPad,San Diego, CA). Valueswere expressedas mean±standard errorof mean (S.E.M.), and results were considered significant when p<0.05.

Resultsanddiscussion

(4)

Table2

EffectofhydroalcoholicextractoftheaeropartsoftheHerissantiatiubae(HtE)onbiochemicalandhematologicalparametersofmaleandfemaleSwissmice.

Parameters(unit) Male(control) Male(HtE) Females(control) Females(HtE)

Biochemical

Glucose(mg/dl) 123.00±18.61 87.17±7.99 149.00±6.37 150.50±16.76 Urea(mg/dl) 59.18±4.423 50.88±6.22 54.10±3.78 44.42±1.75 Creatinine(mg/dl) 0.46±0.01 0.50±0.07 0.45±0.08 0.37±0.01 TotalCholesterol(mg/dl) 88.02±4.86 98.48±1.06 83.20±3.05 64.84±16.47 Triacylglycerides(mg/dl) 82.00±10.45 97.4±10.25 64.50±5.58 55.00±16.02 Uricacid(mg/dl) 3.43±0.54 2.45±0.65 2.08±0.19 2.00±0.27 AST(U/l) 175.40±19.56 139.0±14.52 184.90±14.16 195.00±7.82 ALT(U/l) 79.66±2.44 115.1±30.80 103.3±12.25 84.12±8.53 Totalproteins(g/dl) 5.04±0.30 4.99±0.18 4.99±0.24 5.22±0.21 Albumin(g/dl) 2.53±0.10 2.31±0.19 2.79±0.08 2.52±0.18

Hematological

Redblood(106/mm3) 9.28±0.78 8.90±0.43 8.15±0.32 8.77±0.14

Hemaglobin(g/dl) 13.77±0.85 13.98±0.23 12.82±0.45 13.67±0.24 Hematrocit(%) 43.30±2.82 44.54±1.48 39.56±1.72 43.38±0.49 VCM(fm3) 47.00

±0.96 48.80±2.31 48.40±0.40 49.80±0.58 HCM(pg) 14.98±0.43 15.96±0.38 15.78±0.14 15.58±0.15 CHCM(g/dl) 31.85±0.35 31.72±0.35 32.30±0.53 31.22±0.19 Leukocytes(103/mm3) 3.73±0.32 3.76±0.38 4.15±0.93 4.28±0.69

Neutrophil(%) 35.67±6.87 21.60±6.95 18.40±4.69 30.00±1.78 Lymphocytes(%) 58.67±6.08 73.00±6.77 74.60±4.93 65.33±1.33 Monocytes(%) 5.66±1.80 4.20±0.73 6.80±1.39 7.16±1.56

Dataareexpressedasmean±S.E.M.andweresubjectedtoanalysisofvarianceofStudent’st-test.Thedataarerepresentativeoftwoexperimentswithn=6(pergroup). Band,basophilandeosinophilcellswerenotfoundinthedifferentialcount.

ofinformationaboutpre-clinicaltoxicityofthisplant,preliminary toxicologicalevaluationwascarriedout.HtE(2000mg/kg)acute oraltreatmentdidnotinducesignsofgeneraltoxicity(Table1). However,itwasobservedasignificantincrease(p<0.01)inwater consumptioninthefemaletreatedgroupascomparedtothefemale controlgroup.Thisresultmaybeassociatedwithsusceptibility anddifferentialsensitivitytodrugsbetweengenders(Anderson, 2008). In addition, no significant changes in biochemical and

hematologicalparameterswereobservedinthetreatedanimals ascomparedwiththecontrolanimals,asshowninTable2.

Wealsoevaluatetheanti-inflammatoryeffectofHtE consid-eringitsuseinfolkmedicinetotreatdiseaseswithinflammatory characteristics(Albuquerqueetal.,2007).Thepawedemainduced bycarrageenan is widelyused todetermineanti-edematogenic activityofcompounds. Inthis model,carrageenan promotesan immediatephase(rangefrom0through6h)thatinvolvesseveral

0.0 0.5 1.0 1.5

###

***

A

Paw edema (mm)

0.0 0.5 1.0 1.5

###

**

B

0.0 0.5 1.0 1.5

###

***

C

0.0 0.5 1.0 1.5

###

***

D

Paw edema (mm)

0.0 0.5 1.0 1.5

###

***

E

0.0 0.5 1.0 1.5

###

***

F

Negative control Carrageenan HtE 50 HtE 100 HtE 200 Indomethacin

(5)

0 5 10 15

###

** ***

***

A

Negative control

HtE 50

Indomethacin HtE

100 Carrageenan 1%

Total cells/ml x 10

6

0 2 4 6

###

** ***

***

B

Negative control

HtE 50

Indomethacin HtE

100 Carrageenan 1%

PMN cells/ml x 10

6

0 1 2 3 4

C

Negative control

HtE 50

Indomethacin HtE

100 Carrageenan 1%

MN cells/ml x 10

6

Fig.3.EffectofhydroalcoholicextractoftheaeropartsoftheHerissantiatiubae(HtE)inthecarrageenan-inducedperitonitismodel.Determinationofthetotalcellularity (A),polymorphonuclearcells(PMN)(B)andmononuclearcells(MN)(C).Thedatarepresentthemean±S.E.M.oftotalanddifferentialcellcounts.###p<0.001vsnegative group,**p<0.01and***p<0.001vspositivecontrolgroup(carrageenan)afteranalysisbyANOVAonewayfollowedbyTukeypost-test.Thedataarerepresentativeoftwo experimentwithn=6(pergroup).

0 100 200 300 400

###

***

***

***

A

Negative control

HtE 50

Indomethacin HtE

100 Carrageenan 1%

TNF-α

pg

/m

l

0 200 400 600

##

**

**

B

Negative control

HtE 50

Indomethacin HtE

100 Carrageenan 1%

IL

-1

β

pg

/m

l

0 200 400 600 800 1000

###

C

Negative control

HtE 50

Indomethacin HtE

100 Carrageenan 1%

IL

-6

p

g

/m

l

(6)

Control 6.25 12.5

25 50 100 200 400

0 1 2 3 4

***

*** ***

HtE μg/ml

Absorbance (A)

Fig.5.EffectofhydroalcoholicextractoftheaeropartsoftheHerissantiatiubae(HtE) onRAW264.7macrophages.Thedatarepresentsmean±S.E.M.opticaldensities ofcelllysateaccordingtothetreatments.***p<0.001vscontrolafteranalysisby ANOVAonewayfollowedbyTukeypost-test.Thedataarerepresentativeoftwo independentexperiments.

mediators(histamine,cytokinesandNO)and,alatephase(range from6through96h)whereitisobservedtheleukocytemigration (Posadasetal.,2004).HtE(50,100,or200mg/kg)didnotreducethe edemaatbothphasesdemonstratingnoanti-edematogeniceffect (Fig.2A–F).

InordertostudytheHtEeffectoncellmigrationtotheinflamed site, the carrageenan-induced peritonitis was performed. The mechanismofactionbywhichcarrageenaninducesthe inflamma-toryprocessesisasynergismamongseveralmediators(bradykinin, serotonin,prostaglandins,leukotrieneB4)(Pinheiroetal.,2013). Asshown in Fig.3A–C,theHtE (50or 100mg/kg)significantly reduced(p<0.01and p<0.001,respectively)theleukocytesand polymorphonuclearcell(PMN)numbersintotheperitonealbutdid notchangemononuclearcellnumber(MN).Thesefindings sug-gested that HtEpresents anti-inflammatoryeffect byinhibiting cellmigrationtotheinflamedsitewithoutdecreasestheedema process.Similarresultsweredescribed byPaiva andcolleagues (2013)wherePseudobombaxmarginatum,Malvaceae,extractalso inhibitedthemigrationofPMNwithoutaffecttheMNcell migra-tion.

Control Control

INF-γ+ LPS

INF-γ+ LPS

6.25 12.5 25 50 6.25 12.5 25 50

0

2

4

6

8

10

**

***

***

***

###

A

0 2 4 6 8 10

###

INF-γ + LPS (–) HtE μg/ml INF-γ + LPS (+)

HtE μg/ml

B

NO

–2 (

μ

M)

NO

–2 (

μ

M)

Fig.6. EffectofhydroalcoholicextractoftheaeropartsoftheHerissantiatiubae(HtE)onNOproductionbyRAW164.7macrophagesexposed(A)ornot(B)toINF-␥

(10ng/ml)+LPS(1␮g/ml).Thedatarepresentmean±S.E.M.concentrationsofnitrite.Thedatarepresenttwoindependentexperiments.***p<0.001and**p<0.01vsthe INF-␥+LPSgroup,###p<0.001vscontrolgroupafteranalysisbyANOVAonewayfollowedbyTukeypost-test.Thedataarerepresentativeoftwoexperimentsintriplicate.

0 2000 4000 6000 8000

###

***

***

**

***

A

T

NF

pg

/m

l

0 500 1000 1500

2000 ###

*

***

***

B

IL

-6

p

g

/m

l

HtE (μg/ml) INF-γ + LPS HtE (μg/ml)

INF-γ + LPS

Control

INF-γ+ LPS 6.25

12.5 25 50 Control

INF-g+ LPS

6.25 12.5 25 50

(7)

Thecarrageenan-inducedperitonitisalsoinvolvesincreasesof TNF-␣,IL-1␤andIL-6levelsattheperitonealfluid,whichpresents akeyroleininflammatoryprocesses(Lorametal.,2007).Inthis regard,weanalyzedtheHtEeffectonthecytokinelevelsatthe peritonealexudateinducedbycarrageenaninjection.Fig.4AandC showstheHtE(50or100mg/kg)decreasedsignificantly(p<0.001) thelevelsofTNF-␣withoutreducingIL-6,respectively.However, only HtEat doseof 100mg/kg was ableto reducethe amount (p<0.01)ofIL-1␤inperitonealfluid(Fig.4B).ThereductionofIL-1

␤andTNF-␣levelsbyHtEmayberesponsiblefortheinhibitionof leukocytemigration,sincethesepro-inflammatorycytokines pro-moteexpressionofendotheliumadhesionmoleculesinvolvedin permeabilityandleukocytetransendothelialmigration(Schmidt etal.,2013).

Tobetterunderstandtheanti-inflammatoryeffectoftheextract anditsmechanismsofactionweusedinvitroanti-inflammatory assaybymeasuringtheproductionofNOandcytokinesinRAW 264.7 macrophages. First of all, we demonstrated (Fig. 5) that HtE wasnot toxic for the cells at concentrations rangingfrom 6.25to 50␮g/ml. As shown in Fig.6, the HtE (6.25–50␮g/ml) significantly (p<0.01 – p<0.001) decreased NO production by activatedcells(Fig.6A).Inaddition,macrophagesinpresenceof HtEdidnotproduceNO(Fig.6B),demonstratingtheabsenceof endotoxinsorotheragentscapableofinitiatinganinflammatory response.AsshowninFig.7,theHtE(12.5or50␮g/ml)wasable toinhibitsignificantly(p<0.001–p<0.01)theproductionof

TNF-␣(Fig.7A)andIL-6(Fig.7B).TheHtEat6.25␮g/mlwasableto reducesignificantly (p<0.001) onlyTNF-␣production (Fig.7A). ThesedatacorroboratewiththeinvivoresultsandwithParkand colleagues(2012)resultswheretheWerckleainsignis,Malvaceae, extractalsoreducedtheinflammatorycytokines(IL-6,IL-1␤and TNF-␣).

In addition, species in the Malvaceae family are known to producephenolic compoundswhich exhibit antioxidant action, thereforetheycanbeusedtotreatseveraldiseaseswith inflam-matorycharacteristics(Oliveiraetal.,2012)andkaempferolwhich hasbeendescribedtopossesspotentanti-inflammatory proper-ties (Devi et al., 2015; Kadiogluet al., 2015). Therefore, these phyto-constituentspresentinHtEcouldbecontributingto anti-inflammatoryactivitypresentedinthisstudy.

Insummary,weshowedforthefirsttimethatHtEpresented lowtoxicityfollowingoraladministrationatadoseof2000mg/kg andalsopresentedanti-inflammatoryactivity(50and100mg/kg) bymodulatinginflammatorycellsinvivoandinvitro.Thus,these resultscancontributetothemainpopularuseoftheH.tiubae. However,themechanismsofactionofcompoundsofHtEon inflam-matoryprocesseswillbeexploredinfuturestudies.

Authors’contributions

ALAL carried out the study, participated in the toxico-logical and anti-inflammatory assays and wrote the paper; MFVS provided the plant; WNM has performed the chem-ical studies; ALX, TMM and MVSCB provided assistance in the acute toxicity; FCL, AFA, TRRO participated in the anti-inflammatory experiments; MRP supervised the work andcorrectedthemanuscriptforpublication.Alltheauthorshave readthefinalmanuscriptandapprovedthesubmission.

Ethicaldisclosures

Protectionofhumanandanimalsubjects. Theauthorsdeclare

thattheproceduresfollowedwereinaccordancewiththe regula-tionsoftherelevantclinicalresearchethicscommitteeandwith

thoseoftheCodeofEthicsoftheWorldMedicalAssociation (Dec-larationofHelsinki).

Confidentialityofdata. Theauthorsdeclarethatnopatientdata

appearinthisarticle.

Righttoprivacyandinformedconsent.Theauthorsdeclarethat

nopatientdataappearinthisarticle.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

This study was financially supported by INCT for Cancer Control, CNPq573806/2008-0,FAPERJE26/170.026/2008, CNPq-Universal14/2012-472853/2012-0andCAPES/Brazil.

References

Albuquerque, U.P., Medeiros, P.M., Almeida, A.L.S., 2007. Medicinal plants of thecaatinga(semi-arid)vegetationofNEBrazil:aquantitativeapproach.J. Ethnopharmacol.114,325–354.

Almeida, R.N., Falcão,A.C.G.M., Diniz, R.S.T., Quintans-Júnior, L.J.,Polari, R.N., Barbosa-Filho, J.M., Agra,M.F., Duarte,J.C., Ferreira, C.D., Antoniolli, A.R., Araújo,C.C.,1999.Metodologiaparaavaliac¸ãodeplantascomatividadeno SistemaNervosoCentralealgunsdadosexperimentais.Rev.Bras.Farm.80, 72–76.

Anderson,G.D.,2008.Genderdifferencesinpharmacologicalresponse.Int.Rev. Neurobiol.83,1–10.

Denizot,F.,Lang,R.,1986.Rapidcolorimetricassayforcellgrowthandsurvival.J. Immunol.Methods89,271–277.

De Vasconcelos, D.I., Leite, J.A., Carneiro, L.T., Piuvezam, M.R., 2011. Anti-inflammatoryandantinociceptiveactivityofouabaininmice.Mediat.Inflamm. 2011,1–11.

Devi,K.P.,Malar,D.S.,Nabavi,S.F.,Sureda,A.,Xiao,J.,Nabavi,S.M.,Daglia,M.,2015. Kaempferolandinflammation:fromchemistrytomedicine.Pharmacol.Res.99, 1–10.

Falcão-Silva,V.S.,Silva,D.A.,Souza,M.F.V.,Siqueira-Junior,J.P.,2009.Modulationof drugresistanceinStaphylococcusaureusbyakaempferolglycosidefrom Heris-santiatiubae(Malvaceae).Phytother.Res.23,1367–1370.

Green,L.C.,Wagner,D.A.,Glogowski,J.,Skipper,P.L.,Wishnok,J.S.,Tannenbaum, S.R.,1982.Analysisofnitrate,nitritean[15N]nitrateinbiologicalfluids.Anal. Biochem.126,131–138.

Guerra, A.S., Malta, D.J., Laranjeira, L.P., Maia, M.B., Colac¸o, N.C., De Lima, M.C., Galdino, S.L., Pitta, I.R., Gonc¸alves-Silva, T., 2011. Anti-inflammatory and antinociceptive activities of indole–imidazolidine derivatives. Int. Immunopharmacol.11,1816–1822.

Hibbs,J.B.,Taintor,R.R.,Vavrin,Z.,Rachlin,E.M.,1988.Nitricoxide:acytotoxic activatedmacrophageeffectormolecule.Biochem.Biophys.Res.Commun.157, 87–94.

Kadioglu,O.,Nass,J.,Saeed,M.E.,Schuler,B.,Efferth,T.,2015.Kaempferolisan anti-inflammatorycompoundwithactivitytowardsNF-␬Bpathwayproteins. AnticancerRes.35,2645–2650.

Loram,L.C.,Fuller,A.,Fick,L.G.,Cartmell,T.,Poole,S.,Mitchell,D.,2007.Cytokine profilesduringcarrageenan-inducedinflammatoryhyperalgesiainratmuscle andhindpaw.J.Pain8,127–136.

Mosmann,T.,1983. Rapidcolorimetricassayforcellulargrowthand survival: applicationtoproliferationandcytotoxicityassays.J.Immunol.Methods65, 55–63.

Oliveira,A.M.F.,Pinheiro,L.S.,Pereira,C.K.S.,Matias,W.N.,Gomes,R.A.,Chaves, O.S., Souza,M.F.V., Almeida, R.N., Assis,T.S.,2012. Totalphenoliccontent andantioxidantactivityofsomeMalvaceaefamilyspecies.Antioxidants1, 33–43.

Paiva,D.C.,DosSantos,C.A.,Diniz,J.C.,Viana,F.A.,Thomazzi,S.M.,Falcão,D.A.,2013. Anti-inflammatoryandantinociceptiveeffectsofhydroalcoholicextractfrom Pseudobombaxmarginatuminnerbarkfromcaatingapotiguar.J. Ethnopharma-col.149,416–421.

Park,J.W.,Kwon,O.K.,Jang,H.Y.,Jeong,H.,Oh,S.R.,Lee,H.K.,Han,S.B.,Ahn,K.S.,2012. AleafmethanolicextractofWerckleainsignisattenuatesthe lipopolysaccharide-inducedinflammatoryresponsebyblockingtheNF-␬Bsignalingpathwayin RAW264.7macrophages.Inflammation35,321–331.

Pinheiro,M.M.,Fernandes,S.B., Fingolo,C.E.,Boylan,F.,Fernandes,P.D.,2013. Anti-inflammatoryactivityofethanolextractandfractionsfromCouroupita guianensisAubletleaves.J.Ethnopharmacol.146,324–330.

(8)

Schmidt,S.,Moser,M.,Sperandio,M.,2013.Themolecularbasisofleukocyte recruit-mentanditsdeficiencies.Mol.Immunol.55,49–58.

Silva,D.A.,Falcão-Silva,V.S.,Gomes,A.Y.S.,Costa,D.A.,Lemos,V.S.,Agra,M.F., Barz-Filho,R.,Siqueira-Junior,J.P.,Souza,M.F.V.,2009.Triterpenes andphenolic compoundsisolatedfromtheaerialpartsofHerissantiatiubaeandevaluation of5,49-dihydroxy-3,6,7,8,39-pentamethoxyflavoneasamodulatorofbacterial drugresistance.Pharm.Biol.47,128–133.

Imagem

Fig. 1. Chromatographic profile at 370 nm of (A) sample solution of kaempferol standard USP and your DAD spectrum and (B) sample of the hydroalcoholic extract of the aero parts of the Herissantia tiubae (HtE) and your DAD spectrum.
Fig. 2. Effect of hydroalcoholic extract of the aero parts of the Herissantia tiubae (HtE) on paw edema induced by carrageenan in different times
Fig. 3. Effect of hydroalcoholic extract of the aero parts of the Herissantia tiubae (HtE) in the carrageenan-induced peritonitis model
Fig. 6. Effect of hydroalcoholic extract of the aero parts of the Herissantia tiubae (HtE) on NO production by RAW 164.7 macrophages exposed (A) or not (B) to INF-␥

Referências

Documentos relacionados

Para Elsa Mateus, a participação de Portugal, &#34;do ponto de vista dos doentes, é muito importante porque no país, como de resto a nível europeu, existe um grande

RESUMEN - el presente artículo se enmarca en una investigación, de corte sociosemiótica, que se propone analizar la incorporación de recursos propios de las redes sociales en

Estes resultados concordam com os de Mori (2001) que relatou em seus estudos que o processamento do café via cereja descascado, em que existe a separação de grãos verdes,

Fa z-se nece ssária uma re visão de literatu ra, com o o bjetivo de atin gir um emb asamento teórico sobre, redes de senso res interope rabilidade de dados

Extinction with social support is blocked by the protein synthesis inhibitors anisomycin and rapamycin and by the inhibitor of gene expression 5,6-dichloro-1- β-

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

Este trabalho investigou a hipótese do aumento de poder de mercado do Frigorífico JBS no estado do Mato Grosso, decorrente da fusão com o Frigorífico Bertin e o arrendamento