• Nenhum resultado encontrado

Protective effect of metformin against tuberculosis infections in diabetic patients: an observational study of south Indian tertiary healthcare facility

N/A
N/A
Protected

Academic year: 2021

Share "Protective effect of metformin against tuberculosis infections in diabetic patients: an observational study of south Indian tertiary healthcare facility"

Copied!
5
0
0

Texto

(1)

w w w . e l s e v ie r . c o m / l o c a t e / b j i d

The

Brazilian

Journal

of

INFECTIOUS

DISEASES

Original

Article

Protective

effect

of

metformin

against

tuberculosis

infections

in

diabetic

patients:

an

observational

study

of

south

Indian

tertiary

healthcare

facility

Srujitha

Marupuru

a

,

Padmanav

Senapati

a

,

Swathi

Pathadka

a

,

Sonal

Sekhar

Miraj

a,∗

,

Mazhuvancherry

Kesavan

Unnikrishnan

a

,

Mohan

K.

Manu

b

aManipalUniversity,ManipalCollegeofPharmaceuticalSciences,DepartmentofPharmacyPractice,Manipal,India bManipalUniversity,KasturbaMedicalCollegeHospital,DepartmentofPulmonaryMedicine,Manipal,India

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received6November2016 Accepted23January2017 Availableonline13February2017

Keywords:

Diabetes Metformin

Tuberculosisprevention

a

b

s

t

r

a

c

t

Background:WorldHealthOrganizationestimatedthatpeoplewithdiabetes(DM)areat 2–3timeshigherriskfortuberculosis(TB).StudieshaveshownthatDMnotonlyincreases theriskofactiveTB,butalsoputsco-affectedpersonsatincreasedriskofpooroutcomes.

Objectives:TodeterminetheprotectiveeffectofmetforminagainstTBinDMpatientsand also,toinvestigatetherelationshipbetweenpoorglycemiccontrolandTB.

Methods:Acase–controlstudy wasconductedover8 months,where casesandcontrols wereselectedbasedontheinclusionandexclusioncriteriaofthestudy.Thediabetics diag-nosedwithTBwereselectedasstudygroup(SG=152)andwithoutTBwereascontrolgroup (CG=299).Exposurestatusofmetformininbothgroupswereanalyzed.

Results:Themean(SD)ageofbothCGandSGwere55.54±11.82and52.80±11.75, respec-tively.Majorityofthesubjectsinthestudyweremales.ThemeanhospitalstayofSGandCG were7daysand6days,respectively.Poorglycemiccontrol(HbA1c>8)observedinSG(51.7%) vsCG(31.4%).HbA1cvalue<7isassociatedprotectivefactorforTBoccurrence[OR=0.52 (95%CI0.29–0.93)].TheprotectiveeffectofmetforminagainstTBwas3.9-foldindiabetics (OR=0.256,0.16–0.40).

Conclusion:PoorglycemiccontrolamongdiabeticsisariskfactorforTBoccurrence.The resultshowsmetforminuseisaprotectiveagentagainstTBinfectionindiabetics.Hence, incorporationofmetforminintostandardclinicalcarewouldofferatherapeuticoptionfor thepreventionofTB.

©2017SociedadeBrasileiradeInfectologia.PublishedbyElsevierEditoraLtda.Thisisan openaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/ by-nc-nd/4.0/).

Correspondingauthor.

E-mailaddresses:sonalsekhar@gmail.com,sonal.sekhar@manipal.edu(S.S.Miraj).

http://dx.doi.org/10.1016/j.bjid.2017.01.001

1413-8670/©2017SociedadeBrasileiradeInfectologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

Introduction

Tuberculosis(TB)isoneofthemostcommoninfectious dis-easescausingmorbidityandmortalityworldwide.Eachyear, approximately9.6millionnewcasesand1.5milliondeaths occurduetoTB.1,2IndiahasthehighestburdenofTB.3More

than95%ofTBdeathshappeninresource-poorlowand mid-dle incomecountries. Persons with compromisedimmune states,suchasHIVinfection,diabetes,tobaccouse,and mal-nutritionare atagreaterriskofprogressingfrom latentto activeTB.2Itispossiblethatinareasofhighprevalenceof

dia-betes,theimpactoftheDMepidemicontuberculosiscouldbe asgreatasthatofHIV.

Globally, around 15% of TB cases are estimated to be attributabletoDM.4Theescalationofdiabetesprevalencein

TB-endemicregionsmayadverselyaffecttuberculosiscontrol. The current Indian diabetes scenario could lead to resur-genceofTBinendemicregions,especiallyinurbanareas.5

DiabeticpatientswithTBhavenegativetreatmentoutcomes suchasdelayinsputumcultureconversion,increasedriskof deathduringtreatment,andTBrelapseaftersuccessful anti-tuberculartreatment regimen.2 Diabetic TBpatients suffer

fromhighermortality(7.5%)comparedtopatientswitheither TB(1%)orDM(2%)alone.6AstudyfromKerala(Southernmost stateofIndia)demonstratedthatdiabeticswithdrugsensitive TBhavegreaterprobabilityoffailingfirstlineTBtreatmentas comparedtothosewithoutDM.7,8

Diabetesisassociatedwithdiminishedinnateandadaptive immuneresponseswhichareessentialtocombatthe intracel-lularproliferationofMycobacteriumtuberculosis(M.tb).Hostcell recognitionisdiminishedindiabetics,resultinginthedecline ofimmuneresponse,whichrenderdiabeticsmore suscepti-bletobacterial infections.ControlofTBcomprisesvarious strategiessuchascasetreatment,preventivetherapy,and vac-cinationwithBCG.9TBpreventionandcontrolcouldbefurther

improvedbyinterventionsthatcounterknownriskelements ofTBsuchasdiabetes,immunecompromiseinconditionslike HIV.

Currently, there are a number of difficulties in devel-oping new drugs with potential anti-TB effects, especially withtherapeuticand prophylacticefficacyagainstdormant

M.tborganisms.Thecurrentanti-tuberculartherapyislong drawn and is associated with drug toxicity and height-enedmulti-drugresistance.Therapeuticmodulationofhost cellresponsesthatenhances pathogeneradicationisbeing suggestedasanewparadigmindrugdiscovery.These ‘host-targeted’ therapeutic strategies are less likely to provoke microbialresistancethantargetingpathogenswith conven-tionaldrugs.

Innate antimicrobial arsenal of the host cell includes reactiveoxygenspecies(ROS)and reactivenitrogenspecies (RNS),inadditiontothephagosomalmachineryorautophagy. Autophagyiscontrolledbymammaliantargetofrapamycin (mTOR)complex-1andadenosinemonophosphateactivated protein kinase (AMPK).10,11 Singhal et al. demonstrated

that AMPK-activation by metformin inhibits intracellular growth ofM. tb, restricting disease immunopathology, and enhancingtheefficacyofconventionalanti-TBdrugs. Sing-hal’s data suggest that both protective immunity and

pathological immunitycanbeindependentlymodulatedby metforminduringM.tbinfectionbyenhancingM.tb-specific

host immunity, reducing inflammation, promoting disease resolution,andimprovingtreatmentoutcomes.Atthecellular level,metformindifferentiallyaffectsimmuneresponseand inflammationthroughdifferentmechanisms.Theprotective effectismediatedbyincreasedhostcellproductionofmROS and increased acidification of mycobacteriod phagosome. Actually,mROSproduceduponmitochondrialrecruitmentto phagosomesisinstrumentalinkillingofintracellularbacteria bymacrophages.Theanti-inflammatoryeffectismediatedby activationofAMPK.Metforminalsopromotestheexpansionof

M.tbspecificIFN-␥-secretingCD8+Tcellsinuninfectedmice indicatingthatmetforminhasanimpactonthelungimmune cells independently ofcurrentinfections.These effectsare consistentwithmetformin-inducedexpansionofCD8+ mem-oryTcells,anotherknownconsequenceofAMPKactivation. Both CD4+ andcytotoxic T cellsare key tocontrolling pri-maryM.tbinfectioninhumansubjects.StudiesbySinghal etal.havealsoshownanincreaseinM.tb-specificTcellsin metformintreateddiabeticpatientswithlatentTB.Metformin therapycombinedwithstandardTBtreatmentregimenshas demonstratedbeneficialclinicaloutcomesinactiveTB.

We hypothesize that metformin, via AMPK-activation, boostshostimmunityandtherebyprotectDMpatientsfrom TB.Asmetforministhemostfrequentlyprescribedoral anti-diabeticinclinicalpractice,andsinceitsmechanismofaction, includingAMPKactivation,iswellknown,acomprehensive preventivestrategyofTBinDMshouldmandatetheuseof metformininalldiabeticsunlesscontraindicated.

Materials

and

methods

Thiscase–controlstudywasconductedinatertiarycare hos-pitalinSouth-India(KasturbaHospital (KH),Manipal)fora periodofeightmonths(August2015toMarch2016).Dataof patientsadmittedduringJan2011toDec2015wereobtained retrospectivelyfromtheMedicalRecordsDepartmentofthe hospital.SubjectswereidentifiedbasedonICD-10codingfor diseaseclassification(Diabeteswithoutcomplications:E11.9; tuberculosis:A15–A19).Studysubjectsweredividedintostudy group(SG:152)andcontrolgroup(CG:299).SGconsistedof dia-beticsdiagnosedwithTBandCGhaddiabeticswithoutTB.The ratiobetweencaseandcontrolwaskeptas1:2.Theinclusion criteriawasage≥40years.Patient’santi-diabeticmedications (metforminorotheranti-diabeticsoritscombinations)usage statuswerenoted.

Weusedcomputerized records foridentificationofcase andcontrols,assessmentofcomorbidities,andascertainment ofoutcome.Controldatawerecollectedfromdischarge sum-maryandidentifiednewlydetecteddiabetespatientswithno historyofTB,meetinginclusioncriteria.Patientsdiagnosed withDMbefore2011,below40years,withtuberculosiswere excludedfromcontrolgroup.Bothcaseandcontroldatawere fromthesamehospital,withsimilarexposurestatusandat riskofdevelopingsimilaroutcome.

TheCRFcaptureddemographicdata(age,gender,weight, height,BMI,occupation,andsocialhabits)andclinicaldetails (chiefcomplaintsonadmission,pastmedicalandmedication

(3)

history,casecategory,comorbidcondition,diagnosis,allergy status,laboratoryparameters,treatment,prognosis,discharge medication).Data were collectedforpopulationexposed to metforminandnon-metformin,i.e.otheroralhypoglycemic agents,OHA’s(sulfonylureas,alphaglycosidaseinhibitors, thi-azolidinedione,meglitinidesorinsulin)orcombinations.

Samplesize

ClinicalsignificanceintheincidenceratesbetweenSGandCG wasfixedat5%with80%powerand5%levelofsignificance. AstheratioofSG:CGwasfixedat1:2,theminimumnumberof subjectsrequiredinSGandCGweredeterminedtobe150and 300,respectively.Therefore,atotalsamplesizeof450subjects wereincludedinthestudy.

Statisticalanalysis

Numberand proportion ofpatientswith metformininthe TBcasegroupisthemainoutcomefortheanalysis.Results werereportedasrates&percentagesforcategoricalvariables, andmean&standarddeviationforcontinuousvariables.For univariateanalysis,Chi-square wasused. For the interven-tionmeasures,theabsoluteriskreductionsandthenumber neededtotreattopreventTBinonepersonwascalculated.

p-Value<0.05wastakenasstatisticallysignificant.

Ethicalclearance

Ethical clearance for study was obtained from Institu-tionalEthics CommitteeofKasturbaHospital, Manipal(IEC 430/2015).

Results

Studypopulation

We identified a total of 451 cases (Control, CG: 299 and Case,SG:152)whichincluded299controls,128diabeticsnot onmetforminand171 diabeticsonmetformin.Amongthe 152cases,111werenotonmetforminandremaining38were onmetformin.Generalcharacteristicsofstudypopulationare summarizedinTable1.

Amongthe299CG,194(64.9%)weremalesand105(35.1%) werefemales.InSG,120(79.5%)weremalesandremaining of24 (15.9%)were females.Themean (SD)ageofboth CG andSGwere55.54±11.82and52.80±11.75,respectively.We found that in both SG and CG, poor glycemic control (i.e. HbA1c>8.0)wasseenin51.7%and31.4%ofpatients, respec-tively.Similarly,FBS>100mg/dlwasseenin87.4%ofSGand 57.9%ofCG[Table2].Thirty-eight(25.5%)peopleintheSGand 171(57.1%)intheCGwereusingmetformin.Moreover,a sig-nificantproportionwerenotprescribedmetformininbothSG (n=111;74.5%)andCG(n=128;42.8%)[Table3].

Useofmetforminatanytimewassignificantlyassociated withreducedriskofTB.Oddsratio<1showsthatmetformin isprotectiveagainstTBbyafactorof3.9.Wedidnotfindany dosedependentprotectioninmetforminusers.Nodifference wasfoundbetweenthoseon1000mgmetformin,(27.3%)and

Table1–Generalcharacteristicsofstudypopulation.

Parameters Cases(N=152) Controls(N=299)

Ageinyears (mean±S.D.) 52.8±11.7 55.5±11.8 Gender(%) Male 124(82) 194(65) Female 27(18) 105(35) Durationof hospitalization (days) [median(range)] 7.0(5.0,10.0) 6.0(4.0,8.0) Numberof hospitalization [median(range)] 1.0(1.0,2.0) 1.0(1.0,2.0) BMI(mean±SD) (kg/m2) 21.2±3.7 25.8±15.7

Symptomsonadmission[No(%)]

Cough 100(66.2) 38(12.5) Fever 81(53.6) 29(9.7) Weightloss 17(11.3) 6.0(2.0) Breathlessness 15(9.9) 15.0(5.0) Fatigue 17(11.3) 11.0(3.7) HbA1c(%) [median±IQR] 9.3(7.5,11.6) 7.9(6.8,10.7) FBS(mg/dl) [median±IQR] 178(124,243) 163(125,234)

Table2–Glycemicstatusinthestudygroups.

Variable Cases[No(%)] Controls[No(%)]

HbA1c(%) <7.0 19.0(12.2) 60.0(20.1) 7.0–8.0 10.0(6.60) 50.0(16.7) >8.0 78(51.7) 94(31.4) FBS(mg/dl) <70 6.0(4.0) 4.0(1.3) 70–100 15(9.9) 14(4.7) >100 111(87.4) 173(57.9) Urinesugar 1+ 12(7.9) 12(4.0) 2+ 13(8.6) 25(8.5) 3+ 30(19.9) 73(24.4)

on500mg(25.7%)fordevelopmentofTB.Doseofmetformin doesnotseemtoaffecttheprotectiveoutcomeofmetformin againstTBinfection(OR=0.92;Chi2=0.05;p=0.82).

Accordingtoourstudyresults,HbA1cvaluelessthan7was foundtobeprotectiveagainstTBoccurrence(OR<1),showing thatpoorglycemiccontrolisassociatedwithincreasedriskof TBinfections[Table4].

Discussion

MalesoutnumberedfemalesinbothCGandSGby64.0%and 29.8%,respectively.Asimilartrendinmaledominancewas observedinotherstudiesbyDobleretal.,12andFezaetal.13

TBincidencewashighestindiabeticsaged51–60years(n=47) inthisstudy.AccordingtoDobleretal.,12themajorityofTB

in DM patients was observedin age group of55–74years. Thereasoncould bebecausemetabolicdisorders caneven atayoungerageinIndianscomparedtoWesterners.14,15Our

(4)

Table3–Metforminusagepatternsinthestudygroups.

Exposurestatus Studyoutcome Total Statisticaltests

Case[No(%)] Control[No(%)]

Present(metformin) 38(18.2) 171(81.8) 209(100) Chi2=40.12;

p=0.00 OR=0.256(0.16, 0.40)

Absent(non-metformin) 111(46.4) 128(53.6) 239(100)

Total 149(33.3) 299(66.7) 448(100)

Table4–RiskofTBoccurrenceandglycemiccontrol.

HbA1cstatus Studyoutcome Total Statisticaltests

CaseNo.(%) ControlNo.(%)

<7 19(24.1) 60(75.9) 79(100) Chi2=5.03; p=0.025 OR=0.52(0.29, 0.93) >7 88(37.9) 144(62.1) 232(100) Total 107(34.4) 204(65.6) 311(100)

inclusioncriteria,hadsubjectsmorethan40years.TB inci-dencewasnotage-dependent;51–60years(30.9%)and41–50 years(26.3%).However,theincidenceofTBwaslowerinelders 61–70years(n=24,15.8%)andabove70years(n=12,7.9%).

Wefoundthatsmokingandlowincomeweresignificantly associatedwithtreatmentfailureofTB,whichisinagreement withanotherstudybyTachfouti etal.16 Lowsocioeconomic

statusindicatorssuchasovercrowding,illiteracy,lowwages andunemploymentwere associatedwithincreasedriskfor TBaswellaspoormedicationadherence.17

WeobservedthatthemajorityofTBpatientsdidnothave anysignificantfamily history(84.8%).However,11.9%cases hadfamilyhistoryofdiabetesbutverylowincidence(2.6%) offamily history ofTB.Due toincompletemedicalrecords andpoorfamily historydocumentationbyphysicians, fam-ilyhistorydataweremissinginmostofourstudypopulation. MostfrequentlyobservedsymptomsinSGwerecough(66.2%), fever(53.6%),weightloss(11.3%),fatigue(11.3%)and breath-lessness (9.9%). The majority of SG had a poor control of glycemiclevels,withHbA1c>8%(51.7%)andFBS>100mg/dl (87.4%).AsystematicreviewbyChristieetal.in2010 demon-stratedhigherincidenceofhyperglycemiainTB,rangingfrom 1.9to35%,possiblybecause ofchronicinflammation, sub-optimumtherapy adherence,drug–drug interaction,access and affordability of health services and side effects like vomiting.18

Inourstudy,distributionofaverageHbA1c values(<7.0, 7.0–8.0and>8.0)were12.2%,6.6%and51.7%,respectively.We observedthatHbA1c<7groupwashavingminimalriskforTB. ThediabeticswithHbA1c>7wereattwice,higherriskforTB. ComparingwithLeegaardetal.study,averageHbA1cinthe similargroups(<7.0,7.0–8.0and>8.0)were1.8%,0.7%and1.6% respectively,whichwasfoundtobemuchlowercomparedto ourstudy.However,94%ofthesubjectswerenon-diabetics intheirstudy.19Similarresultsasourstudywasreportedby

Leungetal.,whichstatesthatpatientswithHbA1cvalue>7 areattwofoldhighertheriskofactiveTB.20

Several mechanismshave been proposedto explainthe highriskofTBinDM.DiabeticsarevulnerabletoTBdueto impaired monocyte chemotaxis, reduced interferon (IFN ␥) and activation ofalveolarmacrophages, diminishedtype1 cytokineexpression,andinnateimmunity.20

ThegrowthandinfectionofM.tbincellsdependonthe innateandadaptiveimmuneresponsesofthehost.Thehost cellphagolysesbacteriabythegenerationofreactivenitrogen and oxygen species. This autophagy pathway is regulated by mTOR complex-1, serine/threonine kinase, and AMPK. Singhaletal.reportedthatmetformin-inducedactivationof AMPKinhibitsmycobacterialgrowthinmacrophages.Hence, it wassuspectedtohavepotentialeffectonanti-tubercular regimen in diabetics due to its role in maintaining the phagosomalpathwayandpromotingantibacterialaction.11

Ourstudyhasdemonstratedthatthepatientswhowere on metformin had a protective effect against tuberculosis 3.9 timescompared toother hypoglycemictreatment regi-mens.But,wefoundboth500mg(25.7%)and1000mg(27.3%) ofmetformindoseshavenodifferenceinprotectiveaction. Hence, the study exhibits metformin can exert protective action against TB, irrespective of different doses of the metformin.Itwasfoundthatmetforminwaspartofthe pre-scriptioninjust25.3%ofSGand57.1%oftheCG.Metformin shouldbeincludedinthetherapyforalltype2DMpatients, iftoleratedandnotcontraindicated,asitistheonlyoral anti-hyperglycemicmedicationproventoreducetheriskoftotal mortality,accordingtotheUnitedKingdomProspective Dia-betesStudy(UKPDS).

Conclusion

The study concludes that metformin has protective effect indiabeticpatientsagainsttuberculosisinfection.Acid-fast bacilli weredominantly foundtobepositiveamonghigher HbA1c (>8%). Poor glycemic control was associated with

(5)

increased risk of TB infections. This protective effect of metforminagainsttuberculosisisnotdosedependent.Due topoormedicationhistorydocumentation,wewerenotable togatherdurationofmetforminuse.Hence,wewerenotable toassessmetforminusagedurationrelationshipwithits pro-tectiveaction.However,wefoundapositivecorrelationwith singleand/orshort-termexposureofmetformincanproduce longtermimmunityagainstTBinfection.

Ethical

approval

InstitutionalEthicalClearanceobtainedfromKasturba Hospi-tal(KH),Manipal,India(IEC430/2015).

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

WeexpressourgratitudetoManipalCollegeofPharmaceutical Sciencesand KasturbaMedicalCollege,ManipalUniversity, Manipalforthesupport.

r

e

f

e

r

e

n

c

e

s

1. MaxmenA.AheadofWHOmeeting,expertsclashover tuberculosistargets.NatMed.2013;19:115.

2. WorldHealthOrganization.Globaltuberculosisreport2015. 20theditionGeneva,Switzerland:WHO;2015,

http://www.who.int/tb/publications/globalreport/en/.

3. ZumlaA,GeorgeA,SharmaV,HerbertRH,BaronessMasham ofIlton,OxleyA,OliverM.TheWHO2014globaltuberculosis report–furthertogo.LancetGlobHealth.2015;3:e10–2.

4. LönnrothK,RoglicG,HarriesAD.Improvingtuberculosis preventionandcarethroughaddressingtheglobaldiabetes epidemic:fromevidencetopolicyandpractice.Lancet DiabetesEndocrinol.2014;2:730–9.

5. StevensonCR,ForouhiNG,RoglicG,etal.Diabetesand tuberculosis:theimpactofthediabetesepidemicon tuberculosisincidence.BMCPublicHealth.2007;7:234.

6. SyedSuleimanSA,IshaqAweisDM,MohamedAJ, RazakmuttalifA,MoussaMA.Roleofdiabetesinthe

prognosisandtherapeuticoutcomeoftuberculosis.IntJ Endocrinol.2012;2012:645362.

7.BalakrishnanS,VijayanS,NairS,etal.Highdiabetes prevalenceamongtuberculosiscasesinKerala,India.PLoS One.2012;7:e46502.

8.BalakrishnanS,PremaJ,SunilKumarM,NairS,DawanPK. Diabetesmellitusincreasesriskoffailingtreatmentindrug susceptibleTBpatients.IntJTubercLungDis.2011;3:S348.

9.PunjabiCD,PerloffSR,ZuckermanJM.Preventing transmissionofMycobacteriumtuberculosisinhealthcare settings.InfectDisClinNorthAm.2016Sep19[Epubaheadof print].

10.ZhouG,MyersR,LiY,etal.RoleofAMP-activatedprotein kinaseinmechanismofmetforminaction.JClinInvest. 2001;108:1167–74.

11.SinghalA,JieL,KumarP,etal.Metforminasadjunct antituberculosistherapy.SciTranslMed.2014;6:263ra159.

12.DoblerCC,FlackJR,MarksGB.Riskoftuberculosisamong peoplewithdiabetesmellitus:anAustraliannationwide cohortstudy.BMJOpen.2012;2:e000666.

13.Bacako ˘gluF,Bas¸o ˘gluOK,CokG,SayinerA,Ates¸M.Pulmonary tuberculosisinpatientswithdiabetesmellitus.Respiration. 2001;68:595–600.

14.SonalSekharM,UnnikrishnanMK.South-Asianpopulation hasahigherlikelihoodfordiabetesriskforstatinsregardless ofpotency.MedHypotheses.2015;84:283–4;

RamachandranA1,SnehalathaC,ShettyAS,NandithaA. TrendsinprevalenceofdiabetesinAsiancountries.WorldJ Diabetes.2012;3:110–7.

15.TachfoutiN,NejjariC,BenjellounMC,etal.Association betweensmokingstatus,otherfactorsandtuberculosis treatmentfailureinMorocco.IntJTubercLungDis. 2011;15:838–43.

16.CantwellMF,McKennaMT,McCrayE,OnoratoIM.

Tuberculosisandrace/ethnicityintheUnitedStates:impact ofsocioeconomicstatus.AmJRespirCritCareMed.1998;157 4Pt1:1016–20.

17.JeonCY,HarriesAD,BakerMA,etal.Bi-directionalscreening fortuberculosisanddiabetes:asystematicreview.TropMed IntHealth.2010;15:1300–14.

18.LeegaardA,RiisA,KornumJB,etal.Diabetes,glycemic control,andriskoftuberculosis,apopulation-based case–controlstudy.DiabetesCare.2011;34:2530–5.

19.LeungCC,LamTH,ChanWM,etal.Diabeticcontrolandrisk oftuberculosis:acohortstudy.AmJEpidemiol.

2008;167:1486–94.

20.DooleyKE,TangT,GolubJE,DormanSE,CroninW.Impactof diabetesmellitusontreatmentoutcomesofpatientswith activetuberculosis.AmJTropMedHyg.2009;80:634–9.

Referências

Documentos relacionados

In this study, we analyzed the protective effect of OPZ against renal fibrosis in a rat UUO model, a well - established in vivo model of renal fibrosis. Our study confirmed

Coming from the hypothesis that social media are potential adju- vants in a project of promoting visibility of contents also in the case of university channels, the present

to hypoxia was also studied, and it was demonstrated that an increased expression of TRAP1 has a protective effect against damage caused by hypoxia in

In our study, MDA concentrations in the treatment group decreased after reperfusion, suggesting a potential protective effect of preconditioning with L-alanyl- glutamine

In observational studies, dairy product consumption was inversely associated with the occurrence of one or more individual components of the MetS, thus representing a protective

In a study of tuberculosis patients, gastrointestinal effects were found to be related to elderly individuals, revealing that the treatment toxicity associated with the use of

associated with an increased risk of atopic sensitization, and low socioeconomic status, assessed by level of schooling, was a protective factor against atopy in a prospective birth

The present study aimed at detecting whether the pres- ence of depressive symptoms was associated with poor glycemic control according to sex in a population with T2DM from