• Nenhum resultado encontrado

Cultivated bacterial diversity associated with the carnivorous plant Utricularia breviscapa (Lentibulariaceae) from floodplains in Brazil

N/A
N/A
Protected

Academic year: 2021

Share "Cultivated bacterial diversity associated with the carnivorous plant Utricularia breviscapa (Lentibulariaceae) from floodplains in Brazil"

Copied!
9
0
0

Texto

(1)

h ttp : / / w w w . b j m i c r o b i o l . c o m . b r /

Environmental

Microbiology

Cultivated

bacterial

diversity

associated

with

the

carnivorous

plant

Utricularia

breviscapa

(Lentibulariaceae)

from

floodplains

in

Brazil

Felipe

Rezende

Lima

a,b

,

Almir

José

Ferreira

a,b

,

Cristine

Gobbo

Menezes

c

,

Vitor

Fernandes

Oliveira

Miranda

c

,

Manuella

Nóbrega

Dourado

a,∗

,

Welington

Luiz

Araújo

a,b,∗

aDepartmentodeMicrobiologia,InstitutodeCienciasBiomedicas,UniversidadedeSãoPaulo,Av.Prof.LineuPrestes,1374-Ed.

BiomédicasII,CidadeUniversitária,05508-900SãoPaulo,SP,Brazil

bNúcleoIntegradodeBiotecnologia,NIB,UniversidadedeMogidasCruzes,Av.Dr.CândidoXavierdeAlmeidaSouza,200,Centrocívico,

08780-911MogidasCruzes,SP,Brazil

cFaculdadedeCiênciasAgráriaseVeterinárias,UniversidadeEstadualPaulistaUNESP,ViadeacessoProf.PauloDonatoCastellanes/n,

Centro,14884-900Jaboticabal,SP,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received18September2017 Accepted24December2017 Availableonline31March2018 AssociateEditor:FernandoAndreote

Keywords: Utriculariabreviscapa Microbialecology Aquaticmicrobiota Microbialcommunities

a

b

s

t

r

a

c

t

Carnivorousplantspecies,suchasUtriculariaspp.,captureanddigestprey.Thisdigestion canoccurthroughthesecretionofplantdigestiveenzymesand/orbybacterialdigestive enzymes.Tocomprehendthephysiologicalmechanismsofcarnivorousplants,itisessential tounderstandthemicrobialdiversityrelatedtotheseplants.Therefore,inthepresentstudy, weisolatedandclassifiedbacteriafromdifferentorgansofUtriculariabreviscapa(stolonsand utricles)andfromdifferentgeographiclocations(SãoPauloandMatoGrosso).Wewereable tobuildthefirstbacteriumcollectionforU.breviscapaandstudythediversityofcultivable bacteria.TheresultsshowthatU.breviscapabacterialdiversityvariedaccordingtothe geo-graphicisolationsite(SãoPauloandMatoGrosso)butnottheanalyzedorgans(utricleand stolon).Wereportedthatsixgenerawerecommontobothsamplesites(SãoPauloandMato Grosso).Thesegenerahavepreviouslybeenreportedtobebeneficialtoplants,aswellas relatedtothebioremediationprocess,showingthattheseisolatespresentgreat biotechno-logicalandagriculturalpotential.ThisisthefirstreportofanAcidobacteriaisolatedfromU. breviscapa.Theroleofthesebacteriainsidetheplantmustbefurtherinvestigatedinorder tounderstandtheirpopulationdynamicswithinthehost.

©2018SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Correspondingauthorsat:DepartmentofMicrobiology,InstituteofBiomedicalSciences,UniversityofSãoPaulo,Av.Prof.LineuPrestes, 1374-Ed.BiomédicasII,CidadeUniversitária,05508-900SãoPaulo,SP,Brazil.

E-mails:mndourado@gmail.com(M.N.Dourado),wlaraujo@usp.br(W.L.Araújo).

https://doi.org/10.1016/j.bjm.2017.12.013

1517-8382/©2018SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

Introduction

There are over 700 reported species of carnivorous plants distributed in 5 orders (Caryophyllales, Ericales, Lamiales, OxalidalesandPoales)and10familiesthatoccurindifferent habitatsallovertheworld.1Thiscarnivoroussyndromehas

arisenindependentlyatleastsixtimesintheevolutionary his-toryofangiospermsoveranextensiveevolutionarytimespan andinvolvingdifferentmorphologicaladaptationstocapture anddigesttheprey.2,3

Theplantmustpresentcertainfeaturestobeclassifiedas carnivorous,suchasactivelyattracting,capturingand digest-ing prey, absorbing nutrients from it and obtaining some advantagesingrowthorreproduction.4 Thepreycanbean

additionalsourceofN,P,S,KandMgandcomplementthese photoautotrophicplants.5,6

The genus Utricularia (Lentibulariaceae), with over 220 species,isthemostwidespreadofthecarnivorousplants.One speciesofthisgenus isUtriculariabreviscapa,whichcan be naturallyfoundintheAntilles andSouthAmerica.Itisan aquaticplant,anditssuspendedstructurescontainair-filled parenchymathatallowsittofloat.Itsstolonsarethreadlike, andbearsegmentedleavesand utricules(thetraps).7 Utric-ulariaspeciespresentfoliarstructurescalledutricles,which arehighlyspecializedtrapsthatarecapableofcapturingprey bysuctionthroughtheactionofnegativeinternalhydrostatic pressure.8,9

In many carnivorous plant species, digestion does not necessarily occur through the secretion of plant digestive enzymesbutisperformedbybacterialand/orfungal diges-tiveenzymes.2,10Forexample,insomespeciesofcarnivorous

plants,suchasByblis(Byblidaceae),Brocchinia(Bromeliaceae),

Darlingtonia,HeliamphoraandsomespeciesofSarracenia (Sar-raceniaceae),bacterialenzymesareessentialintheabsence ofplantenzymesecretion,andamongtheplantsthathave suchglands,thebacterialcommunityalsoplaysanimportant roleintheoptimizationprocessofpreydegradation.4,11

Theseendophyteslivinginsidetheplanthaveinnumerous advantages,sincetheinternaltissuesprovideastable envi-ronmentwithoutultravioletrays,temperaturefluctuationsor nutrientcompetitionwithothermicroorganismsaswellasan increasedavailabilityofnutrients.12–14 This

microorganism-plantinteractionisimportantforthesurvivaloftheplant, sincethesemicroorganismsrepresentseveralbenefitsforthe hostplant,providingprotectionagainstpathogens, promot-inggrowth,increasingtheabilitytocapturetraceelements andseveralotherbenefitsthatareextremelyimportantfor themaintenanceofplantbalance.15,16

Therefore, it is important to understand the microbial diversityrelatedtocarnivorousplants,particularlybacterial

Table1–Samplinglocationsandcharacteristics.

Generallocation City Coordinates River/lake Characteristics

MatoGrossostate SantoAntôniodeLeverger S15◦5931.8W55◦4857.4 RiverAricáfloodplain Lenticenvironment,lowdepth SãoPaulostate MogidasCruzes S23◦3158.5W46◦0838.3 RiverTietêfloodplain Lenticenvironment,mediumdepth

diversity,sinceitcanrepresentapproximately58%ofthetotal

viable microbial biomass,17 playing a key role in the trap.

Caravieriet al.18 were the firstto reportthe totalbacterial

diversityfromUtriculariahydrocarpaandGenliseafiliformistraps usinganon-cultivableapproach,showingthatonly1.2%of theobservedoperationaltaxonomicunits(OTU)wereshared bybothanalyzedplants(U.hydrocarpaandG.filiformis). More-over,inadditiontoplantgenotype,trapagecanalsoinfluence themicrobialcommunitiesinsidethevesicles.19

Thepresentstudyaimstoisolatethebacterialcommunity from differentorgans(stolonsand utricles)ofU.breviscapa,

whichmayhavegreatbiotechnologicalpotential,inorderto buildthefirstbacteriumcollectionforU.breviscapaandstudy thediversityofcultivablebacteria,aimingtounderstandtheir functioninthisuniqueenvironment.

Materials

and

methods

Plantsampling

ThesamplesofU.breviscapaplantswerecollectedfromtwo differentfloodplainsinBrazil:(1)SantoAntôniodeLeverger municipality,MatoGrossostate(MT)and(2)RioTietêflood plain, Mogi das Cruzes municipality, São Paulo state (SP)

(Table1andFig.1).Thesampleplantswerestoredinplastic

bagsdulyidentifiedwithsamplenumberandthepointfrom whichtheywerecollected,maintainedinfreshwaterat envi-ronmental temperature. Aftercollection, the sampleswere transportedtotheLaboratoryofMolecularBiologyand Micro-bialEcologywheretheisolationwasimmediatelycarriedout. VouchersaredepositedinHerbariumHUMC.

Bacterialisolation

ThemacerationmethodwasadaptedfromKuklinsky-Sobral et al.20 for the bacterial isolation from weighed stolons

and utricles of U. breviscapa previously washed in ster-ilized water. Bacteria were isolated by soaking 5 stolon fragments (approximately 5mm per fragment) or 10 utri-clesinphosphate-bufferedsaline(PBS)containingNa2HPO4

(1.44gL−1), KH2PO4 (0.24gL−1), KCl (0.20gL−1), and NaCl

(8.00gL−1),adjustingthepHto7.4,andmacerating.After mac-eration,thesamplevolumewasadjustedto1mL,appropriate dilutionswerecarriedoutandplatedonto10%trypticasesoy agar (TSA) supplementedwith50mgmL−1 ofthe fungicide Imazalil(Magnate500CE,Agricur),andtheplateswere incu-batedat28◦Cfor2–15days.Thecolonieswereremovedfrom theplates,inoculatedonto10%TSAagarmedium,incubated at28◦Cfor2–10days,andtheneachisolatewassuspendedin a20%glycerolsolutionandstoredat−70◦C.

(3)

Fig.1–HabitofUtriculariabreviscapawithinflorescence (bar=10mm).Thedetailshowsastolonwithutricles (arrowindicatesanutricule;bar=5mm).

Statisticalanalyseswere carriedoutwithbiological trip-licatesforeachtreatmentforbacterialquantificationinthe isolationexperiments,whichwereperformedinacompletely randomdesign.Thesignificanceoftheobserveddifferences wasverifiedusinganewanalysisofvariance(p=0.05). Analy-seswereconductedusingRsoftwareversion3.0.1.

Polymerasechainreaction(PCR)amplificationand16S rDNAsequencing

Aftercultivation,thebacterialDNAwasextractedaccording toAraújoetal.21.Apartialsequenceofthe16SrRNAgene

wasamplifiedusingthepairofprimersR137822andP027F.23

PCRswereperformedaccordingtoDouradoet al.24All PCR

amplificationwascheckedthroughelectrophoresisonagarose gel (1.5%, w/v agarose) and UV visualization of the ethid-iumbromide-stainedgels,afterwhichthePCRproductswere purifiedusingaGFXPCRDNAandgelbandpurificationkit (AmershamBiosciences)andsequencedbySanger Sequenc-ingTechnology25usingtheprimer1378R.

Analysisofthe16SrRNAgenesequence

Sequences were obtained from the bacteria isolated from

U. breviscapa stolonsandutriclesfrom SãoPaulo andMato

Grossostate.Priortothe analysis,all chromatogramswere trimmed with Phred-Phrap (http://www.phrap.com/phred/). Thesequenceswereclusteredasoperationaltaxonomicunits (OTU) using MOTHUR26 and a cut-off of 97% identity and

further examined using rarefaction analysis and Libshuff, and dendrograms were constructed. Furthermore, richness and diversity were also calculated using MOTHUR based on non-parametric richness (Ace and Chao1)and diversity (Shannon-Weaver and Simpson) indexes with cut-offs for similarity at97% (0.03), 95% (0.05) and 91% (0.09) identity. TaxonomicclassificationswereperformedusingRDPQuery

(https://rdp.cme.msu.edu)asdatabaseparameters.For

phe-neticanalysis,thesequenceswerealignedusingClustalW,27

and the distance was calculatedusing the Jukes and Can-tor model28 using Neighbor Joining method in MEGA 5

software.29 Thebranches weretestedwithbootstrap

analy-ses(1000replications),andthelayoutoftreeswasdesigned usingtheonlineapplication“InteractiveTreeOfLife”(iTOL)

(http://itol.embl.de/).30

Atotalof200DNA sequencesofpartial16SrRNAgenes were deposited in the GenBank database under accession numbersKY453794toKY453980.

Results

and

discussion

A total of200 sequences were obtainedfrom bacteria iso-lated from U. breviscapa. Higher isolated bacterial density was observedinassociation withplantsfrom MatoGrosso (MT)(Fig.2).ThebacterialdensityaveragesfromMTsamples were 4.9×105CFUutricle−1 and 3.6×107CFUg of stolon−1,

whilethesamplesfromSãoPaulo(SP) hadbacterial densi-ties of6.0×104CFUutricle−1 and 1.2×107CFUgofstolon−1

(Fig.2).

TherichnessestimatorofOTUsperformedwiththeChao1 and Aceindexes at97% (Table 2)showed a greater bacte-rial richness inSP plants than in MTplants. According to theChao1parameter,wecanobservethehighestrichnessin utriclesfollowedbystolonsinSPplants.However,basedon theAceestimator,theoppositewasobserved,inwhichthe Aceindexshowedthehighestrichnessinstolonsfollowedby

0,0000# 1,0000# 2,0000# 3,0000# 4,0000# 5,0000# 6,0000# 7,0000#

Mato#Grosso# #São#Paulo# Mato#Grosso# #São#Paulo#

Log10&UFC.unit/1&&

A

0,0000# 1,0000# 2,0000# 3,0000# 4,0000# 5,0000# 6,0000# 7,0000# 8,0000# 9,0000# Log10&UFC.g+1&&

B

a b a b

Fig.2–Bacterialdensityin(A)utriclesand(B)stolonsofU.breviscapafromMatoGrosso(MT)andSãoPaulo(SP). Statisticallydifferentatp<0.05.

(4)

Table2–DiversityindexandrichnessestimationofanalyzedOTUs.

Library Similarity OTUs Chao-1 Ace Shannon(H) Simpson(1-D)

Richnessestimator Diversityindexes

utricSP 97% 37 107(62–236) 104(63–211) 3.2(3.0–3.5) 0.95(0.98–0.93)

utricMT 97% 25 56(34–124) 66(38–152) 2.5(2.1–2.9) 0.85(0.94–0.76)

stolSP 97% 34 93(55–196) 228(144–373) 3.3(3.1–3.6) 0.97(0.99–0.95)

stolMT 97% 17 56(27–168) 82(46–163) 2.64(2.3–2.9) 0.94(0.99–0.90)

utricles.IntermsofbacterialrichnessinMTplants, Chao1

estimatesastatisticallyequalrichnessinbothutriclesand

stolons(Table2).

Itis common knowledge that the performance of non-parametric estimators depends on the species abundance distributioninthesample,andthepreferenceforoneover anotherisadifficultissue.Basualdo31observedinhiswork thatthe Aceindexwas betterwhenthe observedrichness waslow andChao1when theobserved richnesswas high. Inanotherstudy,Hortaletal.32mentionedthat

abundance-basednon-parametricestimators(AceandChao1)aremore precisecomparedwithother richness estimators;however, theirprecisiondiminishesatlowersamplingintensities, pro-ducinglessconsistentresults.Thissuggeststhatthechoice among richness estimator parameters can vary between samplingcharacteristics,eveninthesamestudy.

AccordingtotheSimpsonindexdiversityat97%,ahigher diversityofOTUswasfoundinlibrariesconstructedfromSP plants,withthehighestdiversityinstolons(stolSP)followed byutricles(utricSP).SimilartoSãoPaulo,thebacterial diver-sityindexinMTplantswasalsohigherinstolons(stolMT) followedbyutricles(utricMT).TheShannondiversityindexat 97%showedthesameresult.

Therefore,forallindexesused(Chao1,Ace,Simpsonand Shannon),higherdiversityrateswereobservedinplantsfrom SãoPaulo.ThereisnoapparentreasonwhySãoPaulosamples presentahigherdiversitywhencomparedwithMatoGrosso samples,but itisknownthattherearevarious characteris-ticsthatcouldbeconsideredtocontributetothisvariation, ofwhichthetrapagehasbeenthemostcitedinthe litera-ture,but thequalityofwatercanalsoimpactthemicrobial diversity. Plachno et al.19 found that old traps were

colo-nizedbyattachedbacteria,buttheycanalsobefoundfreely suspendedin trap fluid, as shown in Sirová et al.17 How-ever, determining utricle dynamics is further complicated by the rapid aging of traps (or pitcher), as their life cycle iscompleted over approximately 30 days, and many envi-ronmentalchangesoccurduringthistime.33Althoughtheir

lifecycle isshort,theinteriorofutriclespresentslow con-centrationsofoxygen,and it hasbeen postulated thatthe organisms trapped byUtricularia die as a resultof oxygen

Table3–Libshuffanalysiscomparingcoveragebetween libraries.

Comparison Score Significance

stolMT-stolSP 0.006 0.0044 stolSP-stolMT 0.025 <0.0001 stolMT-utricMT 0.010 0.0015 utricMT-stolMT 0.053 <0.0001 stolMT-utricSP 0.011 0.0037 utricSP-stolMT 0.069 <0.0001 stolSP-utricMT 0.029 <0.0001 utricMT-stolSP 0.009 <0.0001 stolSP-utricSP 0.001 0.5787 utricSP-stolSP 0.006 0.0009 utricMT-utricSP 0.005 0.0001 utricSP-utricMT 0.048 <0.0001

depletion.34Thisanoxicenvironmentisreflectedinits

com-mensalcommunities,selectingforanaerobicandfacultatively aerobicbacteria.35Pitschetal.36reportedaciliatecommensal

thatusesalgaetocircumventthelowconcentrationof oxy-geninsidetheutricles.Furthermore,someresearchershave assumedthatthishighabundanceofcommensalorganisms alsooccursinemptytraps;inthesameway,these microorgan-ismsarenotspecializedforlivinginsidethetraps,andthey canthereforeliveeitherontheexternalsurfaceorfreelyas planktonintheambientwater.37

Another factor that could influence the microbial com-munity inside the traps is the composition of the water surroundingthetrapthatwillbesuckedintogetherwiththe preyorevenattachedtotheprey.Thus,thebacterial commu-nityisselectedaccordingtothephysical–chemicalconditions inside the trap. Itis importanttoemphasize that the two sampled siteswerelocatedinfloodplainareas.River flood-plainsystemsareknownfortheirheterogeneityinhabitats andhydrologicalpulses,presentinggreattemporaland spa-tialvariationintheirlimnologicalconditions,which,inturn, shouldinfluencethebacterialcommunitycomposition.38

TheLibshuffsignificancetestindicatedthatthoselibraries belongingtothesame partoftheplant(stolSP/stolMT and utricSP/utricMT) (Table 3) differsignificantly foreach sam-pled site (São Paulo and MatoGrosso). Moreover,although

utricMT

stolMT

stolSP

utricSP

0.1

(5)

Fig.4–PhenetictreesrepresentingthecultivablebacterialfoundinutriclesandstolonsfromU.breviscapawerebuiltusing NeighborJoiningmethodinMEGA5software.(A)IsolatesfromMatoGrossoand(B)fromSãoPaulo.Thesolidgraycircles nexttothetreebranchescorrespondtobootstrapvalueshigherthan50%.Brachyspirainnocens(S000437178);Brachyspira

hyodysenteriae(S000437188),Brachyspirahyodysenteriae(S000437188)andBrachyspirahyodysenteriae(S000437188)wasused

(6)

theyareassociatedwiththesamesite,thesignificance analy-sisforutricleMTandstolonMTshowsasignificantdifference betweentheseparts ofthe hostplant.On the other hand, whencomparingutricleSPandstolonSP,whichpresenthigher richnessanddiversityintheir16SrDNAlibraries,donotvary, indicatingthatonlyinless diverseenvironments are there differentcolonizationpatternsbetweenstolonsandutricles.

Adendrogramofbacterialcommunitiesshowed similar-itiesbetweenthe samesite libraries(Fig.3).Agreeing with therichnessanddiversityindexes,thelibrariesweregrouped accordingtothesampledsite,groupingutriclesandstolons fromSãoPaulo(utricSPandstolSP)inthesamebranch(with presents higher diversity), while utricles and stolons from MatoGrosso(utricMTandstolMT)weregroupedinanother branch(whichpresentslower diversity).Thisindicatesthat thereisgreaterbacterialcommunitysimilaritybetween dif-ferentpartsofthesamehostplantcollectedfromthesame sampledsite (SãoPauloor MatoGrosso),corroborating the hypothesis that the place of origin plays the mainrole in bacteria-plantinteractions,sincethe environmentsupplies themicrobialdiversitytotheplanthost.

Inlookingatthe200isolatesfromSPandMT,respectively, the16SrRNAanalysisofplantisolatesfromMTshowed22 bac-terialgenera,amongthem Sphingomonas(36.71%),Aquitalea

(18.99%)andBacillus(6.33%),whileintheplantisolatesfrom SãoPaulo,wefound 31bacterialgenera, ofwhich the pre-dominantgenerawereMicrobacterium(20.66%),Sphingomonas

(14.05%)andPelomonas(9.09%)(Fig.4).Caravierietal.18 also foundSphingomonasandMicrobacteriumgenerainassociation withU.hydrocarpa,buttheculture-independentmethodsused intheirworkfoundtheseOTUsamongthelessabundant gen-era.

Sixgenerawerecommontobothsampledsites(SPandMT):

Aquitalea,Azospirillum,Bacillus,Chromobacterium, Novosphingo-biumandSphingomonas(Figs.4and5).Asshownforbacterial density,itwasalsoverifiedthattheabundanceofcultivable bacterialspeciesvariedaccordingtothesampledsites, sug-gesting that the plant selects the bacterial community in itstissues,andthisselectionmustoccurfromthediversity presentinitssurroundingenvironment.Moreover,Koopman etal.39observedthatthebacterialcommunitywithinthetraps

ofSarraceniaalataplantswassignificantlydifferentfromthe soilsurroundingtheplantandvariedovertime,suggesting thatthe communityassociatedwiththe plantsshould not occurrandomlybutshouldbedependentontheinteraction betweenthe plantgenotype and the environmental condi-tions.

The Utricularia samples were taken from muddy and

dirtywater,wherethemostabundantgeneraofboth stud-ied sites belonged to the Sphingomonas genus, which has beenpreviouslyreportedtocolonizedifferentpolluted envi-ronments, both aquatic and terrestrial, being able to use polycyclicaromatic hydrocarbons as its sole sourceof car-bon and energy.40 Moreover,this genus has been reported

tohaveabeneficial interactionwithplants,producing phy-tohormones such as gibberellins and indole acetic acid, promotingthegrowthofSolanumlycopersicum,41and

produc-ing exopolysaccharides,42,43 which havealso beenreported

tobeafactorinplant–bacteriuminteractionsforPaenibacillus polymyxa.44 3 3 1 1 1 1 1 utricMT stolMT

12

16

14

9

2 0 0 0 utricSP stolSP

Fig.5–VenndiagramrepresentedbysharedUTO’sof stolons(stol)andutricules(utric)ofU.breviscapafromMato Grosso(MT)andSãoPaulo(SP)(dissimilarityof0.09). Therefore:utricMT:utriculesfromMatoGrosso,stolSP: stolonsfromSãoPaulo,utricSP:utriculesfromSãoPaulo andstolMT:stolonsfromMatoGrosso.

Inthepresent work,thegenusAquitaleawasoneofthe mostabundantgeneraassociatedwithutriclesfromsampled

SPandMTUtricularia.ThegenusAquitaleawasdescribedin

2006byLauetal.,45 fromafacultativeanaerobicbacterium

strainlivinginlakes.Thisgenusismostcommonlyfoundin humicandoligotrophiclakesand inother watersources.46

Wooetal.47showedthatthegenusAquitaleawasoneofthe

mostabundantgeneraisolatedfromwettropicalforestsoils, an environmentrich inorganic matterto decompose, pre-senting high levels of enzymeactivities. Although little is knownaboutthemechanismofdigestioninUtricularia, evi-dencehasbeenraisedforthepresenceofenzymaticactivity insidethe trap,anda considerableproportionofthe enzy-maticactivityinthetrapfluidisassumedtobederivedfrom thebacterialcommunity.48

Other abundantgenera associated withUtricularia from

SPwerePelomonasandMicrobacterium,whichhavealsobeen

reportedasbeneficialbacteriatohostplants.Pelomonasspp. isolatedfromindustrialwaterorfromhumicandoligotrophic lakesareabletofixnitrogenandreducenitrate45,49;theycan

alsobeinvolvedinthebioremediationprocessbecausethey degradearomaticcompounds. Microbacteriumisolated endo-phytically and from the plant rhizoplane are also able to fixnitrogen,50solubilizephosphate,oxidizesulphur,reduce

nitrate and produce bothindoleacetic acid (IAA) and ACC deaminase(associatedwithstressreductioninplantsbythe inhibitionofethylenesynthesis),showingtheirpotentialto promoteplantgrowth.51

TheBacillusspp.foundinbothlibraries(SPandMT)also haveplantbeneficialcharacteristics,suchasthepresenceof thenitratereductaseenzymeandthepotentialtoinhibit sev-eralphytopathogenicfungi(forexample,Alternariaalternata,

(7)

Fig.6–PhenetictreerepresentingthecultivableAcidobacteriafoundinassociationwithutriclesofU.breviscapafromSP usingNeighborJoiningmethodinMEGA5software.Numbersabovethebranchesindicatesbootstrapvalues.Brachyspira

specieswereusedasoutgroup.

capsiciandRhizoctoniasolani),demonstratingtheirimportant roleinhostplantdefense.52

Furthermore,SPplantspresentedexclusivegroups,such astheActinobacteriathatwereisolatedfromstolonsand utri-cles,confirmingthespecificitydependentonthegeographic location from which the plants were collected. However, despitepresentingsimilarlibrarieswithnodifferenceinthe Libshuffsignificancetest,plantorganscanalsoselecta bacte-rialgroup,suchasthephylaAcidobacteriaandBacteroidetes, whichwere foundonlyin utriclesfrom plantscollected in

SãoPauloandMatoGrosso,respectively(Fig.4).Theseresults supportthehypothesisthatplantsselectthebacterial com-munities associatedwithstolonsandutriclesbased onthe availablecommunity present intheirsurrounding environ-ment.

Anotherimportantpointweneedtoaddressisthe utri-cleisolatesthatbelongtotheAcidobacteriagroup,identified as thegenus Terriglobusalbidus (99%similarity), agenusof fastidiousgrowth(Fig.6).PhylumAcidobacteriaisoneofthe mostabundantinsoils,anditsmembershavebeenfoundby

(8)

cultivationindependentmethodsinmanytypesof environ-ments.Acidobacteriaisknowntobeabundantintrapfluid, andsomespeciesareknowntoliveinacidicenvironments.53

Sirováetal.17showedthatthetrapfluidpHislowinU. vul-garis,rangingfrompH4.2to5.1accordingtothetrapage,and thiscouldbecorrelatedwiththephosphataseactivityinside thetrap.

However,membersoftheAcidobacteriagrouphaveproven difficulttoisolateandcultivateunderlaboratoryconditions, andtherearestillfewspecieswithvalidnames,andfeware welldefined;amongthemaremembersofthegenera Acidobac-terium,Acanthopleuribacter, Bryobacter, Edaphobacter,Geothrix, Granulicella,HolophagaandTerriglobus.54,55Terriglobussp.was

previouslyisolatedfromwater56andfromspecificsoil

con-ditions,suchasdesertsoils,57 arctictundrasoils58 andthe

rhizosphereofamedicinalplant.59 T.albiduswasdescribed

in201560isolatedfromasemiaridsavannahsoilcollectedin

northernNamibia,howeverthepresentworkpresentthefirst reportofcultivablebacteriabelongingtothisgenusisolated inassociationwithacarnivorousplant.

Caravieri et al.,18 using culture-independent methods,

reportedthatAcidobacteriumwasoneofthedominant gen-erainassociationwithU.hydrocarpa.Thereareadvantagesin retrievinganAcidobacteriumisolateduetoitsbiotechnological applications,suchastheproductionofanextracellularmatrix thatapparently facilitatesthe flocculationofcellsinliquid media.61 Therefore,ourresearchgroup iscurrently

investi-gatingthebiotechnologicalpotentialoftheseAcidobacterium

isolates.

Conclusions

TheresultsshowthatthebacterialdiversityofU.breviscapa

variedaccordingtotheisolationlocation(SãoPauloandMato Grosso)ratherthanorgans.Thisisalsothefirstreportofan Acidobacteria(Terriglobusgenus)isolatedinassociationwith utriclesofU.breviscapa.Theroleofthesebacteriainsidethe utriclesandstolonsmustbefurtherinvestigatedinorderto understandtheirpopulationdynamicswithinthehostplant.

Conflicts

of

interest

Declarationsofinterest:none

r

e

f

e

r

e

n

c

e

s

1.KrólE,PłachnoBJ,AdamecL,StolarzM,DziubinskaH,

TrebaczK.Quiteafewreasonsforcallingcarnivores‘the

mostwonderfulplantsintheworld’.AnnBot.2011;109:47–64.

2.EllisonAM,GotelliNJ.Energeticsandtheevolutionof

carnivorousplants-Darwin’s‘mostwonderfulplantsinthe

world’.JExpBot.2009;60:19–42.

3.ReifenrathK,TheisenI,SchnitzlerJ,PorembskiS,Barthlott

W.TraparchitectureincarnivorousUtricularia

(Lentibulariaceae).Flora.2006;201:597–605.

4.GivnishTJ.Newevidenceontheoriginofcarnivorousplants.

ProcNatlAcadSciUSA.2015;112:10–11.

5.AdamecL.Mineralnutritionofcarnivorousplants.BotRev.

1997;63:273–299.

6.EllisonAM,GotelliNJ.Evolutionaryecologyofcarnivorous

plants.TrendsEcolEvol.2001;16:623–629.

7.TaylorP.ThegenusUtricularia.In:Ataxonomicmonograph.

KewbulletinadditionalseriesXIV.RoyalBotanicGardens.

Londres:Kew;1989:668–671.

8.PoppingaS,DaberLE,WestermeierAS,etal.Biomechanical

analysisofpreycaptureinthecarnivorousSouthern

bladderwort(Utriculariaaustralis).SciRep.2017;7:1776.

9.PłachnoBJ,AdamecLL,LichtscheidlIK,PeroutkaM,

AdlassnigW,VrbaJ.Fluorescencelabellingofphosphatase

activityindigestiveglandsofcarnivorousplants.PlantBiol.

2006;8:813–820.

10.ChaseMW,ChristenhuszMJM,SandersD,FayMF.Murderous

plants:VictorianGothic,Darwinandmoderninsightsinto

vegetablecarnivory.BotJLinnSoc.2009;161:329–356.

11.AdlassnigW,PeroutkaM,LendlT.Trapsofcarnivorous

pitcherplantsasahabitat:compositionofthefluid,

biodiversityandmutualisticactivities.AnnBot.

2011;107:181–194.

12.BordiecS,PaquisS,LacroixH,etal.Comparativeanalysisof

defenceresponsesinducedbytheendophyticplant

growth-promotingrhizobacteriumBurkholderiaphytofirmans

strainPsJNandthenon-hostbacteriumPseudomonassyringae

pv.pisiingrapevinecellsuspensions.JExpBot.

2011;62:595–603.

13.McinroyJA,KloepperJW.Surveyofindigenousbacterial

endophytesfromcottonandsweetcorn.PlantSoil.

1995;173:337–342.

14.McinroyJA,KloepperJW.Populationdynamicsofendophytic

bacteriainfield-grownsweetcornandcotton.CanJMicrobiol.

1995;41:895–901.

15.RyanRP,GermaineK,FranksA,RyanDJ,DowlingDN.

Bacterialendophytes:recentdevelopmentsand

applications.FEMSMicrobiolLett.2008;278:1–9.

16.SessitschA,KuffnerM,KiddP,etal.Theroleof

plant-associatedbacteriainthemobilizationand

phytoextractionoftraceelementsincontaminatedsoils.Soil

BiolBiochem.2013;60:182–194.

17.SirováD,BorovecJ,CernaB,RejmánkováE,AdamecL.

Microbialcommunitydevelopmentinthetrapsofaquatic

Utriculariaspecies.AquatBot.2009;90:129–136.

18.CaravieriFA,FerreiraAJ,FerreiraA,ClivatiD,MirandaVFO,

AraújoWL.Bacterialcommunityassociatedwithtrapsofthe

carnivoralplantsUtriculariahydrocarpaandGenliseafiliformis.

AquatBot.2014;116:8–12.

19.PłachnoB,ŁukaszekM,WołowskiK,AdamecL,StolarczykP.

AgingofUtriculariatrapsandvariabilityofmicroorganisms

associatedwiththatmicro-habitat.AquatBot.2012;97:44–48.

20.Kuklinsky-SobralJ,AraújoWL,MendesR,Pizzirani-Kleiner

AA,AzevedoJL.Isolationandcharacterizationofendophytic

bacteriafromsoybean(Glycinemax)growninsoiltreated

withglyphosateherbicide.PlantSoil.2005;273:91–99.

21.AraújoWL,MarconJ,MaccheroniWJr,vanElsasJD,van

VuurdeJW,AzevedoJL.Diversityofendophyticbacterial

populationsandtheirinteractionwithXylellafastidiosain

citrusplants.ApplEnvironMicrobiol.2002;68:4906–4914.

22.HeuerH,KrsekM,BakerP,SmallaK,WellingtonEMH.

Analysisofactinomycetecommunitiesbyspecific

amplificationofgenesencoding16SrRNAand

gel-electrophoreticseparationindenaturinggradients.Appl

EnvironMicrobiol.1997;63:3233–3241.

23.LaneDJ,PaceB,OlsenGJ,StahlDA,SoginML,PaceNR.

Rapid-determinationof16SribosomalRNAsequencesfor

phylogeneticanalyses.ProcNatlAcadSciUSA.

1985;82:6955–6959.

24.DouradoMN,AndreoteFD,Dini-AndreoteF,ContiR,Araújo

JM,AraújoWL.Analysisof16SrRNAandmxaFgenes

revealinginsightsintoMethylobacteriumniche-specificplant

(9)

25.SangerF,NicklenS,CoulsonAR.DNAsequencingwith

chain-terminatinginhibitors.ProcNatlAcadSciUSA.

1977;74:5463–5467.

26.SchlossPD,WestcottSL,RyabinT,etal.Introducingmothur:

open-source,platform-independent,community-supported

softwarefordescribingandcomparingmicrobial

communities.ApplEnvironMicrobiol.2009;75:7537–7541.

27.ThompsonJD,HigginsDG,GibsonTJ.ClustalW:improving

thesensitivityofprogressivemultiplesequencealignment

throughsequenceweighting,position-specificgappenalties

andweightmatrixchoice.NuclAcidRes.1994;22:4673–4680.

28.JukesTH,CantorCR.Evolutionofproteinmolecules.In:

MunroHN,ed.Mammalianproteinmetabolism.NewYork,USA:

AcademicPress;1969:21–132.

29.TamuraK,PetersonD,PetersonN,StecherG,NeiM,Kumar

S.MEGA5:molecularevolutionarygeneticsanalysisusing

maximumlikelihood,evolutionarydistance,andmaximum

parsimonymethods.MolBiolEvol.2011;28:2731–2739.

30.LetunicI,BorkP.InteractiveTreeOfLife(iTOL):anonlinetool

forphylogenetictreedisplayandannotation.Bioinformatics.

2007;23:127–128.

31.BasualdoCV.Choosingthebestnon-parametricrichness

estimatorforbenthicmacroinvertebratesdatabases.RevSoc

EntomolArgent.2011;70:27–38.

32.HortalJ,BorgesPA,GasparC.Evaluatingtheperformanceof

speciesrichnessestimators:sensitivitytosamplegrainsize.

JAnimEcol.2006;75:274–287.

33.FridayLE.RapidturnoveroftrapsinUtriculariavulgarisL.

Oecologia.1989;80:272–277.

34.PlachnoBJ.ThecarnivorousplantsandCharlesDarwin–a

storyaboutbeautifulfascination.In:ZarzyckiK,MirekZ,

KorzeniakU,eds.KarolDarwinwoczachpolskichbotaników

XIX–XXIw.PANIBKraków;2010.

35.AlcarazLD,Martínez-SánchezS,TorresI,Ibarra-LacietteE,

Herrera-EstrellaL.ThemetagenomeofUltriculariagibba’s

traps:intothemicrobialinputtoacarnivorousplant.PLOS

ONE.2016;11:1–21.

36.PitschG,AdamecL,DirrenS,etal.ThegreenTetrahymena

utriculariaen.sp.(Ciliophora,Oligohymenophorea)withits

endosymbioticalgae(Micractiniumsp.),livingintrapsofa

carnivorousaquaticplant.JEukaryotMicrobiol.

2017;64:322–335.

37.AdamecL.Thesmallestbutfastest.Ecophysiological

characteristicsoftrapsofaquaticcarnivorousUltricularia.

PlantSignalBehav.2011;6:640–646.

38.LaqueT,FarjallaVF,RosadoAS,EstevesFA.Spatiotemporal

variationofbacterialcommunitycompositionandpositive

controllingfactorsintropicalshallowlagoons.MicrobEcol.

2010;59:819–829.

39.KoopmanMM,FuselierDM,HirdS,CarstensBC.The

carnivorouspalepitcherplantharborsdiverse,distinct,and

time-dependentbacterialcommunities.ApplEnviron

Microbiol.2010;76:1851–1860.

40.LeysNMEJ,RyngaertA,BastiaensL,VerstraeteW,TopEM,

SpringaelD.Occurrenceandphylogeneticdiversityof

Sphingomonasstrainsinsoilscontaminatedwithpolycyclic

aromatichydrocarbons.ApplEnvironMicrobiol.

2004;70:1944–1955.

41.KhanAL,WaqasM,KangS,etal.Bacterialendophyte

Sphingomonassp.LK11producesgibberellinsandIAAand

promotestomatoplantgrowth.JMicrobiol.2014;52:689–695.

42.PrajapatiVD,JaniGK,ZalaBS,KhutliwalaTA.Aninsightinto

theemergingexopolysaccharidegellangumasanovel

polymer.CarbohydPolym.2013;93:670–678.

43.SchultheisE,DregerMA,NimtzM,WrayV,HempelDC,

NörtemannB.Structuralcharacterizationofthe

exopolysaccharidePS-EDIVfromSphingomonaspituitosas

trainDSM13101.ApplMicrobiolBiotechnol.2008;78:1017–1024.

44.YegorenkovaIV,TregubovaKV,IgnatovVV.Paenibacillus

polymyxaRhizobacteriaandtheirsynthesizedexoglycansin

interactionwithwheatrootscolonization.CurrMicrobiol.

2013;66:481–486.

45.LauH,FarynaJ,TriplettEW.Aquitaleamagnusoniigen.nov.,

sp.nov.,anovelGram-negativebacteriumisolatedfroma

humiclake.IntJSystEvolMicrobiol.2006;56:867–871.

46.SedlacekJ,KwonSW,SvecP,etal.Aquitaleapelogenessp.nov.,

isolatedfrommineralpeloid.IntJSystEvolMicrobiol.

2015;66:962–967.

47.WooHL,HazenTC,SimmonsBA,DeAngelisKM.Enzyme

activitiesofanaerobiclignocellulolyticbacteriaisolatedfrom

wettropicalforestsoils.SystApplMicrobiol.2010;37:60–67.

48.SirováD,AdamecL,VrbaJ.Enzymaticactivitiesintrapsof

fouraquaticspeciesofthecarnivorousgenusUtricularia.

NewPhytol.2003;159:669–675.

49.GomilaM,BowienB,FalsenE,MooreERB,LalucatJ.

DescriptionofPelomonasaquaticasp.nov.andPelomonas

puraquaesp.nov.,isolatedfromindustrialandhaemodialysis

water.IntJSystEvolMicrobiol.2007;57:2629–2635.

50.ZakhiaF,JederH,WillemsA,GillisM,DreyfusB,LajudieP.

Diversebacteriaassociatedwithrootnodulesof

spontaneouslegumesinTunisiaandfirstreportfornifH-like

genewithinthegeneraMicrobacteriumandStarkeya.Microb

Ecol.2006;51:375–393.

51.MadhaiyanM,PoonguzhaliS,LeeJ,LeeK,SaravananVS,

SanthanakrishnanP.Microbacteriumazadirachtaesp.nov.,a

plantgrowth-promotingActinobacteriumisolatedfromthe

rhizoplaneofneemseedlings.IntJSystEvolMicrobiol.

2010;60:1687–1692.

52.ZhaoZ,WangaQ,WangK,BrianK,LiuC,GuY.Studyofthe

antifungalactivityofBacillusvallismortisZZ185invitroand

identificationofitsantifungalcomponents.BioresourTechnol.

2010;101:292–297.

53.TakeuchiY,ChaffronS,SalcherMM,etal.Bacterialdiversity

andcompositionintheluidofpitcherplantsofthegenus

Nepenthes.SystApplMicrobiol.2015;38:330–339.

54.EichorstSA,KuskeCR,SchmidtTM.Influenceofplant

polymersonthedistributionandcultivationofbacteriain

thephylumAcidobacteria.ApplEnvironMicrobiol.

2010;77:586–596.

55.OkamuraK,KawaiA,YamadaT,HiraishiA.Acidipilarosea

gen.nov.,sp.nov.,anacidophilicchemoorganotrophic

bacteriumbelongingtothephylumAcidobacteria.FEMS

MicrobiolLett.2011;317:138–142.

56.BaikKS,ChoiJS,KwonJ,etal.Terriglobusaquaticussp.nov.,

isolatedfromanartificialreservoir.IntJSystEvolMicrobiol.

2013;63:4744–4749.

57.AbedRM,Al-KindiS,Al-KharusiS.Diversityofbacterial

communitiesalongapetroleumcontaminationgradientin

desertsoils.MicrobEcol.2015;69:95–105.

58.RawatSR,MännistöMK,BrombergY,HäggblomMM.

Comparativegenomicandphysiologicalanalysisprovides

insightsintotheroleofAcidobacteriainorganiccarbon

utilizationinArctictundrasoils.FEMSMicrobiolEcol.

2012;82:341–355.

59.WhangKS,LeeJC,LeeHR,HanSI,ChungSH.Terriglobustenax

sp.nov.,anexopolysaccharide-producingAcidobacterium

isolatedfromrhizospheresoilofamedicinalplant.IntJSyst

EvolMicrobiol.2014;64:431–437.

60.PascualJ,WustPK,GeppertA,FoeselBU,HuberKJ,

OvermannJ.Terriglobusalbidussp.nov.,amemberofthe

familyAcidobacteriaceaeisolatedfromNamibiansemiarid

savannahsoil.IntJSystEvolMicrobiol.2015;65:3297–3304.

61.EichorstSA,BreznakJA,SchmidtTM.Isolationand

characterizationofsoilbacteriathatdefineTerriglobusgen.

nov.,inthephylumacidobacteria.ApplEnvironMicrobiol.

Referências

Documentos relacionados

Therefore, by employing different microscopy techniques, the present study was undertaken to identify, examine and compare the structure of the nematocysts isolated

Given the above, this study addressed the isolation of diazotrophic bacteria from sludge of treated wastewater from a poultry slaughterhouse and quantification in different

So, we study different restart strategies associated with a backtrack search algorithm with domain splitting, and information from nogoods in the variable

Para determinar o teor em água, a fonte emite neutrões, quer a partir da superfície do terreno (“transmissão indireta”), quer a partir do interior do mesmo

A partir da segunda semana, prestaremos assistência direta e globalizada a dois pacientes diariamente até sua al. ta

Os centros históricos servem para atribuir identidade e permitem diferenciar as cidades, ao constituir espaços do passado e, em grande medida também, a memória coletiva de

Conclui-se que as principais repercussões relacionadas aos custos familiares diretos, indiretos e intangíveis, com o cuidado do idoso dependente pela DA no domicílio, estão