• Nenhum resultado encontrado

Enhancement of p-nitrophenol adsorption capacity throughN2-thermal-based treatment of activated carbons

N/A
N/A
Protected

Academic year: 2021

Share "Enhancement of p-nitrophenol adsorption capacity throughN2-thermal-based treatment of activated carbons"

Copied!
11
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Applied

Surface

Science

j o u r n a l ho me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

Enhancement

of

p-nitrophenol

adsorption

capacity

through

N

2

-thermal-based

treatment

of

activated

carbons

S.

Álvarez-Torrellas

a,b,∗

,

M.

Martin-Martinez

b

,

H.T.

Gomes

b

,

G.

Ovejero

a

,

J.

García

a,b

aGrupodeCatálisisyProcesosdeSeparación(CyPS),DepartamentodeIngenieríaQuímica,FacultaddeCienciasQuímicas,UniversidadComplutensede

Madrid,Avda.Complutenses/n,28040Madrid,Spain

bLaboratoryofSeparationandReactionEngineeringLaboratoryofCatalysisandMaterials(LSRE-LCM),DepartmentofChemicalandBiological

Technology,SchoolofTechnologyandManagement,PolytechnicInstituteofBraganc¸a,CampusdeSantaApolónia,5300-253Braganc¸a,Portugal

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received27December2016

Receivedinrevisedform27February2017 Accepted6April2017

Availableonline14April2017 Keywords: Activatedcarbon Adsorption Fixed-bedcolumn 4-Nitrophenol

a

b

s

t

r

a

c

t

Inthisworkseveralactivatedcarbonsshowingdifferenttexturalandchemicalpropertieswereobtained

bychemicalandphysicalactivationmethods,usingalignocellulosicmaterial(peachstones)asprecursor.

Theactivatedcarbonresultingfromthechemicalactivation,namelyasCAC,revealedthebesttextural

properties(SBET=1521m2g−1,porevolume=0.90cm3g−1)andanacidiccharacter.Itwasfoundthatthe

activatedcarbonobtainedat300◦C(underairatmosphere,PACair),andthosesynthesizedat750◦Cin

presenceofN2flowwithbubblingofwater/12MH3PO4solution(PACN2(H2O)/PACN2(H3PO4)),

respec-tively,revealedworsetexturalproperties,comparedtoCAC.Twofunctionalizationtreatments,byusing

sulphuricacidatboilingtemperature(PACS)andnitricacid-urea-N2heatingat800◦C(PAC-NUT),were

appliedtoPACair,inordertoenhancetheadsorptionabilityofthecarbonmaterial.Severaltechniques

werecarriedouttocharacterizethephysicalandchemicalpropertiesoftheobtainedcarbonmaterials.

Themodificationtreatmentshadinfluenceon thecarbonsurface properties,sincethe nitric

acid-urea-N2heatingtreatmentledtoacarbonmaterialwithhighly-improvedproperties(SBET=679m2g−1,

pHIEP=5.3).

Accordingly,theoriginaland modified-carbonmaterialsweretestedasadsorbentstoremove

4-nitrophenol(4-NP),assessingbatchandfixed-bedcolumnadsorptiontests.PAC-NUTcarbonofferedthe

bestadsorptionbehavior(qe=234mgg−1),showingahighabilityfortheremovalof4-NPfromwater.

©2017ElsevierB.V.Allrightsreserved.

1. Introduction

Nitro-aromaticcompoundsareaclassofcompoundswithone

ormorenitrosubstituents.Amongthem,4-nitrophenol(4-NP)isa

hazardouspollutantmainlyproducedduringchemicalprocesses,

suchaspetrochemicalmanufacturing,oilrefining,rubber,wood

preservationoperations, pulpand papermills aswellas inthe

productionofpesticides,paintsandplastics[1].Thepresenceof

phenolanditsderivativesintheaquaticenvironmenthasbecome

agreatconcerninrecentyearsduetotheirincreasingdischarge,

toxicnatureandpotentialadverseeffectsonthereceivingwater

bodies[1,2].

∗ Correspondingauthorat:GrupodeCatálisisyProcesosdeSeparación(CyPS), DepartamentodeIngenieríaQuímica,FacultaddeCienciasQuímicas,Universidad ComplutensedeMadrid,Avda.Complutenses/n,28040Madrid,Spain.

E-mailaddresses:satorrellas@ucm.es(S.Álvarez-Torrellas), mariamartin@ipb.pt(M.Martin-Martinez),htgomes@ipb.pt(H.T.Gomes), govejero@ucm.es(G.Ovejero),jgarciar@ucm.es(J.García).

Phenoliccompoundsareknowntohaveatoxiceffectonaquatic

life,plantsandevenhumanhealth.Ingestionofphenolata

concen-trationlevelof10–240mgL−1foralongperiodcausesmouthsores,

diarrhea,excretionofdarkurineandimpairedvision.Accordingly,

thelethalbloodconcentrationforphenolisaround4.7–130mgL−1.

Duetoitstoxicity,evenatlowconcentrations,phenolic

com-pounds have been classified as priority pollutants by the U.S.

EnvironmentalProtectionAgency(EPA).Pertherecommendation

oftheWorldHealthOrganization(WHO),thethreshold

concen-trationofphenolindrinkingwatershouldfallbelow1.0␮gL−1.

Therefore,theUSEPArecommendsamaximumlevelof1␮gmL−1

oftotalphenoliccompoundsinwatersupplies.

Due toits harmful effects, wastewaters containing phenolic

compoundsshouldbespecificallytreatedbeforebeingdischarged

tothereceivingwaterbodies.

Thetertiarytreatmentsfortheremovalofpersistentpollutants

from wastewater include advanced oxidation processes (AOPs)

withtheirvariations(ozone,ultravioletradiation,gamma

radia-tion),membranebioreactors,micro/nanofiltrationandadsorption

http://dx.doi.org/10.1016/j.apsusc.2017.04.054 0169-4332/©2017ElsevierB.V.Allrightsreserved.

(2)

S.Álvarez-Torrellasetal./AppliedSurfaceScience414(2017)424–434 425 [3,4].Adsorptionisaneffectiveseparationprocessduetoits

sim-pledesign,operationflexibility,suitabilityforbatchandcontinuous

mode,possibilityofregenerationandreuseofthesaturated

adsor-bents and low capital costs [5]. Theselection of the adsorbent

foreachspecificapplicationisacriticalaspectintheadsorption

processes.Zeolites,duetotheirrelativelyhighsurfaceareaand

tailored-porosity (micro, meso and macro pores) have

demon-stratedusefulnessasadsorbentmaterialsfortheremovaloforganic

pollutants [6]. Accordingly, metal oxides, such as MnO, have

beenwidelyusedforthedepletionofhazardousandundesirable

compoundsfromwastewater.Therefore, metaloxidesareoften

characterizedbysmallspecificsurfacearea,andconsequently,they

couldbemodifiedbyseveraltreatmentsinordertoobtain

bet-teradsorptionproperties.Forexample,MnxOy-SiO2mixedoxides

materialsshowbettertexturalpropertiesandadsorptionaffinity

thanmanganeseoxides,exhibitinghigheradsorptioncapacity[7].

In general,activatedcarbonsoffera highadsorption

perfor-manceforawiderangeoforganicandinorganicpollutantsdueto

theirhighsurfaceareaandporevolume[8].Low-cost,quite

abun-dance,renewability,andhighlignocellulosiccontentofagricultural

biomassmakethempromisingprecursorsforcost-effective

acti-vatedcarbons[9].Awidenumberoflignocellulosicresidues,such

asbamboo,wood,nuts,sawdust,cherrystones,ricehusk,peach

stones[10],coffee wastes,potato peels,almondshells[11] and

peanutshells[10,11],amongmanyothers,areofparticular

inter-estas by-productsfromfood processingindustries, in orderto

obtainactivatedcarbonswithgoodmechanicalstrengthanda

well-developedporousstructure.

Physicalandchemicalmethodshavebeenadoptedforthe

con-versionofthesebiomasswastestoactivatedcarbons[12].Physical

activationinvolvesthepyrolysisofthecarbonaceousprecursorat

hightemperaturesfollowedbyactivationofthecharinthe

pres-enceofanoxidizinggas(CO2orwatersteam)[13,14].Inchemical

activation,therawmaterialisfirstlyimpregnatedwithstrong

acti-vatingagentssuchasZnCl2,H2SO4,NaOH,K2CO3,H3PO4,KOH,

among others, followed by thermal activation at temperatures

rangingfrom400to600◦C[15].

Inthechemicalactivationmethod,thedehydratingeffectofthe

activatingagent,forexample,H3PO4solution,hindersthe

forma-tionoftar,leadingtohigheryieldandthepossibilitytouselow

activationtemperaturestoproducehighergradecarbons[16].Both

inphysicalandchemicalreactions,itisnecessarytheactivation

steptoenhancetheporevolume,porediameterandsurfacearea

oftheresultingmaterial[17].Ingeneral,longeractivationtimesare

favorableforthedevelopmentofhighermicroporosityandspecific

surfacearea.

Thetexturalandchemical propertiesoftheactivatedcarbon

mainlyconditionthespecificapplicationandtheresultsobtained.

Generally,forliquid-phaseadsorption,ahighsurfaceareais

desir-able and a mesoporous texture enhances the diffusion of the

pollutantwithintheporousstructureoftheadsorbent[18].

Inthepresentwork,activatedcarbonsfrompeachstoneshave

beenpreparedasfollows:(i)chemical activation:impregnation

with12MH3PO4(s)andfurtherthermaltreatment(400◦C,4h,air

flow);theresultingmaterialwasnamedasCAC;(ii)physical

acti-vationby thefollowing methods:(1)activation inN2 presence

(800◦C,4h)followedbytreatmentinairflow(300◦C,1h);

car-bonnamelyasPACair;(2)activationunderN2atmosphere(600◦C,

1h)and furtherunder N2 saturatedin H2O(750◦C,6h);

mate-rialnamelyasPACN2(H2O);(3)activationunderinertatmosphere

(600◦C,1h)andsubsequentlyitwasannealedinN2saturatedwith

12MH3PO4(s)(750◦C,6h);theresultingmaterialwasnamedas

PACN2(H3PO4).Additionally,PACairwasfunctionalizedinorder

toenhancetheadsorptionabilityofthecarbonmaterial.The

car-bonwastreatedwithconcentratedH2SO4 solution(200◦C,3h),

resultinginPACSactivatedcarbon.Accordingly,thebasic

function-alizationtoobtainPAC-NUTcarbonconsistedofthetreatmentof

PACairwith5MHNO3(s)(83◦C,3h),furtheritwastreatedwith1M

ureasolutionatautogenouspressure(200◦C,2h)andtheresulting

materialwasannealedat800◦Cfor4h.

Thetextural,chemicalandmorphologicalpropertiesofallthe

testedcarbonmaterialswerestudied.Theywerefurthertestedas

adsorbentsregardingkineticandequilibrium4-NPadsorptiontests

bothinbatchandfixed-bedcolumnoperation.

2. Experimental

2.1. Reactants

Peachstoneswerecollectedfromalocalagriculturalcompany,

producingpeachcansinsyrup,beingthefruitstonesabiomass

wastedailyoriginated.

4-Nitrophenol(4-NP,O3NC6H5,98wt.%)and phosphoricacid

(85wt.%) were purchased from Sigma–Aldrich. Sulphuric acid

(98wt.%)wasobtainedfromPanreac.Nitricacid(69.5wt.%)and

acetonitrile (HPLC grade) were provided by Carlo Erba. Urea

(65wt.%)was purchased fromRiedel-de-Haën. Methanol (HPLC

grade) and glacial acetic acid (analytical reagent grade) were

obtainedfromFisherchemical.Allreagentswereusedasreceived.

Ultrapurewaterwasusedthroughouttheresearch.

2.2. Preparationoftheactivatedcarbons

Inthechemicalactivationmethod,firstly,animpregnationstep

wascarriedoutplacing30gofprecursor(0.5–1.0mm)with12M

H3PO4(s)inaround-bottomflaskreactorat85◦Cfor6h.Afterthat,

thesolidwasfilteredandcarbonizedinaverticalquartzreactor

under flowing air (50cm3min−1) at400C for 4h(5Cmin−1).

Theresultingcarbonwasthoroughlywashedseveraltimeswith

ultrapurewateruntilapHclosetoneutralitywasreached.Then,

theactivatedcarbonwasdriedovernightanditwassievedatthe

requiredparticlesizerange(100–250␮m)[19].Theresulting

mate-rialwasnamelyasCAC.

Physicalactivation methodin ordertoobtainPACair

mate-rialwascarriedoutasfollows,adaptingthemethoddevelopedby

Ribeiroetal.[20]:30gofprecursorwasannealed(100cm3min−1)

inaverticalquartzreactorat120,400and600◦Cduring1hateach

temperature,andfinallyat800◦Cfor4h(2◦Cmin−1).Theresulting

materialwasfurtheractivatedunderairflow(100cm3min−1)for

1hat300◦C.

Finally, PACN2(H2O) and PACN2(H3PO4) activated carbons

were obtainedas thefollowing method: 30g of precursor was

heatedunderN2flow(100cm3min−1)fromroomtemperatureto

600◦Candmaintainedfor1h(5◦Cmin−1).Theactivationofthe

obtainedcharwascarriedoutat750◦C(15◦Cmin−1)underN2

sat-uratedwithwateror12MH3PO4(s),maintainingthetemperature

for6h[21].

2.3. Modificationoftheactivatedcarbon

PACairactivatedcarbonwasmodifiedbytwofunctionalization

treatmentsinordertostudythebehaviorofthemodifiedmaterials

on4-NPadsorption,followingtheproceduresreportedelsewhere

byGomesetal.andRochaetal.[22,23],respectively.

Firstly,asuspensioncontaining50gL−1ofPACairin

concen-trated H2SO4(s) (18M) was kept for 3h at 200◦C in a 250mL

round-bottomflask;theresultingsolidswerethoroughlywashed

withultrapurewateruntilneutralityandfurtherdriedinanoven

overnight.ThisactivatedcarbonwasnamelyasPACS.

In the second procedure, a suspension of PACair material

(50gL−1)wastreatedusing5MHNO3solutionfor3hatboiling

(3)

oftherinsingwatersandfurtherdriedovernight.2gofthis

mate-rialwasputincontactto50mLofureasolution(1M)ina125mL

stainlesssteelautoclavebatchreactorunderautogenouspressure

at200◦Cfor2h.Finally,athermaltreatmentwasappliedtothe

recoveredsolids,underN2flow(100cm3min−1)at120,400and

600◦Cduring1hateachtemperatureand800◦Cfor4h,resulting

inthefinalmaterial(PAC-NUT).

2.4. Characterizationoftheactivatedcarbons

2.4.1. Texturalcharacterization

The textural characterization of the activated carbons was

studied by N2 adsorption–desorption isotherms at 77K in a

Micromeritics ASAP 2020 equipment. The specific surface area

(SBET)wascalculatedbyusingBETequation[24]intherangeof

P/P0=0.05–0.15,externalsurfacearea(S

ext)wasestimatedbyt-plot

methodandDubinin–Radushkevichequationwasusedtocalculate

microporevolume(V0)[25].Mesoporevolumewasdetermined

bysubtractingthevalueofV0fromthetotalN2amountadsorbedat

P/P0=0.95[26].Poresizedistributions(PSD)ofthetestedcarbons

wereobtainedbydensityfunctionaltheory(DFT)method.

2.4.2. Surfacechemistrycharacterization

Chemicalsurface characterizationwas performedby Fourier

TransformedInfraredSpectroscopy(FTIR),usingaThermo

Nico-letFTIRspectrophotometer.Infraredspectrawererecordedin a

wavelengthrangerangingfrom400to4600cm−1.

Thepointofzerocharge(pHPZC)ofthesynthesizedactivated

carbonswasdeterminedfollowingapHtitrationprocedure.20mL

ofNaCl0.01Msolutionwaspouredintoseveral25mL-vessels.pH

withineach vesselwasadjustedtoavaluebetween2.5and 11

byadditionofHCl0.02MorNaOH0.02Msolutions.Then,0.05gof

samplewasaddedtothevesselsandtheywerelocatedinanorbital

shakerunderagitationat320rpm.ThefinalpHwasmeasuredafter

48h,usingacalibratedpHmeter(ModelGLP21;Crison

Instru-mentsSA;Barcelona,Spain)withanaccuracyof±0.01pH.ACrison

5015Telectrode,withtwoceramicdiaphragmswasused.pHPZC

valueisdefinedasthepointwherethepHfinalcurvevs.pH

ini-tialcrossesthemaindiagonaloftheplot[27].Theisoelectricpoint

(pHIEP)ofthesampleswasdeterminedbyelectrophoretic

migra-tionmeasurementsusingaZetasizerNanoZSequipment(Malvern

Instruments). A suspension of 0.050g of sample (10–20␮m of

particlesize)in20mLofultrapurewaterwasusedforthe

mea-surements.pHsolutionwasmodifiedwitheither0.1MHClorNaOH

solutions.pHIEPvaluewascalculatedbythegraphical

representa-tionofzetapotentialvaluesversuspHofsolution.

Elementalcompositionoftheactivatedcarbons(C,H,NandS,

%)wasdeterminedbyelementalmicroanalysisusingaLECO

CHNS-932analyzer.Activatedcarbonsample(0.6–1.6mg)washeldina

furnaceat1000◦C,wherethecombustionofthesampleoccurred.

Finally,thermogravimetricanalyses(TG)oftheactivatedcarbons

wereperformed.SamplesweremeasuredinanEXTAR6000Seiko

thermal analyzer,operating withN2 flow (100cm3min−1), and

heatingfrom35to900◦Cataheatingrateof10◦Cmin−1.

2.4.3. Morphologicalcharacterization

MorphologicalstudieswerecarriedoutwithaJEOLJSM6400

microscope,equipped witha thermoionic cathodeand a 25kV

detector.Previously,carbonsampleswerecoatedwithagoldlayer,

usingaBalzersSCD004apparatus,for180s.

2.5. Equilibriumadsorptionstudies

The adsorption rate and the equilibrium time are strongly

dependentontheadsorbent particlesize.The activatedcarbon

Fig.1.N2adsorption–desorptionisothermsat77Kofthetestedadsorbents.

samplesweregroundandsieved;onlythesizefractionsmaller

than100␮mwasusedintheadsorptionexperiments.

Inordertostudythekinetic4-NPadsorption,60mgof

adsor-bent was placed in contact to 25mL of contaminant solution

(C0=100mgL−1)inDeltalabplastic vessels inan orbitalshaker

(LabMate). Temperature and stirring ratewere constant in the

experiments(30◦C,250rpm).Attherequiredintervaltimes,the

vessels wereremoved, solutionwas filteredby using 0.45

␮m-nylonsyringefiltersand4-NPconcentrationwasanalyzedinaHigh

LiquidPressure chromatograph(Jasco),equipped witha UV/vis

detector (UV-2075Plus) and a quaternary gradient pump

(PU-2089 Plus) for solventdelivery. The analyses were carried out

usingaKromasil100-5-C18column(15cm×4.6mm;5␮m

par-ticlesize),workingatroomtemperature.Themobilephaseused

wasmethanol(3%aceticacid,1%acetonitrile):ultrapurewater(3%

aceticacid)(40:60,v/v)ataflowrateof1mLmin−1.

Intheequilibriumadsorptiontests,differentweightsof

adsor-bent(5–800mg)wereplacedincontactto25mLof4-NPsolution

(C0=100mgL−1)inaLabMateorbitalshaker(30◦C,250rpm).After

reachingthe equilibrium time, samples were filteredand

ana-lyzedasdetailedabove.Theanalyseswerecarriedoutinduplicate;

additionally,blanktestswereaccomplishedinordertoevaluate

possible contaminant removal by other mechanisms, obtaining

negativeresults.

2.6. Fixed-bedcolumnadsorptionexperiments

Adsorptiontestsin fixed-bed columnwere performedusing

glasstubesadaptedwithametalliclayeratthebottomassupport

oftheadsorbentandre-filledwithglassballsinordertoavoiddead

volumeandpreferentialchannelsinthebed.0.8gofPACair

car-bon(particlesize:106–250␮m)wasusedintheexperiments.4-NP

solution(C0=10.0mgL−1)waspumpedusingaperistalticpump

ata selectedvolumetric flow rate(Q=1.33and 2.50mLmin−1),

operatingindown-flowmode.1.5mLeffluentsampleswere

peri-odicallycollectedandanalyzedbyusinghighperformanceliquid

chromatography(HPLC),asdescribedabove.

3. Resultsanddiscussion

3.1. Characterizationoftheactivatedcarbons

3.1.1. Texturalcharacterizationoftheactivatedcarbons

N2adsorption–desorptionisothermsat77Kandporesize

(4)

S.Álvarez-Torrellasetal./AppliedSurfaceScience414(2017)424–434 427

Fig.2. Poresizedistributionsofthetestedadsorbents.

andFig.2,respectively.SBET,Sext,micropore(V0)andmesopore

(Vm)volumesweredetermined.

CACactivatedcarbon presented a highlydeveloped porosity

network of micropores in combination witha high percentage

ofmesopores,offeringmuchhigheramountofadsorbedN2than

thephysically-activated activatedcarbons,which canbe

classi-fiedasstrictlymicroporousmaterials.Thus,PACair,PACN2(H2O)

and PACN2(H3PO4) samples presented a strong microporous

nature, with lower SBET and Vm than CAC activated carbon

(SBET CAC/PACair=1521/412m2g−1; Vm=0.379/0.004cm3g−1)

(Table1).

CACN2adsorption–desorptionisothermcouldbeclassifiedas

Type I–IV, according to IUPAC classification [28], since a large

mesoporous percentage is contributing onits porousstructure.

Thepresenceofahysteresisloop(TypeH4)athighP/P0 values

(0.40–0.95)issuggestingtheexistenceofabundantmesoporosity,

associatedtocapillarycondensationoccurringinthemesopores.

Ontheotherhand,bothphysically-activatedcarbonsand

modified-materialsN2 adsorptionisothermscouldbeclassifiedasTypeI,

indicativeofstrictlymicroporousmaterials.

ThemesoporouscharacterofCACactivatedcarbonwas

con-firmed in the PSD diagrams (Fig. 2), showing a pore diameter

rangingfrom27to50 ˚A,whiletheothermicroporouscarbonshad

anaverageporediametersmallerthan15 ˚A.

Textural properties of PACS material were not modified in

a great extent, comparing to the original carbon (PACair).

Thus, an increasing in the specific surface area and pore

volume was observed in PAC-NUT carbon (SBET=679m2g−1,

VTotal=0.309cm3g−1)(Table1).Thisbehaviormaybeattributed

totheremovalofthemaincontainingoftheoxygenatedsurface

functionalities,increasingtheaccessiblecarbonsurfaceareaforN2

molecules[23].

3.1.2. Chemicalsurfacecharacterizationoftheactivatedcarbons

Thechemicalsurfacepropertiesofthetestedactivatedcarbons

werestudiedthroughelementalcomposition,FT-IR,pointofzero

charge(pHPZC)andisoelectricpoint(pHIEP)measurements.Both

pHPZCandpHIEPvaluesshowedthatCACactivatedcarbonpresents

highersurfaceaciditythanPACair,beingtheseresultsin

accor-dancetothoseobtainedintheelementalmicroanalysis(highO%

compositionandO/CratioofCACsample,thislatterindicativeof

thepolarityofthecarbonmaterials[29])(Table2).Accordingly,as

itcanbeexpected,resultsshowedthatPACN2(H3PO4)carbonis

offeringaslightlymoreacidiccharacterthanPACN2(H2O).Thus,

themodified-activatedcarbons(PACS,PAC-NUT)werethemost

acidicandbasiccarbons,respectively,obtainedinthisstudy(pHIEP

PACS/PAC-NUT=1.2/5.3).

Meanwhile,asithasbeenreportedbyLeónyLeónandRadovic

[30],thedifferenceobservedbetweenpHPZCandpHIEPvaluescould

beinterpretedasameasurementofthechargesdistributionatthe

carbonsurface.Positivevaluesof{pHPZC−pHIEP}areindicativeof

morenegativelychargedexternalthaninternalparticlesurfaces,

thisis,a heterogeneousdistributionofthesurfacecharges.This

wasobservedinallthetestedmaterials(Table2).

FT-IRspectraoftheactivatedcarbons(Fig.3aandb)revealed

theabsorptionbandscharacteristicof thecarbonaceous

materi-als.AbsorptionspectraofCACactivatedcarbon(Fig.3a)showthe

highestintensityintheabsorptionbands(phenolicandcarbonyl

groups),duetoitshighacidiccharacter,comparedtomorebasic

activatedcarbons(PACmaterials).Accordingly,FT-IRspectrumof

PACSshowedtheincorporationofahighamountofoxygenated

groupsonthecarbonaceoussurface.Lowintensityinthe

absorp-tionbandswasobservedinPAC-NUTFT-IRspectrum,attributedto

theremovalofahighquantityofoxygenated-functionalitiesduring

thethermaltreatment.

Theabsorptionbandat∼3400cm−1ischaracteristicoftheO H

stretchingvibration.Thus,thevibrationat1731cm−1(PACS)can

beattributedtotheC Ovibrationofcarbonylincarboxylicorester

groups.Thebandat1118cm−1couldbeassociatedtoC Obonding

andtheabsorptionpeaksat∼1340cm−1seemstoberesponsibleof

thelactonegroups,at∼1645cm−1totheconjugated C Ogroups

andat∼1560cm−1and1645cm−1tothecarbonatefunctionalities.

ThemaindifferencesfoundinFT-IRspectraofPACairandPACS

aremainlyobservedat3400,1731,1118and1340cm−1

absorp-tionbands.Theseresultsareinaccordancetothedatareported

intheliteratureaboutcharacterizationofactivatedcarbonsfrom

lignocellulosicwastes[31–33].

Inthethermogravimetricanalysisofthetestedcarbon

materi-als,showninFig.4,couldbeobservedamasslossduetowater

steamrangingfrom1.0to7.5%attemperaturelowerthan100◦C.

Bothphysically-activatedcarbonsandPAC-NUTexhibitedhigh

thermalstability,showingonlyamasslossintherangefrom4to

18%at900◦C,indicatingacompletedegradationofthe

lignocel-lulosicmaterialsduringthecarbonizationandfurtheractivation

procedures.Meanwhile, CAC andPACS materialsshoweda low

thermal stability, withmass lossupto 37.5and 47.5%,

respec-tively.Thiscouldbeattributedtothepresenceofacidsolutions

onthecarbonssurface,whichdecomposeatlowertemperatures

thanthoseattheacidicfunctionalitiesincorporatedintotheinner

porousstructureoftheothercarbons.Theseresultsarein

agree-Table1

Texturalproperties(specificsurfacearea,externalsurfacearea,totalporevolume,microporevolumeandmesoporevolume)ofthetestedcarbonaceousmaterials.

Carbon SBET(m2g−1) Sext(m2g−1) VTotal(cm3g−1) V0(cm3g−1) Vm(cm3g−1) Vm/VTotal

CAC 1521 1172 0.902 0.522 0.379 0.579 PACair 412 60 0.186 0.182 0.004 0.978 PACN2(H2O) 403 58 0.182 0.178 0.0038 0.978 PACN2(H3PO4) 428 57 0.191 0.189 0.002 0.990 PACS 401 62 0.181 0.177 0.004 0.978 PAC-NUT 679 110 0.309 0.297 0.012 0.961

(5)

Table2

Elementalmicroanalysis,pointofzerochargeandisoelectricpointofthetestedcarbonaceousmaterials.

Carbon N(%) C(%) H(%) O(%) S(%) O/Cratio pHPZC pHIEP {pHPZC−pHIEP}

CAC 0.33 68.70 3.91 27.04 0.02 0.394 4.3 1.9 2.4 PAC air 0.63 84.68 1.69 12.98 0.02 0.153 5.9 2.5 3.4 PACN2(H2O) 0.77 90.83 1.42 6.96 0.02 0.077 6.4 2.4 4.0 PACN2(H3PO4) 0.69 88.60 1.53 9.13 0.05 0.103 6.3 2.0 4.3 PACS 0.44 67.59 1.63 24.60 5.74 0.364 3.8 1.2 2.6 PAC-NUT 2.63 79.57 1.25 16.50 0.05 0.207 6.0 5.3 0.7

Fig.3. FTIRspectraofthetestedadsorbents.

Fig.4.TGanalysisofthetestedadsorbents.

menttothosereportedintheliteraturestudyingactivatedcarbons

obtainedfrombiomasswastes[34].

3.1.3. Morphologicalcharacterizationoftheactivatedcarbons

Themorphologicalpropertiesofthesynthesizedactivated

car-bonshave beenstudiedby SEMmicrographs(Fig.5),providing

complementaryinformationtothetexturalpropertiesofthe

mate-rials.

The more opened-porous structure of CAC activated carbon

(Fig.5a)canbeattributedtothewideporesizedistributionofthe

carbon,withahighquantityofporesinthemesoporousrange,in

accordancetothepreviousdiscussionabouttexturalproperties.On

theotherhand,asurfacedamage,maybeattributedtothesevere

treatmentconditions,couldbeobservedin SEMmicrographsof

PACSandPAC-NUT(Fig.5e–f,respectively).

3.2. Kineticadsorptiontests.Modelingoftheexperimentaldata

Kineticadsorption experimentswerecarried outin orderto

evaluatethekineticrateof4-NPadsorptionontothesynthesized

adsorbents.InFig.6isdepicted4-NPadsorptioncapacityversus

operationtime.

AdsorptionequilibriumontoCACactivatedcarbonwasattained

in8h,revealingthefastestkineticadsorptionamongthetested

systems.Thiscanbeattributedtoitsopened-texturalstructure,

highSBETandporesize,comparedtophysically-activatedcarbons.

Asithasbeenreportedintheliterature,4-NPisamoleculeshowing

highmobilityandsmallsize[35],obtaininghighadsorptionrates

ontohighsurfacearea-activatedcarbons.

Physically-activated carbons showed long equilibrium times

(48h)duetotheirstrongmicroporouscharacter,withhighly

nar-rowPSD andsmallporesize.ThetreatmentwithH2SO4 (PACS)

increasedtheacidicfunctionalitiescontentonthecarbonsurface,

mainlythiol,sulphoxideand/orsulphonegroups,which

decom-posereleasingSO2 species andprevailingovercarboxylicacids,

lactones,phenolandquinonegroups[36].Highhydrophilic

char-acterofPACScarbondisfavoredtheadsorptionof4-NP,suggesting

thatthecompetitionbetweenwaterandpollutantadsorbingin

pores is mainly responsible of the observed decreasing in the

adsorptioncapacity.Thisledtoaslowadsorptionrate(96h)anda

verylowaffinitytoward4-NPmolecule.

Generally,ithasbeenwidelyreportedintheliteraturethatbasic

carbonsshowhighaffinitytowardphenoliccompounds[37].Thus,

PAC-NUTshowedthebestadsorptionbehavior(q4-NP=35mgg−1at

equilibriumtimeof4h).Thetreatmentswithnitricacidand

subse-quentureasolutionoriginatedanincreasinginthenitrogencontent

andadecreaseoftheoxygenatedfunctionalitiesonthecarbon

sur-face,inferringthatsomecarboxylicacidgroupsweresuppressed

bytheincorporationofnitrogenfunctionalities(cyano oramine

groups).

Themodeling oftheexperimentalkineticdatawasassessed

byusingpseudo-first-orderandpseudo-secondorderequations.

Pseudo-firstorderorLagergren’smodel[38]isgivenbyEq.(1).

(6)

S.Álvarez-Torrellasetal./AppliedSurfaceScience414(2017)424–434 429

Fig.5.SEMmicrographsofthetestedactivatedcarbons:(a)CAC;(b)PACair;(c)PACN2(H2O);(d)PACN2(H3PO4);(e)PACS;(f)PAC-NUT.

whereqeandq(mgg−1)aretheequilibriumadsorptioncapacity

andtheadsorptioncapacityattimet,respectively;k1 (min−1)is

thepseudo-first-ordermodelrateconstant.

Pseudo-secondorderequation[39]isgivenbyEq.(2).

q= q2e·k2·t

1+qe·k2·t

(2)

where qe and q(mgg−1)are theequilibrium adsorption

capac-ity and the adsorption capacity at time t, respectively; k2

(gmg−1min−1)isthepseudo-second-orderrateconstant.

Thekineticparametersobtainedforbothmodels,andthe

cor-respondingcorrelationcoefficients(R2,SSE,Eq.(3)),thislatteras

thesumofthesquareoftheresidualsminimizedinthefittingof

thenon-linearizedequations,areshowninTable3.

SSE=



(qexp−qcal)2 (3)

whereqexpandqcalaretheexperimentalandcalculatedadsorption

capacityvalues,respectively.

Both pseudo-first order and pseudo-second order models

(7)

Table3

Kineticadsorptiondatapredictedbypseudo-firstorderandpseudo-secondordermodelsforadsorptionof4-NPbycarbonaceousmaterials.

Carbon Pseudo-firstorderkinetic Pseudo-secondorderkinetic

qeexp(mgg−1) qecal(mgg−1) k1(min−1) R2 SSE qecal(mgg−1) k2(gmg−1min−1) R2 SSE

CAC 27.3 27.3 0.205 0.9475 91.3 27.2 0.0061 0.9996 32.8 PACair 38.7 38.7 0.050 0.9386 521.5 38.6 0.0005 0.9988 259.5 PACN2(H2O) 38.3 38.3 0.034 0.9197 634.9 38.2 0.00043 0.9990 340.4 PAC N2(H3PO4) 38.1 38.1 0.031 0.9108 662.1 37.9 0.00042 0.9988 358.3 PACS 35.6 35.6 0.001 0.9203 621.3 33.3 8.7×10−5 0.9646 408.5 PAC-NUT 38.4 38.4 0.059 0.9754 60.4 38.3 0.0012 0.9999 24.0

Fig.6.Experimentaladsorptionkineticcurvesof4-NPontothetestedadsorbents.

valueswereobtainedforthepseudo-secondordermodel,

espe-cially high for the adsorption onto PAC-NUT activated carbon.

The literature establishes that the suitabilityof pseudo-second

ordermodelsuggestingthattheadsorptionprocessisgoverned

bychemisorptionforces, thatis, bytheestablishmentofvalent

bondsbetweensurfaceoftheadsorbentandadsorbate,asitwill

bediscussedfurther.

Ingeneral,pseudo-firstandpseudo-secondordermodelsaccord

tophysicalandchemicaladsorptiondomination,respectively,but

thedivisionbetweenthemisnotsoclearandfurtherstudiesare

necessarytodiscussthisaspect.

Similarresultshave beenfoundbyTangetal. [40]studying

theadsorptionof4-NPontocarbonfibersandbyAhmaruzzaman

andLaxmiGayatri[41]onthestudyof4-NPremovalbyactivated

carbonobtainedfromjutestick.

Attendingtotheexperimentalresults,texturalpropertiesofthe

testedcarbonsarenotseemhighlyinfluencingonthekineticrate;

so,itseemsthattheacidity/basicitypropertiesofthecarbon

mate-rialsplayacriticalroleontheadsorptionrate.Thus,pHIEPvaluesof

thephysically-activatedcarbonscanbecorrelatedtok1 constant

(Fig.7).

Fromthefigure,itcanbededucedthattheadsorptionrateis

stronglydependentonthechemicalsurfacepropertiesofthe

acti-vatedcarbon;thus,thedeterminedapparentrateconstantof4-NP

adsorptionontoPAC-NUTwas0.06min−1,whichis60timeshigher

thanthatachievedbyPACS.

3.3. Equilibriumadsorptiontests.Modelingoftheexperimental

data

Fromtheequilibriumadsorptiontestscouldbeinferredthatthe

surfacechemistryoftheactivatedcarbonsplaysanimportantrole

ontheadsorptionperformance,asdetailedabove.Theadsorption

Fig.7. Pseudo-firstkineticrateconstantsvs.isoelectricpointforthe physically-activatedcarbons(originalandmodifiedcarbons).

Fig.8. Experimentaladsorptionisothermsof4-NPontothetestedadsorbents.

isothermsofallthestudiedsystemscanbeclassifiedasL-3orIII

typeisotherms,accordingtoGilesclassification[42](Fig.8).

AtypeIIIisothermappearswhenthebindingenergyforthe

firstlayeris lower thanthe bindingenergy betweenadsorbate

molecules.Thisassumptionwillbeconfirmedbelowthroughthe

adsorptionmodelingoftheexperimentaldata.

Double–ormore–sigmoidadsorptionisothermsareindicating

thattheenergyofadsorptionisconcentrationdependent.So,itcan

beobservedasmallinitialplateaufollowedbyasuddenriseinthe

curveathigheraqueousconcentration[43].Thisriserepresentsa

reorientationoftheadsorbedmoleculesinadirectionofamore

(8)

S.Álvarez-Torrellasetal./AppliedSurfaceScience414(2017)424–434 431 Table4

BET,GAB,LangmuirandFreundlichmodelparametersfortheadsorptionof4-NPbycarbonaceousmaterials.

Carbon BETmodel GABmodel

qs(mgg−1) CBET(Lmg−1) Cs(mgL−1) SSE qm(mgg−1) K1(Lmg−1) K2(Lmg−1) SSE

CAC 19.4 40.9 55.4 1328 16.3 928.8 0.018 1945

PACair 38.4 683.6 40.0 1393 38.4 17.1 0.025 1393

PACN2(H2O) 14.6 5.3×105 37.4 4440 14.6 6534 0.026 4440

PAC N2(H3PO4) 7.0 5.3×105 36.7 5149 7.0 6536 0.027 5149

Carbon Langmuirmodel Freundlichmodel

qsat(mgg−1) b(Lmg−1) SSE KF(Lg−1) nF SSE

PAC-NUT 279.1 0.1 4484 60.6 2.7 2456

spaceforadsorption.Thisassumptionisinaccordancetothe

rela-tionbetween4-NPmolecularsize(0.684nm×0.417nm[44])and

theaverageporewidthofthetestedadsorbentmaterials.According

toPelekaniandSnoeyink[45],theaverageporesizeofthe

adsor-bentshouldbeabove1.2timesofthesecondwidestdimensionof

theadsorbatemoleculetoalloweffectiveadsorption.Inthiswork,

theporewidth-molecularsizeproportionwasfoundtobeinthe

rangefrom3to6.Sincetheoccurrenceofsterichindranceisnot

expectable,thereaccommodationoftheadsorbateinthewidest

poresisprobablygeneratingthesigmoid-typeisotherms.

Theinitialpartoftheadsorptionisothermisindicatingalow

interactionbetween4-NPandthesolidsurfaceatlow

concentra-tions.However,astheconcentrationintheliquidphaseincreased,

adsorptionwasmore readily,occurringmultilayeroraggregate

formation. This behavior is namely as cooperative adsorption,

asynergisticeffectwiththeadsorbedmoleculesfacilitatingthe

adsorptionofadditionalmoleculesfromtheaqueoussolution,as

resultoftheimportantroleofadsorbate–adsorbateinteractionsin

theadsorptionprocess[46].

Thus,atlowaqueousconcentrationrange,high4-NPmolecule

affinity toward PAC-NUT carbon was found, so it could be

established that the basic surface groups favor the adsorption

of 4-NP due to ␲–␲ interactions between the carbon surface

and the adsorbate molecule. Accordingly, the adsorption onto

the chemically-activatedcarbon was hindered due to its more

hydrophiliccharacter,which maybeoriginates theformationof

watermoleculesclusterslocatedinthecarbonporousstructure

andtheblockageofsomeporeentrances(solventeffect).Through

thisphenomenon,someporesmaybeinaccessibletotheformed

phenol-wateraggregates[47].

Such sigmoid trend in the adsorption isotherms has been

reported for phenol adsorption on some activated carbons by

Terzyk[36],whichpostulatedthattheadsorptionmechanismof

phenoliccompoundsisbasedontheformationofdonor-acceptor

complexesbetweentheoxygenatedsurfacefunctionalities

(elec-trondonors)andthearomaticringofphenolactingasacceptor.

AccordingtoTerzyk,carboxylicgroups,i.e.,themostacidic,playan

importantroleintheadsorptionofphenoliccompoundsatsmall

concentration,dramaticallydecreasingtheadsorptioncapacity.

Indeed, phenolic compounds,due totheirplanar shape and

delocalized␲-bonds,interactstronglywiththeadsorbentsurface,

bytheso-called␲–␲interactions,causingareorientationofthe

moleculeintothepores.Thisimpliesthattheadsorptionis

occur-ringonsurfaceactivecenterslocatedinlargermicropores(orin

mesopores),leadingtothechangesobservedintheshapeofthe

isotherms.Thus,theadsorbedmoleculesgeneratebinding

inter-actionswiththemoleculesinsolution,increasingtheadsorption

capacityathigherconcentrations.

Furthermore,ithasalsobeenreportedthatoxygenand

nitro-gen groups of 4-NP molecule react withboth oxygenated and

nitrogenated-functionalities on the carbon surface (PAC-NUT),

resultingintheformationofcovalentbonding[48,49],whichis

inaccordancetothegoodfittingfoundtothepseudo-secondorder

model.

Zhu and Gu [50] found aggregateformation on the

adsorp-tionprocesses,indicatingthatthistypeofadsorptioninvolvestwo

phases;inthefirstphase,adsorptionisoccurringonthecarbon

sur-face,andinthesecondphase,theinteractionbetweentheadsorbed

moleculesisinvolved.

Meanwhile,accordingtopKavalueof4-NP(7.15[44])andpHPZC

andpHIEPofthecarbons,rangingfrom1.0and6.0,itisexpectedthat

electrostaticforcesarenotinvolvedin4-NPadsorptionprocess.

BETmodelwasappliedtoadequatelydescribethemulti-layer

adsorptionisotherms[51,52]: qe= qs·CBET·Ce (Cs−Ce)·



1+(CBET−1)·(Ce/Cs)



(4)

where qe (mgg−1)and Ce (mgL−1)areadsorptioncapacity and

aqueous-phase concentration at equilibrium, respectively; CBET

(Lmg−1) is the characteristic parameter of BET equation; Cs

(mgL−1), thesaturationconcentrationonthemonolayerand qs

(mgg−1),thetheoreticaladsorptioncapacityfollowingBET

equa-tion.

Thus, a modified form of BET model is the

Guggenheim-Anderson-DeBoer(GAB)equation,whichpostulatesthatthestate

oftheadsorbatemoleculesonthesecondandsubsequentlayersis

equalbetweenthem,butitisdifferenttothosemoleculesthatare

inliquidphase.Accordingly,inthiscase,theadsorptionis

occur-ringonafinitenumberoflayers,whereastheBETequationdeals

withaninfinitenumber[53].GABisothermmodelisexpressedas

presentedinEq.(5).

qe= qm·K1·Ce

(1−K2·Ce)·[1+(K1−K2)·Ce]

(5)

where qe (mgg−1) is the equilibrium adsorption capacity; Ce

(mgL−1)istheequilibriumconcentrationintheaqueousphase;

qm(mgg−1)isthemaximumadsorptioncapacityonthefirstlayer

andK1andK2(Lmg−1)aretheequilibriumconstantsforthefirst

andsecondlayer,respectively.

BothBETandGABmodelssatisfactorilyreproducedthe

experi-mentaladsorptiondataofthenon-modifiedactivatedcarbons.The

modelparametersaresummarizedinTable4,includingSSEvalues.

K1parametersweremuchhigherthanK2forallthestudied

sys-tems.Thiscanbeattributedtothefactthattheadsorbateismore

stronglyattachedtothecarbonsurfaceatlowconcentrationsand

weaklateralinteractionsoccurredathigheraqueous

concentra-tions[54].

Thus, Langmuir model [55], suitable for monolayer

adsorp-tion (Eq.(6)), and Freundlich equation[56], commonly applied

toheterogeneousprocesses(Eq.(7)), wereusedtodescribethe

adsorptiondataof4-NPontoPAC-NUT.Therefore,the

(9)

Fig.9. Experimentalandtheoreticaladsorptionisothermsof4-NPonto(a)non-modifiedand(b)modifiedcarbonmaterials.

Table5

Resultsonadsorptionofphenoliccompoundsbylignocellulosic-activatedcarbonsreportedintheliterature.

Adsorbent Contaminant qexp(mgg−1) Reference

Apricotstones-basedactivatedcarbon Phenol 150.0 [55,58]

4-Nitrophenol 145.0

Activatedcarbonderivedfromricestraw 4-Chlorophenol 24.0 [56,59]

Physicallyandchemically-activatedcarbonsfromjuteandcoconutfibers Phenol 150.0 [57,60] 75.0

180.0 112.0

Activatedcarbonfromdatepits(activatedwithH3PO4) 4-Nitrophenol 108.7 [25,35]

Microwave-assistedactivatedcarbonsfromwoodchips Phenol 175.0 [58,61]

Activatedcarbonpreparedfromwastetea Phenol 37.0 [59,62]

Physically-activatedcarbonfrompeachstonesandfurthertreatedwithurea(PAC-NUT) 4-Nitrophenol 234.3 Thiswork

thetestedmodels,e.g.,BET,GAB,Langmuir,FreundlichandSips

equations.

qe= qsat·b·Ce

(1+b·Ce)

(6)

qe=KF·Ce1/nF (7)

where qe (mgg−1) is the equilibrium adsorption capacity; Ce

(mgL−1),theequilibriumconcentration;qsat(mgg−1)isthe

max-imum adsorptioncapacity onthe monolayer;b (Lmg−1)is the

adsorptionequilibriumconstantforLangmuirmodel;KF(Lg−1)is

theadsorptionaffinitycoefficientand1/nFindicatestheintensityof

theadsorptionprocessintheFreundlichequation.BothLangmuir

andFreundlichparametersareshowninTable4.

Theexperimentaldataobtainedforthenon-modifiedcarbons

andthenon-linearizedmodelfittingareplottedinFig.9a,while

experimentalandtheoreticaladsorptiondataofmodified-carbons

aredepictedinFig.9b.

PAC-NUTadsorptiondatawerebetterdescribedbyFreundlich

model.1/nFvaluewasfoundtobelessthan1,suggestingthat4-NP

adsorptiononPAC-NUTcarbonisafavorableprocess.Good

corre-lationofbothLangmuirandFreundlichmodelstoadsorptiondata

ofphenoliccompoundshasbeenwidelyreportedintheliterature

[47,57].

Severalexperimentalresultsfromstudies ontheadsorption

ofphenolic compounds bylignocellulosic-activated carbonsare

summarizedinTable5.Itwasfoundthattheresultsobtainedfor

PAC-NUTactivatedcarbonarehighlycompetitiveintheremovalof

4-NPfromaqueoussolution.

Fig.10.Breakthroughcurvesof4-NPontoPACairadsorbentattheoperation con-ditions:C0=10mgL−1,Q=2.0mLmin−1andmassofadsorbent=0.8g.

3.4. Fixed-bedadsorptionexperiments.Estimationofadsorption

parameters

Fixed-bed column adsorption studies of 4-NP were

accom-plished with PACair activated carbon. Breakthrough curves at

different volumetric flow rates (Q=1.33 and 2.50mLmin−1),

C0=10.0mgL−1of4-NPand0.8gofactivatedcarbonwereobtained

(Fig.10).Generally,flatterprofilesforbothbreakthroughcurves

wereobserved,mainlyattributedtoahighinfluenceofthemass

transferresistanceintheadsorptionprocess.

Breakthroughtimes(tb),calculatedatC/C0=0.05,werefoundto

(10)

maxi-S.Álvarez-Torrellasetal./AppliedSurfaceScience414(2017)424–434 433 Table6

Adsorptioncapacities,MTZ,FBUandremovalpercentageforadsorptionof4-NPadsorptionbycarbonaceousmaterials.

Q(mLmin−1) tb(h) ts(h) qb(mgg−1) qs(mgg−1) MTZ(cm) FBU Y(%)

1.33 6.4 88.7 4.4 20.4 6.3 0.21 68.4

2.50 2.1 88.7 3.3 27.2 7.0 0.12 85.1

mumsaturationobtainedinthecolumnoperatingat1.33mLmin−1

wasC/C0=0.69(ts=88.6h);meanwhile,theadsorptionbed

work-ingataflowrateof2.50mLmin−1reachedaC/C0 valueof0.89,

forthesamesaturationtime.Thissuggestedthatwhentheflow

ratewashigher,thetimerequiredtoremovethesamequantityof

pollutantwasshorterduetothebedwassaturatedearlier.Thus,

athighervolumetricflowrate,adecreasinginthebreakthrough

timewasobserved,andresultinginasteeperbreakthroughcurve

(Fig.10),indicatingadecreaseinthemasstransferresistanceofthe

adsorptionprocess[63].

Adsorptionparameters,e.g.,breakthroughtime(tb),saturation

time(ts),adsorptioncapacityatbreakthroughtime(qb,mgg−1),

adsorptioncapacityatsaturationtime(qs,mgg−1),masstransfer

zonelength(MTZ,cm),fractionalbedutilization(FBU,

dimension-less)andadsorbateremovalpercentageatbreakthroughtime(Y,

%)weredeterminedandsummarizedinTable6.

Itcanbeconcludedthatatalowerflowrate,theresidencetime

oftheadsorbateinthecolumnishigherandthus,theadsorbent

isgettingmoretimetobondwith4-NPmoleculeefficiently.This

resultedinaslightincreaseintheadsorptioncapacityat

break-throughtime,indicatingthattheadsorptionprocessiscontrolled

byintra-particlediffusionmasstransfer.Asimilartendencyhas

beenfoundbyotherresearchers[64,65].

4. Conclusions

In this study, it was found that 4-NP adsorption is highly

conditionedbythechemicalsurfacepropertiesoftheadsorbent.

Accordingly, the best adsorption results, in terms of

adsorp-tion capacity and molecule affinity, were those obtained for

the more basic activated carbon (PAC-NUT). Additionally, the

chemically-activatedcarbon(CAC)showedthehighestspecific

sur-face area, total porevolume and pore size values. Thiscarbon,

withhydrophiliccharacter,offeredgoodkineticproperties,dueto

itsmoreopened-porousstructure,butlow affinitytoward4-NP

molecule.Thus,physically-activatedcarbonsshowedmuchmore

hinderedtexturalproperties(totallymicroporousmaterials).

Experimental kinetic data were successfully fitted to the

pseudo-secondordermodel,suggestingthatchemisorptionforces

couldbeinvolvedin4-NPadsorptionprocess.Thestrong

depen-dency oftheadsorption rateonthechemical properties ofthe

adsorbentwascorroboratedthroughtherelationshipbetweenthe

apparentkineticrateconstantsandpHIEPvaluesofthecarbons.

Theadsorptionisothermsshowedasigmoidtrend,attributedto

abilayer/multilayeradsorption,beingwellreproducedbyBETand

GABmodels.Breakthroughcurvesof4-NPontoPACairat

differ-entvolumetricflowrateswereobtained,showingalatterprofile

andnotatotalcolumnsaturation.Finally,thebreakthroughcurve

obtainedathighflowrate(Q=2.5mLmin−1)showedahigherslope,

attributedtoadecreasinginthemasstransferresistance.

Acknowledgements

The authors would like to thank the financial support

of Ministry of Economía and Competitividad of Spain

(Con-tractCTQ2014-59011-RREMEWATERandTRAGUANETNetwork

CTM2014-53485-REDC), the Regional Government of Madrid

provided through Project REMTAVARES S2013/MAE-2716 and

the European Social Fund, and Project

POCI-01-0145-FEDER-006984 – Associate Laboratory LSRE-LCM, funded by FEDER

throughCOMPETE2020–ProgramaOperacionalCompetitividade

eInternacionalizac¸ão(POCI)–andbynationalfundsthroughFCT

– Fundac¸ão para a Ciéncia e a Tecnologia. M.Martin-Martinez

acknowledgesfinancialsupportfromtheFCTPostdoctoralgrant

SFRH/BPD/108510/2015. S. Álvarez-Torrellas acknowledges also

thefunding provided bythe SpanishMinistry ofEconomy and

Competitiveness(MINECO)throughJuandelaCierva-Formacion

Contract.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in

theonlineversion,athttp://dx.doi.org/10.1016/j.apsusc.2017.04.

054.

References

[1]M.Sarkar,P.K.Acharya,Useofflyashfortheremovalofphenolandits analoguesfromcontaminatedwater,WasteManage.26(2006)559–570. [2]J.-Q.Jiang,C.Cooper,S.Ouki,Comparisonofmodifiedmontmorillonite

adsorbents.PartI:Preparation,characterizationandphenoladsorption, Chemosphere47(2002)711–716.

[3]A.Bhatnagara,M.Sillanpääb,Utilizationofagro-industrialandmunicipal wastematerialsaspotentialadsorbentsforwatertreatment–areview, Chem.Eng.J.157(2010)277–296.

[4]T.Heberer,Occurrence,fate,andremovalofpharmaceuticalresiduesinthe aquaticenvironment:areviewofrecentresearchdata,Toxicol.Lett.131 (2002)5–17.

[5]M.J.Ahmed,S.K.Theydan,Equilibriumisotherms,kineticsand

thermodynamicsstudiesofphenoliccompoundsadsorptiononpalm-tree fruitstones,Ecotoxicol.Environ.Saf.84(2012)39–45.

[6]P.J.Smeets,J.S.Woertink,B.F.Sels,E.I.Solomon,R.A.Schoonheydt, Transition-metalionsinzeolites:coordinationandactivationofoxygen, Inorg.Chem.49(2010)3573–3583.

[7]M.Wisniewska,V.Bogatyrov,I.Ostolska,K.Szewczuk-Karpisz,K.Terpilowski, A.Nosal-Wiercinska,Impactofpoly(vinylalcohol)adsorptiononthesurface characteristicsofmixedoxideMnxOy-SiO2,Adsorption22(2016)417–423. [8]V.K.Gupta,A.Nayak,S.Agarwal,Bioadsorbentsforremediationofheavy

metals:currentstatusandtheirfutureprospects,Environ.Eng.Res.20(2015) 1–18.

[9]M.A.Chayid,M.J.Ahmed,Amoxicillinadsorptiononmicrowaveprepared activatedcarbonfromArundodonaxLinn:isotherms,kinetics,and thermodynamicsstudies,J.Environ.Chem.Eng.3(2015)1592–1601. [10]D.Duranoglu,A.W.Trochimczuk,U.Beker,Acomparisonstudyofpeachstone

andacrylonitrile-divinylbenzenecopolymerbasedactivatedcarbonsas chromium(VI)sorbents,Chem.Eng.J.165(2010)56–63.

[11]J.V.Flores-Cano,M.Sánchez-Polo,J.Messoud,I.Velo-Gala,R.Ocampo-Pérez,J. Rivera-Utrilla,Overalladsorptionrateofmetronidazole,dimetridazoleand diatrizoateonactivatedcarbonspreparedfromcoffeeresiduesandalmond shells,J.Environ.Manage.169(2016)116–125.

[12]P.Nowicki,J.Kazmierczak,R.Pietrzak,Comparisonofphysicochemicaland sorptionpropertiesofactivatedcarbonspreparedbyphysicalandchemical activationofcherrystones,PowderTechnol.269(2015)312–319. [13]P.Nowicki,J.Kazmierczak-Razna,P.Skibiszewska,M.Wisniewska,A.

Nosal-Wiercinska,R.Pietrzak,Productionofactivatedcarbonsfrom biodegradablewastematerialsasanalternativewayoftheirutilisation, Adsorption22(2016)489–502.

[14]M.Wisniewska,P.Nowicki,A.Nosal-Wiercinska,R.Pietrzak,K.

Szewczuk-Karpisz,I.Ostolska,D.Sternik,Adsorptionofpoly(acrylicacid)on thesurfaceofmicroporousactivatedcarbonobtainedfromcherrystones, Colloid.Surf.A514(2017)137–145.

[15]Q.-S.Liu,T.Zheng,P.Wang,L.Guo,Preparationandcharacterizationof activatedcarbonfrombamboobymicrowave-inducedphosphoricacid activation,Ind.CropsProd.31(2010)233–238.

[16]A.J.Romero-Anaya,M.A.Lillo-Rodenas,C.S.M.Lecea,A.Linares-Solano, HydrothermalandconventionalH3PO4activationoftwonaturalbio-fibers, Carbon50(2012)3158–3169.

[17]M.Turmuzi,W.R.W.Daud,S.M.Tasirin,M.S.Takriff,S.E.Iyuke,Productionof activatedcarbonfromcandlenutshellbyCO2activation,Carbon42(2004) 453–455.

(11)

[18]M.J.Ahmed,S.K.Theydan,Physicalandchemicalcharacteristicsofactivated carbonpreparedbypyrolysisofchemicallytreateddatestonesanditsability toadsorborganics,PowderTechnol.229(2012)237–245.

[19]S.Álvarez-Torrellas,R.GarcíaLovera,N.Escalona,C.Sepúlveda,J.L.Sotelo,J. García,Chemical-activatedcarbonsfrompeachstonesfortheadsorptionof emergingcontaminantsinaqueoussolutions,Chem.Eng.J.279(2015) 788–798.

[20]R.S.Ribeiro,A.M.T.Silva,M.T.Pinho,J.L.Figueiredo,J.L.Faria,H.T.Gomes, Developmentofglycerol-basedmetal-freecarbonmaterialsfor environmentalcatalyticapplications,Catal.Today240(2015)61–66. [21]I.Ghouma,M.J.Jeguirim,S.Dorge,L.Limousy,C.M.Ghimbeu,A.Ouederni,

Activatedcarbonpreparedbyphysicalactivationofolivestonesforthe removalofNO2atambienttemperature,C.R.Chim.18(2015)63–74. [22]H.T.Gomes,S.M.Miranda,M.J.Sampaio,A.M.T.Silva,J.L.Faria,Activated

carbonstreatedwithsulphuricacid:catalystsforcatalyticwetperoxide oxidation,Catal.Today151(2010)153–158.

[23]R.P.Rocha,J.P.S.Sousa,A.M.T.Silva,M.F.R.Pereira,J.L.Figueiredo,Catalytic activityandstabilityofmultiwalledcarbonnanotubesincatalyticwetair oxidationofoxalicacid:theroleofthebasicnatureinducedbythesurface chemistry,Appl.Catal.B:Environ.104(2011)330–336.

[24]S.Brunauer,P.H.Emmett,E.J.Teller,Adsorptionofgasesinmultimolecular layers,J.Am.Chem.Soc.60(1938)309–319.

[25]M.M.Dubinin,Adsorptioninmicropores,J.ColloidInterf.Sci.23(1967)487. [26]S.J.Gregg,K.S.W.Sing,Adsorption,SurfaceandPorosity,AcademicPress,

London,1982.

[27]J.J.M.Orfão,A.I.M.Silva,J.C.V.Pereira,S.A.Barata,I.M.Fonseca,P.C.C.Faria, M.F.R.Pereira,Adsorptionofreactivedyeonchemicallymodifiedactivated carbon-influenceofpH,J.ColloidInterf.Sci.296(2006)480–489.

[28]K.S.W.Sing,D.H.Everett,R.A.W.Haul,L.Moscou,R.A.W.Pierotti,J.Rouquerol, T.Siemieniewska,Reportingphysisorptiondataforgas/solidsystemswith specialreferencetothedeterminationofsurfaceareaandporosity,PureAppl. Chem.57(1985)603–619.

[29]G.-Y.Oh,Y.-W.Ju,M.-Y.Kim,H.-R.Jung,H.J.Kim,W.-J.Lee,Adsorptionof tolueneoncarbonnanofiberspreparedbyelectrospinning,Sci.TotalEnviron. 393(2008)341–347.

[30]C.A.LeónyLeón,L.R.Radovic,Effectofthermalandchemicalpretreatments onthecopper-catalyzedgasificationofcarboninair,Abstr.Pap.Am.Chem. Soc.202(1991)967–974.

[31]C.J.Durán-Valle,M.Gómez-Corzo,J.Pastor-Villegas,V.Gómez-Serrano,Study ofcherrystonesasrawmaterialinpreparationofcarbonaceousadsorbents,J. Anal.Appl.Pyrolysis73(2005)59–67.

[32]Z.-M.Wang,N.Yamashita,Z.-X.Wang,K.Hoshinoo,H.Kanoh,Airoxidation effectsonmicroporosity,surfaceproperty,andCH4adsorptivityof pitch-basedactivatedcarbonfibers,J.ColloidInterf.Sci.276(2004)143–150. [33]C.Tangsathitkulchai,Y.Ngernyen,M.Tangsathitkulchai,Surfacemodification

andadsorptionofeucalyptuswood-basedactivatedcarbons:effectsof oxidationtreatment,carbonporousstructureandactivationmethod,Korean J.Chem.Eng.26(2009)1341–1352.

[34]G.-Z.Zhu,X.-I.Deng,M.Hou,K.Sun,Y.-P.Zhang,P.Li,F.-M.Liang,

Comparativestudyoncharacterizationandadsorptionpropertiesofactivated carbonsbyphosphoricacidactivationfromcorncobanditsacidandalkaline hydrolysisresidues,FuelProcess.Technol.144(2016)255–261.

[35]H.Altaher,A.M.Dietrich,Characterizingo-andp-nitrophenolsadsorption ontoinnovativeactivatedcarbonpreparedfromdatepits,WaterSci.Technol. 69(2014)31–37.

[36]A.P.Terzyk,Furtherinsightsintotheroleofcarbonsurfacefunctionalitiesin themechanismofphenoladsorption,J.ColloidInterf.Sci.268(2003) 301–329.

[37]C.Moreno-Castilla,Adsorptionoforganicmoleculesfromaqueoussolutions oncarbonmaterials,Carbon42(2004)83–94.

[38]H.Yuh-Shan,CitationreviewofLagergrenkineticrateequationonadsorption reactions,Scientometrics59(2004)171–177.

[39]M.Nadeem,A.Mahmood,S.A.Shahid,S.S.Shah,A.M.Khalid,G.McKay, Sorptionofleadfromaqueoussolutionbychemicallymodifiedcarbon adsorbents,J.Hazard.Mater.138(2006)604–613.

[40]D.Tang,Z.Zheng,K.Lin,J.Luan,J.Zhang,Adsorptionofp-nitrophenolfrom aqueoussolutionsontoactivatedcarbonfiber,J.Hazard.Mater.143(2007) 49–56.

[41]M.Ahmaruzzaman,S.LaxmiGayatri,Batchadsorptionof4-nitrophenolby acidactivatedjutestickchar:equilibrium,kineticandthermodynamic studies,Chem.Eng.J.158(2010)173–180.

[42]C.H.Giles,T.H.MacEwan,S.N.Nakhwa,D.Smith,Studiesinadsorption.Part XI:Asystemofclassificationofsolutionadsorptionisotherms,anditsusein diagnosisofadsorptionmechanismandinmeasurementofspecificsurface areasofsolids,J.Chem.Soc.(1960)3973–3993.

[43]A.K.Helmy,S.G.deBussetti,E.A.Ferreiro,Adsorptionofquinolonefrom aqueoussolutionsbysomeclaysandoxides,Clay.ClayMiner.31(1983) 29–36.

[44]Q.-S.Liu,T.Zheng,P.Wang,J.-P.Jiang,N.Li,Adsorptionisotherm,kineticand mechanismstudiesofsomesubstitutedphenolsonactivatedcarbonfibers, Chem.Eng.J.157(2010)348–356.

[45]C.Pelekani,V.L.Snoeyink,Competitiveadsorptionbetweenatrazineand methyleneblueonactivatedcarbon:theimportanceofporesizedistribution, Carbon38(2000)1423–1436.

[46]V.Gómez,M.S.Larrechi,M.P.Callao,Kineticandadsorptionstudyofaciddye removalusingactivatedcarbon,Chemosphere69(2007)1151–1158. [47]N.G.Rincón-Silva,J.C.Moreno-Piraján,L.G.Giraldo,Thermodynamicstudyof

adsorptionofphenol,4-chlorophenol,and4-nitrophenolonactivatedcarbon obtainedfromeucalyptusseed,J.Chem.(2015)1–12.

[48]A.Morsli,A.Benhamou,J.-P.Basly,M.Baudu,Z.Derriche,Mesoporoussilicas: improvingtheadsorptionefficiencyofphenoliccompoundsbytheremovalof aminogroupfromfunctionalizedsilicas,RSCAdv.5(2015)41631–41638. [49]M.Martín-Martínez,R.S.Ribeiro,B.F.Machado,P.Serp,S.Morales-Torres, A.M.T.Silva,J.L.Figueiredo,J.L.Faria,H.T.Gomes,Roleofnitrogendopingon theperformanceofcarbonnanotubecatalysts:acatalyticwetperoxide oxidationapplication,Chem.Cat.Chem.8(2016)2068–2078.

[50]B.Y.Zhu,T.Gu,Generalisothermequationforadsorptionofsurfactantsat solid/liquidinterfaces,J.Chem.Soc.,FaradayTrans.85(1989)3813–3817. [51]S.Brunauer,P.H.Emmett,E.Teller,Adsorptionofgasesinmultimolecular

layers,J.Am.Chem.Soc.60(1938)309–319.

[52]K.Y.Foo,B.H.Hameed,Insightsintothemodelingofadsorptionisotherm systems,Chem.Eng.J.156(2010)2–10.

[53]L.M.Cotoruelo,M.D.Marqués,J.Rodríguez-Mirasol,J.J.Rodríguez,T.Cordero, Cationicdyesremovalbymultilayeradsorptiononactivatedcarbonsfrom lignin,J.PorousMater.18(2011)693–702.

[54]P.Girods,A.Dufour,V.Fierro,Y.Rogaume,C.Rogaume,A.Zoulalian,A. Celzard,Activatedcarbonspreparedfromwoodparticleboardwastes: characterisationandphenoladsorptioncapacities,J.Hazard.Mater.166 (2009)491–501.

[55]I.Langmuir,Theadsorptionofgasesonplanesurfacesofglass,micaand platinum,J.Am.Chem.Soc.40(1918)1361–1403.

[56]M.Jaroniec,Adsorptiononheterogeneoussurfaces:theexponentialequation fortheoveralladsorptionisotherm,Surf.Sci.50(1975)553–564.

[57]H.Ding,X.Li,J.Wang,X.Zhang,C.Chen,Adsorptionofchlorophenolsfrom aqueoussolutionsbypristineandsurfacefunctionalizedsingle-walledcarbon nanotubes,J.Environ.Sci.43(2016)187–198.

[58]B.Petrova,T.Budinova,B.Tsyntsarski,V.Kochkodan,Z.Shkavro,N.Petrov, Removalofaromatichydrocarbonsfromwaterbyactivatedcarbonfrom apricotstones,Chem.Eng.J.165(2010)258–264.

[59]Y.-H.Shih,Y.-F.Su,R.-Y.Ho,P.-H.Su,C.-Y.Yang,Distinctivesorption mechanismsof4-chlorophenolwithblackcarbonsaselucidatedbydifferent pH,Sci.TotalEnviron.433(2012)523–529.

[60]N.-H.Phan,S.Rio,C.Faur,L.LeCoq,P.LeCloirec,T.H.Nguyen,Productionof fibrousactivatedcarbonsfromnaturalcellulose(jute,coconut)fibersfor watertreatmentapplications,Carbon44(2006)2569–2577.

[61]P.S.Thue,M.A.Adebayo,E.C.Lima,J.M.Sieliechi,F.M.Machado,G.L.Dotto, J.C.P.Vaghetti,S.L.P.Dias,Preparation,characterizationandapplicationof microwave-assistedactivatedcarbonsfromwoodchipsforremovalofphenol fromaqueoussolution,J.Mol.Liq.223(2016)1067–1080.

[62]Y.Gokce,Z.Aktas,Nitricacidmodificationofactivatedcarbonproducedfrom wasteteaandadsorptionofmethyleneblueandphenol,Appl.Surf.Sci.313 (2014)352–359.

[63]S.Banerjee,G.C.Sharma,R.K.Gautam,M.C.Chattopadhyaya,S.N.Upadhyay, Y.C.Sharma,Removalofmalachitegreen,ahazardousdyefromaqueous solutionsusingAvenasativa(oat)hullasapotentialadsorbent,J.Mol.Liq.213 (2016)162–172.

[64]G.Nazari,H.Abolghasemi,M.Esmaieli,E.S.Pouya,Aqueousphaseadsorption ofcephalexinbywalnutshell-basedactivatedcarbon:afixed-bedcolumn study,Appl.Surf.Sci.375(2016)144–153.

[65]S.Chen,Q.Yue,B.Gao,Q.Li,X.Xu,K.Fu,Adsorptionofhexavalentchromium fromaqueoussolutionbymodifiedcornstalk:afixed-bedcolumnstudy, Bioresour.Technol.113(2012)114–120.

Referências

Documentos relacionados

In this article, the preparation and characterization of activated carbons from eucalyptus sawdust were reported and the adsorption equilibrium of methylene blue and phenol

Para tanto, o Núcleo de Avaliação da Odontologia (NAO) elaborou instrumentos avaliativos para construção de provas estruturadas (seis questões discursivas, em três

O mesmo não pode ser afirmado em relação à aplicação da microscopia eletrônica, que também trouxe novos fatos para a compreensão da estrutura, naturalmente adaptados ao estilo

Fruto da evolução observada no campo do conhecimento científico e dos valores culturais, espera-se hoje que os pais estejam envolvidos de forma mais activa na

with kinetic and isotherm models, to study the influence of the structure and surface chemistry of activated carbon on the adsorption of microcystins, and on its competitive

A leitura quase prosopográfica não faz esquecer, no entanto, a individualidade, o artista singular que toca, canta, compõe, e isso surge a cada passo nas páginas deste

To evaluate the adsorption capacity of the TNTs, the adsorption data were fitted to Langmuir and Freundlich isotherm equations to describe the equi- librium nature of adsorption.

Pb 2+ adsorption isotherms and immersion enthalpy were determined for modified activated carbons and the highest values were obtained for the activated carbon that