• Nenhum resultado encontrado

Tópicos  importantes  da  definição  de  População:  

N/A
N/A
Protected

Academic year: 2022

Share "Tópicos  importantes  da  definição  de  População:  "

Copied!
53
0
0

Texto

(1)

Dinâmica  Populacional  de  Plantas  

Disciplina  BIE  0320  

Ecologia  de  Populações  e  Comunidades  Vegetais  

2015    

(2)

Tópicos  importantes  da  definição  de  População:  

-­‐  Mesma  espécie   -­‐  Mesmo  local  

-­‐  Mesmo  tempo  (?)  

(3)

Estrutura  Populacional   Quais  aspectos?  

-­‐  Distribuição  de  idades  

-­‐  Distribuição  de  tamanhos   -­‐  Distribuição  de  estágios   -­‐  Razão  sexual  

-­‐  Estrutura  genéQca  

-­‐  Distribuição  espacial  

 

(4)

Dinâmica  Populacional   Taxas  vitais  

-­‐  Nascimento   -­‐  Mortalidade   -­‐  Imigração   -­‐  Emigração    

+  Crescimento  

(5)

1  -­‐  Definir  e  demarcar  área  

Permanent  plot  -­‐  Swiss  Na7onal  Park  

Como  se  faz  na  práQca?  

Para  populações  de  herbáceas   parece  rela7vamente  simples  

Permanent  plots  in  Switzerland-­‐  University  of  Lausanne  

Mas  nem  sempre...  

(6)

Como  se  faz  na  práQca?  

1  -­‐  Definir  e  demarcar  área  

Projeto  Diagnós7co,  Manejo  e  Uso  de  Floresta  Secundária  no  Nordeste  Paraense  

DNIT  -­‐  Mata  Santa  Tereza-­‐  PB  

Em  florestas  

(7)

Giacomini  Wetland  Restora7on  Project    

2  -­‐  Contar  indivíduos  e  monitorar  ao  longo  do  tempo  

Como  se  faz  na  práQca?  

Nesse  caso,  sem  marcar  e  acompanhar  cada  indivíduo  

(8)

2  -­‐  Contar  indivíduos  e  monitorar  ao  longo  do  tempo  

Como  se  faz  na  práQca?  

Nesse  caso,  marcando  e  acompanhando  cada  indivíduo  

 





Geonoma  scho4ana  (Portela,  2008)  

(9)

Como  se  faz  na  práQca?  

Camcore  projects   Projeto  Litoral  Norte  -­‐  Labtrop   Projeto  Litoral  Norte  -­‐  Labtrop  

ugt-­‐online.de  

ecoma7k.de  

(10)

Diferentes  formas  de  estudar  dinâmica  

1  -­‐  Inferir  dinâmica  a  parQr  de  estrutura  

0 50 100 150 200 250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Classes de tamanho

No. de indivíduos

Ideia  geral:  Diferença  entre  classes  =  probabilidade  de  transição  

Premissa  perigosa:      Estrutura  atual  representa  a  estrutura  estável  

(11)

0 50 100 150 200 250

1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Classes de tam anho

No. de indivíduos

no passado, como abate seletivo e pisoteio, impediu que algumas gerações de jovens atingissem o porte adulto, provocando defasagem na classe etflria das populações.

A Égura 2 mostra a distribuição das classes de 2 cm de diâmetro para Xylopia aromatica. A forma é de um “J” invertido com progressão geométrica decrescente no sentido do maior diâmetro. Este padrão indica que estfl havendo reposição das classes etflrias subseqüentes dos indivíduos da espécie. Admitindo que houve interferência antrópica na flrea,X. aromatica exibe, pela maior proporção de indivíduos jovens, tendência de crescimento.

Figura 2: Classes de diâmetro deXylopia aromatica. Classes Éxas de 2 cm. 4-3,1 a 5,0 cm;

6-5,1 a 7,0 cm; . . .; 14-13,1 a 15,0 cm; e, 16-15,1 a 17,0 cm.

A Égura 3 mostra que para Pterodon emarginatus hfl um grande número de indivíduos jovens a que se segue uma diminuição nas classes de 10 a 14 cm. Pos- sivelmente, este fato possa estar relacionado a alguma interferência no recrutamento de novas plântulas em um dado momento. No entanto, a forma predominante da curva indica que hfl tendência de regeneração e possibilidade de crescimento da população. As classes de indivíduos acima de 25 cm incluem adultos que devem ter sido poupados de extração seletiva evidenciada pela presença de troncos cortados rentes ao solo na flrea.

ParaVochysia tucanorum, a Égura 4 exibe distribuição irregular das classes ini- ciais, intermediflrias e superiores com vflrias interrupções, indicando épocas sem reposição. FrutiÉcação inconstante, baixa capacidade germinativa, competição in- ter/intra especíÉca ou mesmo abate podem ser as causas. No cerrado, a taxa de ataque de insetos e parasitas aos frutos é alta (RIZZINI, 1971), e espécies que não frutiÉcam regularmente poderiam estar mantendo estratégia contra a predação e o parasitismo.

60

Figura 5: Classes de diâmetro de Ocotea pulchella. Classes Éxas de 2 cm. 4-3,1 a 5,0 cm;

6-5,1 a 7,0 cm; 8-7,1 a 9,0 cm; . . .; 42-41,1 a 43,0 cm; e, 44-43,1 a 45,0 cm.

Figura 6: Classes de diâmetro de Anadenanthera falcata. Classes Éxas de 2 cm. 4-3,1 a 5,0 cm; 6-5,1 a 7,0 cm; 8-7,1 a 9,0 cm; . . . ; 84-73,1 a 85,0 cm; e, 86-85,1 a 87,0 cm.

Virola sebifera, pela anfllise da Égura 7, apresenta boa capacidade de regenera- ção na flrea, porém com diÉculdades no estabelecimento dos indivíduos de maior diâmetro na população. A presença de um indivíduo de 30 cm de diâmetro indica que, em tese, este nível de crescimento pode ser atingido por outros indivíduos da população. Na falta destes, a hipótese é que os mecanismos de seleção natural são mais rígidos com os adultos do que com os jovens nesta flrea. Ou, em se tratando de abate, este indivíduo teria sido poupado, e os indivíduos jovens podem vir a exibir tal crescimento.

Para Miconia rubiginosa a distribuição das classes de diâmetro (Fig.8) mostra haver predominância de indivíduos jovens. Cerca de 2/3 de todas as flrvores amostra- das estão concentradas nas duas classes iniciais, enquanto que o restante encontra- se distribuído em sete classes. A alta proporção de indivíduos jovens indica bom recrutamento de plântulas e crescimento da população. Entretanto, mecanismos de

62

Interpretação  convencional:  

População  em  crescimento   ("J  inverQdo")  

População  em  declínio  

Si lv a   &  S oar es  1 99 9  

(12)

Porém...  

Condit  e t  al .  ( 19 98 )  

502

The American Naturalist

Figure 3:Size distribution and demographic parameters forCe- Figure 4: Size distribution and demographic parameters for cropia insignis. All symbols are identical to those in figure 1. Zanthoxylum belizense. All symbols are identical to those in UnlikeTrichiliaand Tetragastris,many individuals grew by two figure 1. As with Cecropia, many individuals of Zanthoxylum or even three size classes in this species. The top panel shows grew by two or more size classes. The top panel shows growth growth and survival probabilities for each 50-mm dbh bracket and survival probabilities for each 50-mm dbh bracket (10–49, (10–49, 50–99 mm, etc.). The bottom panel shows number of 50–99 mm, etc.). The bottom panel shows number of individu- individuals in each 50-mm dbh class divided by the total num- als in each 50-mm dbh class divided by the total number of in- ber of individuals of that species. dividuals of that species.

viduals). However, the result can also be viewed in the

slope

L

against observed

L

and simulated

!

against ob- light of the third prediction from equation (4): growth

served

!. Predictions were good (fig. 5).

was 0 in the terminal size class (by definition), so growth declined sharply from the subterminal to the terminal class. In

Zanthoxylum,

this decline was the greatest, and

Correlates of Size Distribution

the number of individuals in the terminal size class was

very high relative to prior classes. As predicted by theory, population growth correlated negatively with the slope of the size distribution (fig. 6).

In the lower panels of figures 1–4, size distributions

based on life-table simulations are given along with ob- Species toward the right-hand side of each graph in fig- ure 6 had flatter size distributions (less negative

L), with

served size distributions. The simulated output closely

matched observed, especially in

Tetragastris

and

Trichilia

fewer small stems relative to large stems, and in most cases, also had shrinking populations (! 1). According (figs. 1, 2). Simulations clearly predicted the flatter distri-

butions in

Cecropia

and

Zanthoxylum,

but in both pio- to parametric regression, the relationship was significant only in treelets, not in large and midsized trees (fig. 6);

neers, observed distributions were even flatter than pre-

dicted (figs. 3, 4). For 44 species with the most complete however, nonparametric Spearman correlations were sig- nificant in all three groups. In shrubs, the correlation be- life tables (⇥5 individuals in all size classes to 400 mm

dbh and

⇥400 mm dbh), we correlated the simulated

tween

L

and

!

was positive but nonsignificant (fig. 6).

Espécies  com  distribuições  de  tamanho  similares  podem  apresentar  

crescimento  e  sobrevivência  muito  diferentes  

(13)

Condit  e t  al .  ( 19 98 )  

Assim  como  espécies  com  distribuições  de  tamanho  diferentes  podem   apresentar  crescimento  e  sobrevivência  similares  

Estruturas  de  tamanhos  não  são  boas  preditoras  de  dinâmica!  

506

The American Naturalist

Figure 8: Size distribution and demographic parameters for Figure 9: Size distribution and demographic parameters for Heisteria concinna. All symbols are identical to those in figure Guarea sp. All symbols are identical to those in figure 1. Top 1. Top panel gives growth and survival probabilities for each panel gives growth and survival probabilities for each 50-mm 50-mm dbh bracket (10–49, 50–99 mm, etc.). Bottom panel dbh bracket (10–49, 50–99 mm, etc.). Bottom panel shows shows number of individuals in each 50-mm dbh class divided number of individuals in each 50-mm dbh class divided by the by the total number of individuals of that species. total number of individuals of that species.

was subtracted. Each of these correlation links left a sub- although survival and size distribution did work in

treelets. Species with low survival rates are declining in stantial amount of unexplained variance, and this ex- plains why some of the associations were not significant.

abundance in the BCI plot. We believe this is a result

specific to Barro Colorado Island: pioneer species have For example, although high survival was significantly re- lated to population change (this study) and to growth been in steady decline since the plot began (Hubbell and

Foster 1990, 1992; Condit et al. 1996b). This is possibly rate (Condit et al. 1996a), growth rate was not signifi- cantly associated with population change.

because areas adjacent to the plot were cleared in the

nineteenth century and have since reforested. Invasive Regardless of these details, we can say that we found no unequivocal shortcuts for predicting population species were undoubtedly extremely abundant just out-

side the plot during this recovery and pumped large changes. Static and short-term data on a population are not sufficient for predicting longer-term dynamics, at numbers of seeds into the old forest; now they are gradu-

ally being lost (Hubbell and Foster 1990, 1992). least in this forest.

The seven species with flat size distributions that qual- The trend for pioneer species to be declining appar-

ently underlies the weak correlation observed between ify as Newbery and Gartlan’s group 5 are an especially interesting set. All include immense trees—the largest in size distribution and population change in canopy spe-

cies. Pioneers, which had decreasing populations, tend to the plot—but very few juveniles. These characteristics have been the focus of much attention in Africa with dis- have high growth (Condit et al. 1996a) and, thus, flatter

size distributions. Thus, there was a weak association be- cussion revolving around whether such dominant canopy species are replacing themselves. Here is a summary of tween population change and size distributions in canopy

species, but it disappeared when the effect of growth rate what we know about the group at BCI: all are early suc-

(14)

Não  foi  encontrada (*)  uma  relação  inversa  entre  inclinação  e  taxa  de   crescimento  (  λ  )  para  plantas  lenhosas  em  BCI  (216  spp.)  

Valores  negaQvos  indicam  maior  decaimento  -­‐  "J  inverQdo"  

Condit  e t  al .  ( 19 98 )  

(*)  Exceto  

para  

arvoretas  

(15)

Diferentes  formas  de  estudar  dinâmica  

2  -­‐  Descrição  das  mudanças  ao  longo  do  tempo  

Cerne, Lavras, v. 15, n. 1, p. 58-66, jan./mar . 2009 63 Estrutura temporal de sete populações em três fragmentos...

Figura 2 – Distribuição diamétrica das populações nas três áreas inventariadas (IN = Ingaí, IU = Ibituruna e LU = Luminárias), entre 2000 ( ) e 2005 ( ).

Figure 2 – Diameter distribution of population in three areas surveys (IN = Ingaí, IU = Ibituruna and LU = Luminárias), between 2000 ( ) and 2005 ( ).

Continua...

To be continued...

IN IU LU

IN IU LU

IN IU LU

IN IU LU

Machaerium stipitatum (DC.) Vogel Copaifera langsdorffii Desf.

Cupania vernalis Cambess.

Luehea grandiflora Mart. & Zucc.

0 50 100 150 200 250

5 < 10 10 < 20 20 < 40 40 < 80

Classes diamétricas (cm)

Nú m er o d e in di v íd uo s

0 2 4 6 8 10

5 < 10 10 < 20 20 < 40 40 < 80

Classes diamétricas (cm)

Nú m er o de i n d iv íd u os

0 5 10 15 20 25 30 35

5 < 10 10 < 20 20 < 40 40 < 80

Classes diamétricas (cm)

Nú m er o d e in di v íd uo s

0 10 20 30 40 50

5 < 10 10 < 20 20 < 40 40 < 80

Classes diamétricas (cm)

Nú m er o de i n d iv íd u os

0 5 10 15 20

5 < 10 10 < 20 20 < 40 40 < 80

Classes diamétricas (cm)

Núm er o de i ndi ví du os

0 10 20 30 40 50

5 < 10 10 < 20 20 < 40 40 < 80

Classes diamétricas (cm)

Nú m er o de i n d iv íd u os

0 5 10 15

5 < 10 10 < 20 20 < 40 40 < 80

Classes diamétricas (cm)

Nú m er o d e in di ví d u os

0 5 10

5 < 10 10 < 20 20 < 40 40 < 80

Classes diamétricas (cm)

Nú m er o d e in di ví d u os

0 2 4 6 8

5 < 10 10 < 20 20 < 40 40 < 80

Classes diamétricas (cm)

Nú m er o d e in d iv íd uo s

0 3 6 9

5 < 10 10 < 20 20 < 40 40 < 80

Classes diamétricas (cm)

Nú m er o d e in di v íd uo s

0 3 6 9 12 15 18

5 < 10 10 < 20 20 < 40 40 < 80

Classes diamétricas (cm)

Nú m er o de i nd iv íd u o s

0 10 20 30 40 50 60 70

5 < 10 10 < 20 20 < 40 40 < 80

Classes diamétricas (cm)

Nú m er o d e in d iv íd uo s

Carvalho  et  al  (2009)  

Estudo  de  espécies  arbóreas  em  FES  

(16)

Revista de Geografia. Recife: UFPE DCG/NAPA, v. 26, no 2, mai/ago. 2009.

147 3). A população de C. bahianus não apresentou redução drástica no início da estação seca (Fig. 2), porém, em D. coronata, ocorreu uma diminuição brusca na densidade no início da estação seca (Fig. 3). No conjunto dos microhabitats, bem como em cada um separadamente, as maiores densidades foram registradas no período chuvoso e as menores no período seco.

Figura 2. Densidades mensais da população de Cryptanthus bahianus (ind.35m

-2

) e incremento populacional (r) ind. (ind.mês)

1

em uma área de caatinga de Pernambuco.

Na densidade de C. bahianus não houve diferença significativa entre as duas estações chuvosas (U = 570,50; p < 0,05), entre a estação chuvosa de 2002 e a seca seguinte (U = 544,50; p < 0,05) e nem entre a estação seca e a estação chuvosa de 2003, sendo as densidades um pouco maior nas duas estações chuvosas. Já na densidade de D. coronata houve diferença significativa entre as duas estações chuvosas (U = 3229.50; p < 0,05), entre a estação chuvosa de 2002 e a seca posterior (U = 1214.00; p < 0,05), e também entre a seca e a estação chuvosa de 2003 (U = 2890.50; p < 0,05). Quanto às condições de estabelecimento, foi constatado que existe uma diferença significativa na densidade entre habitats (p < 0,05).

Apenas os microhabitats plano e rochoso não apresentaram diferença significativa desses valores (p > 0,05). As densidades foram mais elevadas na estação chuvosa de 2002 tanto no conjunto dos três microhabitats quanto em cada um isoladamente. O plano foi o que apresentou as maiores densidades nos dois períodos chuvosos conforme mostra a Fig. 3.

Revista de Geografia. Recife: UFPE DCG/NAPA, v. 26, no 2, mai/ago. 2009.

149 Figura 4. Taxas mensais de natalidade nascimentos.(ind.mês)

-1

e mortalidade mortos.(ind.mês)

-1

na população de Cryptanthus bahianus em uma área de caatinga de Pernambuco.

Figura 5. Taxas mensais de natalidade nascimentos.(ind.mês)

-1

e mortalidade mortos.(ind.mês)

-1

na população de Dioscorea coronata em uma área de caatinga de Pernambuco.

Em C. bahianus houve registro de mortalidade na estação seca e na estação chuvosa monitorada (Fig. 4). Na estação seca à mortalidade foi observada no mês de outubro, dezembro e fevereiro. No período chuvoso de 2003, houve registro de mortes nos meses de março e maio.

Na população de D. coronata, no conjunto dos três microhabitats, a taxa de mortalidade foi nula nos três primeiros meses de monitoramento, depois foi registrada em quase todos os

Estudo  de  espécies  

herbáceas  na  CaaQnga  

Santos  et  al.  (2009)  

(17)

Em  geral,  estudos  puramente  descri7vos  

Opções  mais  interessantes:  

  -­‐  Comparação  entre  hábitats  diferentes    

  -­‐  Comparação  entre  espécies  com  diferentes  estratégias  de  vida    

-­‐  Relação  com  mudanças  climáQcas    

Segundo  N.  Gotelli,:  "medem  

tudo  sem  seguir  um  plano"...  

(18)

Diferentes  formas  de  estudar  dinâmica  

3  -­‐  Modelos  matemáQcos  

Ideia  geral:  

  -­‐  Propor  cenários  simples     -­‐  Gerar  previsões  testáveis  

  -­‐  Variar  parâmetros  importantes  

alligatorparasites.wordpress.com  

(19)

Hal  Caswell:  "Por  que  experimentos  são  mais   aceitos  que  modelos?    

Não  são  simplificações  da  mesma  forma?  

(20)

DO  SIMPLES  AO  MAIS  COMPLEXO  

(21)

Modelo  de  Crescimento  Exponencial  

r  é  a  taxa  intrínseca  de  crescimento  (sem  limites)  

r  =  b  -­‐  d  

(22)

Modelo  de  Crescimento  Exponencial  

Se  r  >  0,  a  população  aumenta  sem  limites    

Quanto  maior  a  população  (N),  mais  rapidamente  ela  cresce  

(23)

Quanto  maior  o   r ,  mais  rapidamente  a  população  cresce  

Natur e  Educ a7 on  

(24)

Modelo  de  Crescimento  Exponencial  

Exemplos  reais  (?):  

Silvertown  &  Charlesworth  (2001)  

Ou  apenas  uma  fase  inicial?  

(25)

Modelo  de  Crescimento  Exponencial  

Premissas:  

-­‐  População  fechada    

-­‐  Taxas  de  natalidade  e  mortalidade  constantes    

-­‐  Ausência  de  estrutura  na  população     -­‐  Crescimento  connnuo  

 

(26)

Complicando:  E  se  as  populações  Qverem  algum  Qpo  de  regulação?  

Taxas  vitais  

podem  variar  

(27)

Alguns  fatores  que  podem  afetar  as  taxas  vitais  de  plantas:  

-­‐  Interações  com  consumidores  (predadores,  herbívoros,  patógenos)   -­‐  Interação  com  mutualistas  (polinizadores,  dispersores)  

-­‐  Interações  compeQQvas  (intra  ou  interespecíficas)   -­‐  Variações  genéQcas  

-­‐  Condições  abióQcas  (solo,  clima,  luz,  etc)  *  

*  Afetam,  mas,  em  geral,  não  regulam  

(28)

Regulação  Populacional      

Base  para  a  teoria  da  evolução      

 

blog.tepapa.govt.nz  

(29)

Dependência  da  densidade    

Um  dos  conceitos  ecológicos  mais  anQgos    

"Balanço  da  natureza"  

   

Condição  essencial  para  a  persistência  de  populações!  

(30)

K  

Modelo  de  Crescimento  LogísQco  

K  =  Capacidade  suporte  do  ambiente    

À  medida  que  N  se  aproxima  de  K,  a  taxa  de  crescimento  diminui  

(31)

Modelo  de  Crescimento  LogísQco  

Modelo  dependente  da  densidade!  

para  N  =  300   (0,80)  

para  N  =  1350  

(0,10)  

(32)

K   pode  alterar   r  de  duas  formas:  

-­‐  diminuindo  a  taxa  de  natalidade  (b)     -­‐  aumentando  a  taxa  de  mortalidade  (d)      

r  =  b  -­‐  d  

Lembrando  que    

Interações  compeQQvas  ou  de  "predação"  podem  atuar  

(33)

MODELO  JANZEN  -­‐  CONNELL  

Maior  quanQdade  de  sementes   próximas  à  planta  mãe  

Maior  densidade  gera  maior  

COMPETIÇÃO  intraespecífica  e  maior   probabilidade  de  transmissão  de   PATÓGENOS  

Maior  proximidade  à  planta  mãe  gera   maior  chance  de  PREDAÇÃO  e  

ATAQUE  DE  PATÓGENOS  

(34)

Box 1 The Janzen-Connell effect and its assumptions

The Janzen-Connell mechanism relies on assumptions about the relationship between seed (or seedling) density and the probability of individual recruitment, and the relationship between seed dispersal and distance from the parent plant. As shown in (a) the relationship between recruitment and density may be density independent, compensating or overcompensating. Seed dispersal is typically leptokurtic (b), so that most seeds land immediately beneath the parent tree. When this leptokurtic dispersal is combined with the density responses in (a), the net density of recruits depends on the form of density dependence as shown in (c). The Janzen-Connell mechanism is based on the prediction that when density dependence is overcompensating, recruitment fails beneath a parent tree. On the other hand, if density dependence is compensating, absent or undercompensating (intermediate between compensating or absent) then the highest densities of recruits occur immediately beneath the adults (c). The Janzen-Connell effect is a powerful mechanism: to illustrate this (d) shows the effect in operation in a simple model (described by Pacala 1997). In this model, there is a series of sites, each of which is occupied by an adult tree. Following the death of an adult, an empty site is occupied by another tree, the new occupier being determined by a simple lottery in which the probability of any species occupying being proportional to the number of seeds it disperses. To mimic the Janzen- Connell effect, the probability of recruitment of species i into a site formerly occupied by species i is reduced by a factor v. v = 1 corresponds to no density dependence (equivalent to a neutral model), whereas when v = 0 density dependence is completely overcompensating. The model assumes that a fraction of seed (m) disperses globally (varied between 0.01 and 0.9, indicated by the numbers above the lines in d), whereas the rest stays in the natal site. As shown, in (d) diversity is always maximized when density dependence is overcompensating. Moreover, when most seed lands in the parental site (global dispersal is 0.5 or less) the relationship is nonlinear so that the increases in diversity as a consequence of density dependence are greatest when v is small. This emphasizes that overcompensating density dependence is potentially an extremely powerful force, particularly when dispersal is low, exactly as envisaged in the original model (models were run for 1000 patches, with simulations lasting 5 · 10

5

generations. 30% of individuals died in each generation and the model was initiated with 50 identical species at time 0).

Density of seeds

7 6 5 4 3 2

1

0.0 0.2 0.4 0.6 0.8 1.0

Distance from parent

Distance from parent

Density of recruits (log scale) Density of recruits (log scale) Density of seeds Relative species ric hness

v, reduction of recruitment in conspecific sites Overcompensating

NDD (v = 0)

No NDD (v = 1) Overcompensating

NDD Compensating

NDD No NDD

No NDD

Compensating NDD

Overcompensating NDD

m = 0.9

(a)

(c)

(b)

(d)

m = 0.5

m = 0.2

m = 0.1

m = 0.05 m = 0.01

Letter Pathogens cause overcompensating dynamics 1263

! 2010 Blackwell Publishing Ltd/CNRS

Precisa  haver  "sobrecompensação"  

No  modelo  Janzen-­‐Connell  não  basta  haver  regulação  

É  um  modelo  voltado  para  explicar  coexistência  em  comunidades  

Bagchi  et  al.  (  2010)  

A  redução  na  densidade  de  coespecíficos  próximos  à  planta  mãe,  propicia  o  

estabelecimento  de  outras  espécies  abaixo  da  copa  

(35)

Modelo  de  Crescimento  LogísQco  

Premissas:  

-­‐  População  fechada    

-­‐  Ausência  de  estrutura  na  população    

-­‐  Crescimento  connnuo  

 

(36)

Populações  Estruturadas  -­‐  Modelos  Matriciais    

Marrero-­‐Gomez  et  al.(2007)    

Mecanismo  básico  de  funcionamento  já  trabalhado  em  aula  

(37)

Populações  Estruturadas  -­‐  Modelos  Matriciais    

EsQmar  a  estrutura  estável  etária/tamanhos  =  Autovetor  dominante     EsQmar  a  taxa  de  crescimento  =  Autovalor  dominante  (  λ  )    

Prever  o  crescimento  da  população  

Importância:  

(38)

Relembrando  alguns  pontos  importantes:  

Matriz  de  Leslie  

(baseada  em  idades)   Matriz  de  Le{ovitch   (baseada  em  estágios)  

Diagonal  principal  

somente  com  zeros  

(39)

Relembrando  alguns  pontos  importantes:  

"Todos  os  estudos  demográficos  sofrem  com  o  problema  de  que  os   dados  coletados  a  par;r  de  poucos  anos  podem  ser  a<picos"  

Silvertown  &  Charlestown  (2006)  

Principalmente   para  plantas  de  

vida  longa  

arvoresbrasil.nom.br  

Lembra algo?

(40)

Importância  de  Parcelas  Permanentes   CTFS  -­‐  Center  for  Tropical  Forest  Science  

Primeira  Parcela  CTFS  

Ilha  de  Barro  Colorado,  Panamá  (desde  1980)   Muitos  estudos  populacionais  importantes!    

Foto: www.aqua-firma.co.uk/editorfiles/Image/Panama

(41)

Populações  Estruturadas  -­‐  Modelos  Matriciais  Simples    

Premissas:    

-­‐  Populações  fechadas  

  -­‐  Probabilidades  de  transição  constantes     -­‐  Ausência  de  estrutura  genéQca  

 

(42)

Modificações  nos  valores  de  probabilidades  afetando  lambda  (  λ  )   λ  =  1.259  

Em  árvores,  maiores  elasQcidades  associadas  à  classe  adulta  

Análises  de  Perturbação  -­‐  Sensibilidade  e  ElasQcidade  

(43)

Uma  análise  interessante!  

Somar  as  elasQcidades  dentro  de  cada  um  dos  três  principais  processos  

F  =  Fecundidade    

S  =  Sobrevivência  (L)   G  =  Crescimento  

Proporção  que  cada  processo  representa   ou  ainda  

Proporção  de  cada  estágio  dentro  de  um  dado  processo  

(44)

Ordenação  triangular  das  elasQcidades  de  F  -­‐  G  -­‐  S    

Silvertown  et  al.  (1996)  Ecology  

F  

G   S  

(45)

534 MIGUEL FRANCO AND JONATHAN SILVERTOWN Ecology, Vol. 85, No. 2

FIG. 1. The distribution of 102 species of perennial plants in elasticity space, as defined by the vital rates survival (S), growth (G), and fecundity (F). (a) Distribution of proportional values of elasticity. (b)–(f) Rescaled elasticity values for each of five groups of plants: (b) semelparous plants, (c) iteroparous herbs from open habitats, (d) iteroparous forest herbs, (e) shrubs, and (f) trees.

complex life cycles, not all of the papers contained enough information to decompose the matrix data into their component vital rates. Therefore, although we in- corporated a substantial number of new studies, we had to drop some of the species presented in previous anal- yses (e.g., Franco and Silvertown 1996). The results presented here come from 102 species listed in the Appendix. Projection analyses were conducted with the program STAGECOACH (Cochran and Ellner 1992).

This program was also used to calculate other life his- tory variables as in Franco and Silvertown (1996). The intrinsic rate of increase (r) was calculated as the nat- ural logarithm of

, the dominant eigenvalue of the population matrix for each species. Life span (L) is the expected age at death, conditional on passing through stage 1 (Cochran and Ellner’s Eq. 6). Age at sexual maturity (

) is the average age at which an individual enters a stage class with positive fecundity (Cochran and Ellner’s Eq. 15). Two measures of generation time, A˜, the mean age of parents of offspring produced at stable stage distribution (Cochran and Ellner’s Eq. 26), and

, the mean age at which members of a cohort produce offspring (Cochran and Ellner’s Eq. 27), were calculated. This was done because they measure slight- ly different things, but also because values for some species were computable by one measure and not the other. Finally, the net reproductive rate (R

0

) is the av-

erage number of offspring produced by an individual over its life span (Cochran and Ellner’s Eq. 18). In cases where more than one type of recruit occurred (i.e., in species with clonal growth), all these life his- tory indices were taken for the average ‘‘newborn equivalent,’’ as weighted by the relative reproductive value of the different types of offspring in STAGE- COACH (Cochran and Ellner 1992). Additionally, us- ing the spectrum of eigenvalues for each matrix (spe- cies) we calculated the damping ratio (

), a measure of the speed with which the population converges to stability, and the period of oscillation (P

i

, where i cor- responded to the highest possible complex eigenvalue), the average duration of an oscillation as the population converges to equilibrium. These correspond to equa- tions 4.90 and 4.99 of Caswell (2001). Not all matrices yielded complex eigenvalues, and therefore some spe- cies lack P

i

.

In order to gain some insight as to the variation in life histories in elasticity space, we fitted contour sur- faces to the life history variables plotted as a fourth axis on the triangle. We chose the ‘‘special cubic smooth’’ of Statistica (StatSoft 2000). This model has the form y

b

1

x

1

b

2

x

2

b

3

x

3

b

12

x

1

x

2

b

13

x

1

x

3

b

23

x

2

x

3

b

123

x

1

x

2

x

3

, where y is the life history variable plotted on the fourth axis, x

1

F, x

2

S, and x

3

G.

This fitting procedure was applied to the rescaled elas-

Franco  &  Silvertown  (2004)  

Semélparas   Herbáceas  de  ambientes  abertos  

Herbáceas  de  florestas   Arbustos   Árvores  

(46)

Os  processos  estão  relacionados  à  longevidade  das  plantas  

February 2004 COMPARATIVE DEMOGRAPHY OF PLANTS 537

FIG. 4. The relationship between each of the elasticities of (a) survival, (b) growth, and (c) fecundity and life span for 102 species of perennial plants.

space (Fig. 1b–f) are all remarkably similar to the orig- inal distributions of the groups plotted using matrix element elasticities by Silvertown et al. (1993). The match between the two analyses is all the more re- markable because only 52 species out of the total of 120 analyzed so far were present in both the original dataset and the current one, and four of these have new data (see the Appendix). The similarity of the two sets of distributions demonstrates that, although matrix elasticities are technically compounds of vital rates, the matrix regions that were originally designated as rep- resenting growth, stasis, and fecundity were appropri- ately named for practical purposes. It is evident from this that the elasticities of distinct matrix regions, as defined by Silvertown et al. (1993), are largely deter- mined by contributions from specific vital rates.

Notwithstanding the agreement between element and vital rate elasticities, the latter are to be preferred be- cause they strictly correspond to the fundamental de- mographic processes that matrix element elasticities only approximate. Another reason for the preference is that matrix element elasticities are influenced by the number and breadth of size classes used in a population model (Enright et al. 1995), while vital rate elasticities are more robust to such details of matrix construction.

As mentioned in Introduction, Zuidema and Zagt (in Zuidema 2000) found that, in contrast to the elasticity of matrix elements, the elasticity of vital rates was rather insensitive to changes in the number of cate- gories (matrix size) employed.

It is important to bear in mind that whichever type of elasticity analysis is used, estimates of demographic parameters will always be highly dependent upon the ecological conditions, for example the successional sta- tus, under which the estimates were obtained (Silver- town et al. 1996, Silva Matos et al. 1999). This problem suggests that standardization may be useful before spe- cies are compared. One possible method of standard- ization would be to confine comparisons only to those species represented by populations at equilibrium (i.e.,

⇥ 1 or r 0). However, this would ignore the fact that equilibrium is not a typical state for the populations of some species, particularly short-lived ones, and such a comparison would therefore be biased against certain life history types. In the present data set, only 44 of the 102 species fall within the bounds 0.95⌅ ⇥ ⌅1.05 and these are mainly woody (nine shrubs and 20 trees).

Standardization by this method would severely bias the data set and defeat the object of comparing species by excluding all eight semelparous perennial species, most (22 out of 31 species) iteroparous herbs of open hab- itats, and half the forest herbs and shrubs (seven out of 13 and nine out of 18 species, respectively).

Correlates of vital rate elasticities

As is to be expected, elasticities of vital rates cor- relate with life history and population parameters. Lon- gevity, age at first reproduction, and generation time all increase along an arc that runs from the F vertex to the S vertex, passing through the center of the tri- angle (Fig. 2a–d). These patterns reflect the changes in plant life history that occur with succession from pi- oneer to climax communities (Silvertown and Franco 1993). Population model properties also correlate with vital rate elasticities, but in a more varied manner. The intrinsic rate of natural increase (r) is highest at the point F G 0.5, S ⇤ 0 and decreases toward S ⇤ 1 (Fig. 3a). By contrast, the net reproductive rate (R0) is highest near the center of the triangle (Fig. 3d). The damping ratio ( ), which measures how quickly a pop- ulation’s size structure converges on equilibrium, is high for short-lived species at theGandFvertices and decreases toward the center of the triangle and the S vertex. (Fig. 3b). The period of oscillation is lowest

February 2004 COMPARATIVE DEMOGRAPHY OF PLANTS 537

FIG. 4. The relationship between each of the elasticities of (a) survival, (b) growth, and (c) fecundity and life span for 102 species of perennial plants.

space (Fig. 1b–f) are all remarkably similar to the orig- inal distributions of the groups plotted using matrix element elasticities by Silvertown et al. (1993). The match between the two analyses is all the more re- markable because only 52 species out of the total of 120 analyzed so far were present in both the original dataset and the current one, and four of these have new data (see the Appendix). The similarity of the two sets of distributions demonstrates that, although matrix elasticities are technically compounds of vital rates, the matrix regions that were originally designated as rep- resenting growth, stasis, and fecundity were appropri- ately named for practical purposes. It is evident from this that the elasticities of distinct matrix regions, as defined by Silvertown et al. (1993), are largely deter- mined by contributions from specific vital rates.

Notwithstanding the agreement between element and vital rate elasticities, the latter are to be preferred be- cause they strictly correspond to the fundamental de- mographic processes that matrix element elasticities only approximate. Another reason for the preference is that matrix element elasticities are influenced by the number and breadth of size classes used in a population model (Enright et al. 1995), while vital rate elasticities are more robust to such details of matrix construction.

As mentioned in Introduction, Zuidema and Zagt (in Zuidema 2000) found that, in contrast to the elasticity of matrix elements, the elasticity of vital rates was rather insensitive to changes in the number of cate- gories (matrix size) employed.

It is important to bear in mind that whichever type of elasticity analysis is used, estimates of demographic parameters will always be highly dependent upon the ecological conditions, for example the successional sta- tus, under which the estimates were obtained (Silver- town et al. 1996, Silva Matos et al. 1999). This problem suggests that standardization may be useful before spe- cies are compared. One possible method of standard- ization would be to confine comparisons only to those species represented by populations at equilibrium (i.e.,

⇥ 1 or r 0). However, this would ignore the fact that equilibrium is not a typical state for the populations of some species, particularly short-lived ones, and such a comparison would therefore be biased against certain life history types. In the present data set, only 44 of the 102 species fall within the bounds 0.95⌅ ⇥ ⌅1.05 and these are mainly woody (nine shrubs and 20 trees).

Standardization by this method would severely bias the data set and defeat the object of comparing species by excluding all eight semelparous perennial species, most (22 out of 31 species) iteroparous herbs of open hab- itats, and half the forest herbs and shrubs (seven out of 13 and nine out of 18 species, respectively).

Correlates of vital rate elasticities

As is to be expected, elasticities of vital rates cor- relate with life history and population parameters. Lon- gevity, age at first reproduction, and generation time all increase along an arc that runs from the F vertex to the S vertex, passing through the center of the tri- angle (Fig. 2a–d). These patterns reflect the changes in plant life history that occur with succession from pi- oneer to climax communities (Silvertown and Franco 1993). Population model properties also correlate with vital rate elasticities, but in a more varied manner. The intrinsic rate of natural increase (r) is highest at the point F G 0.5, S ⇤ 0 and decreases toward S ⇤ 1 (Fig. 3a). By contrast, the net reproductive rate (R0) is highest near the center of the triangle (Fig. 3d). The damping ratio ( ), which measures how quickly a pop- ulation’s size structure converges on equilibrium, is high for short-lived species at theGandFvertices and decreases toward the center of the triangle and the S vertex. (Fig. 3b). The period of oscillation is lowest

February 2004 COMPARATIVE DEMOGRAPHY OF PLANTS 537

FIG. 4. The relationship between each of the elasticities of (a) survival, (b) growth, and (c) fecundity and life span for 102 species of perennial plants.

space (Fig. 1b–f) are all remarkably similar to the orig- inal distributions of the groups plotted using matrix element elasticities by Silvertown et al. (1993). The match between the two analyses is all the more re- markable because only 52 species out of the total of 120 analyzed so far were present in both the original dataset and the current one, and four of these have new data (see the Appendix). The similarity of the two sets of distributions demonstrates that, although matrix elasticities are technically compounds of vital rates, the matrix regions that were originally designated as rep- resenting growth, stasis, and fecundity were appropri- ately named for practical purposes. It is evident from this that the elasticities of distinct matrix regions, as defined by Silvertown et al. (1993), are largely deter- mined by contributions from specific vital rates.

Notwithstanding the agreement between element and vital rate elasticities, the latter are to be preferred be- cause they strictly correspond to the fundamental de- mographic processes that matrix element elasticities only approximate. Another reason for the preference is that matrix element elasticities are influenced by the number and breadth of size classes used in a population model (Enright et al. 1995), while vital rate elasticities are more robust to such details of matrix construction.

As mentioned in Introduction, Zuidema and Zagt (in Zuidema 2000) found that, in contrast to the elasticity of matrix elements, the elasticity of vital rates was rather insensitive to changes in the number of cate- gories (matrix size) employed.

It is important to bear in mind that whichever type of elasticity analysis is used, estimates of demographic parameters will always be highly dependent upon the ecological conditions, for example the successional sta- tus, under which the estimates were obtained (Silver- town et al. 1996, Silva Matos et al. 1999). This problem suggests that standardization may be useful before spe- cies are compared. One possible method of standard- ization would be to confine comparisons only to those species represented by populations at equilibrium (i.e.,

⇥ 1 or r 0). However, this would ignore the fact that equilibrium is not a typical state for the populations of some species, particularly short-lived ones, and such a comparison would therefore be biased against certain life history types. In the present data set, only 44 of the 102 species fall within the bounds 0.95⌅ ⇥ ⌅1.05 and these are mainly woody (nine shrubs and 20 trees).

Standardization by this method would severely bias the data set and defeat the object of comparing species by excluding all eight semelparous perennial species, most (22 out of 31 species) iteroparous herbs of open hab- itats, and half the forest herbs and shrubs (seven out of 13 and nine out of 18 species, respectively).

Correlates of vital rate elasticities

As is to be expected, elasticities of vital rates cor- relate with life history and population parameters. Lon- gevity, age at first reproduction, and generation time all increase along an arc that runs from the F vertex to the S vertex, passing through the center of the tri- angle (Fig. 2a–d). These patterns reflect the changes in plant life history that occur with succession from pi- oneer to climax communities (Silvertown and Franco 1993). Population model properties also correlate with vital rate elasticities, but in a more varied manner. The intrinsic rate of natural increase (r) is highest at the point F G 0.5,S ⇤ 0 and decreases toward S⇤ 1 (Fig. 3a). By contrast, the net reproductive rate (R0) is highest near the center of the triangle (Fig. 3d). The damping ratio ( ), which measures how quickly a pop- ulation’s size structure converges on equilibrium, is high for short-lived species at theGandFvertices and decreases toward the center of the triangle and the S vertex. (Fig. 3b). The period of oscillation is lowest

F   G  

S  

Requer  interpretação   cuidadosa  e  dentro  de  

grupos  similares  

(47)

1  -­‐  Dependência  da  densidade    

Adicionando  complexidade  a  modelos  matriciais  simples  

Toda  a  população   Apenas  uma  classe  

3  -­‐  EstocasQcidade  demográfica  -­‐  Populações  pequenas   2  -­‐  EstocasQcidade  ambiental   Toda  a  população  

Apenas  uma  classe  

(48)

Analisando  duas  ou  mais  matrizes  

4  -­‐  Metapopulações  

1  -­‐  Genets  +  Ramets    -­‐  Matrizes  de  Goodman   2  -­‐  Variação  Temporal  

3  -­‐  Variação  Espacial  

LTRE  -­‐   Life  Table  Response  Experiment  

(49)

conditions and/or experimental treatments allows managers to evaluate the efficacy of specific management actions and to project what will happen if a certain management strategy is implemented (Song, 1996). However PVA models must be used with caution, because they are just models, or ‘‘carica- tures of reality’’ (Beissinger and Westphal, 1998). Accordingly, one must be aware of the limitations of the models, especially when the results are to be used for decisions on practical spe- cies conservation and management. In the case of the model presented here, it is necessary to point out that all data comes from a single monitoring plot and this lack of replication does not allow us to discern local from environmental variability.

However, we were forced to restrict our monitoring to a single location, in order to avoid endangering the species by our own activities. In addition, comparisons between the native and introduced populations were performed for only one year, and relevant vital rates such as the survival of mature adults were not compared. However, we believe that our comparisons of the demographic structure, fruit production and seedling mortality were sufficient to suggest that the dynamics of the natural and planted populations were quite similar. We also assume that herbivores are not a significant factor, because we did not observe any damage that could be attributed to introduced (rabbits, mouflons) or natural herbivores (lizards, insects, etc.), and all observed deaths in the field were caused by summer drought or natural senescence.

In PVA’s, demographic responses to variable environments can be analyzed by prospective or retrospective analyses.

Sensitivity or elasticity analyses are prospective and quantify the change in population growth rate given a specified change in one or more elements of the matrix. Retrospective analy- ses, by life table response experiments, can be used to deter- mine life-history stages or demographic transitions that contributed to differences between populations observed dur- ing the observation period (Horvitz et al., 1997; Caswell, 2000).

In this paper we resorted principally to prospective analyses because they are the most suitable approach to predict how expected levels of stochasticity will interact with conserva- tion measures to influence the future population growth rate of threatened or endangered species (Menges, 1990; Heppell et al., 1994). The retrospective analyses used in this paper do not clearly coincide with the classical approach. Here, we mainly used it to get an idea of the most likely historical fluc- tuations in population size.

Elasticity analysis revealed that the most critical stage in the life cycle ofH. juliaeis the survival of mature reproductive plants, which showed the highest elasticity (31%) in the aver- age matrix. The survival of this stage in natural conditions was 90.8%, and did not show much variation between good and bad years. For management reasons, we periodically vis- ited the natural populations from 1985 onwards, and the planted population from 1989 onwards, when the individuals were three years old. Our field observations indicated that large reproductive plants generally died of senility after 14 years. In contrast, juvenile recruitment was highly variable, with very high values (4.88) in good, and low values (0) in

1.0 0.8 0.6 0.4 0.2 0

0 0.2

0.4 0.6

0.8

1.0 0

0.2

0.4

0.6

0.8

1.0 L

F G

1 2

3 54

6

97 8

92-93 93-94

94-95 95-96

96-97

97-98

98-99 99-00

00-01

P > 350 mm

P < 350 mm

Fig. 5 – Triangular ordination diagram representing the position of the nine matrices forHelianthemum juliaebetween 1992 and 2002 with respect to their relative contribution (=summed elasticities) of fecundity (F), Growth (G) and survival (L) to the population growth rate,k. The matrices have been chronologically numbered from 1, 1992–1993 to 9, 2001–2002. Shaded areas enclose matrices that correspond to two precipitation classes,P< 350 mm,P> 350 mm.

B I O L O G I C A L C O N S E R V A T I O N 1 3 6 ( 2 0 0 7 ) 5 5 25 6 2 559

Marrero-­‐Gomez  et  al.(2007)     Estudo  com  matrizes  temporais  de  Helianthemum  juliae  e  

relação  com  precipitação  

(50)

Crescimento  conrnuo  -­‐  Modelos  de  Projeção  Integral  

Não  divide  os  indivíduos  em  classes/estágios  

Easterling  et  al.  (2000)  -­‐  Ecology  

MPI  

MM  

Aconitum  noveboracense    

(51)

Modelos  de  Projeção  Integral  

the integral projection model (IPM) in which individu- als are characterized by a continuous variablexsuch as size. The state of the population given byn(x,t), such that the number of individuals with sizes betweenaand bisRb

a n(x,t)dx. Instead of the matrixM, the IPM has a projection kernelK(y,x), so that

n(y,tþ1)¼ ZS

s

K(y,x)n(x,t)dx,

wheresandSare the minimum and maximum possible sizes. The integration is the continuous version of equation 4, adding up all the contributions to sizeyat timetþ1 by individuals of sizex at timet. Providing some technical conditions are met (see Ellner and Rees, 2006, for details), the IPM behaves essentially like a

matrix model, and so the results described above carry over.

Constructing the projection kernel K(y,x) is straightforward using the regressions shown in figure 3. For an individual of sizexto become sizey, it must (1) grow from x toy, (2) survive, and (3) not flower (flowering is fatal in monocarpic plants like Platte thistle). These probabilities are calculated from the fitted relationships in figures 3A, 3B, and 3C, respec- tively. The use of regression models to construct the projection kernel brings some advantages: (1) accepted statistical approaches can be used for selecting an ap- propriate regression model; and (2) additional vari- ables characterizing individuals’ states can be included by adding explanatory variables rather than having to select a single best state variable. For example, in some thistles the probability of flowering depends on both an

A. B.

C. D.

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.5

0 1.0 2.0 1.5 2.5 3.0

Root crown diameter year t mm (log scale)

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Root crown diameter mm (log scale)

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.6

0.8

0.4

0.2

0 1.0

Root crown diameter mm (log scale)

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Root crown diameter mm (log scale) 0.2

0.4

0 0.6 0.8 1.0

200 400

0 600 800

Root crown diameter year t+1 mm (log scale) Probability of survivalSeed production

Figure 3. Size structured demographic rates for Platte thistle, Cirsium canescens. (A) Growth (as characterized by plant size in successive years), (B) survival , (C) the probability of flowering, and (D) seed production all vary continuously with size and can be de scribed by simple regression models. (Redrawn from Rose et al.,

2005) In panels B and C, the data were divided into 20 equal sized categories, and the plotted points are fractions within each cate gory, but the logistic regression models (plotted as curves) were fitted to the binary values (e.g., flowering or not flowering) for each individual.

160 Population Ecology

Cirsium  canescens    

(52)

Modelos  são  abstrações  que  nos  a  ajudam  a   entender  a  complexidade  

O  nível  de  complexidade  de  um  modelo  vai  depender  do  

objeQvo  de  sua  uQlização  

(53)

Jorge  Luis  Borges  

Referências

Documentos relacionados

In this sense, while perhaps normotensive indi- viduals are influenced by hypertensive relatives in their be- liefs of control, a hypothesis is that having a strong belief that

Considering that increasing the number of genomes used in a comparison can reduce the number of genes regarded as essential (Gil et al., 2004), and assuming that the genes shared

Since the population size used would allow detection of recombination as low as 7%, the complete absence of Al sensitive recombinants suggests that tolerance in these cultivars is

At a plant population that is higher than generally recommended and used in Brazil (CARVALHO et al., 2010; SEVERINO et al., 2006a and b), the castor plants compensated for a

Estimated population size under the baseline and threat scenarios (see text) used to model the population of Myrmecophaga tridactyla at Parque Nacional de Brasília.. Population

Advantages: it is a model used by a well-known institution; the measure that comes out of the model is easily extendable to other asset classes, in particular equities, where data

In the present paper, we test the hypothesis that population dynamics of sympatric members of the Triannulatus Complex are distinctly influenced by rain- fall and periods of peak

Pautada sobre o interesse de buscar os recentes trabalhos que relacionam a avaliação da aterosclerose com o comportamento do sistema enzimático antioxidante durante o