• Nenhum resultado encontrado

Continuous and Discrete Time Signals and Systems (Mandal & Asif) Solutions - Chap06

N/A
N/A
Protected

Academic year: 2021

Share "Continuous and Discrete Time Signals and Systems (Mandal & Asif) Solutions - Chap06"

Copied!
39
0
0

Texto

(1)

Problem 6.1 (a)

∞ ∞ − ∞ ∞ − −∞ − ∞ + − − − − ∞ ∞ − − = + = + = II t s I t s st t st t stdt e u t e dt e u t e dt e dt e dt e t x s X 0 ) 4 ( 0 ) 5 ( 4 5 ( ) ( ) ) ( ) ( . Integral I reduces to

[

]

( 5) ( 5) 1 0 0

1 0 1 1 provided Re{( 5)} 0 : Re{ } 5

( 5) ( 5) 5 s t s t e I e dt s ROC R s s s s ∞ ∞ − + − + − = = = − = + > ⇒ > − − + + +

,

while integral II reduces to

[

]

0 0 (4 ) (4 ) 1 1 1

1 0 provided Re{(4 )} 0 : Re{ } 4

(4 ) (4 ) 4 s t s t e II e dt s ROC R s s s s − − −∞ −∞ − = = = − = − > ⇒ < − − −

.

The Laplace transform is therefore given by

1 2 1 1 9 ( ) : : ( 5 Re{ } 4) 5 4 ( 5)( 4) X s I II with ROC R R R or R s s s s s − = + = − = = − < < + − + − ∩ . (b)

∞ ∞ − ∞ + − ∞ − − ∞ − − ∞ − − − − ∞ ∞ − − = = + = + = II t s I t s st t st t st t stdt e e dt e e dt e e dt e dt e dt e t x s X 0 ) 3 ( 0 ) 3 ( 0 3 0 3 3 ) ( ) ( . Integral I reduces to

[

]

0 0 (3 ) (3 ) 1 1 1 1 0 Re{(3 )} 0 : Re{ } 3 (3 ) (3 ) 3 s t s t e I e dt provided s ROC R s s s s − − −∞ −∞ − = = = − = − > ⇒ < − − −

,

while integral II reduces to

[

]

( 3) ( 3) 1 0 0 1 1 0 1 Re{( 3)} 0 : Re{ } 3 ( 3) ( 3) 3 s t s t e II e dt provided s ROC R s s s s ∞ ∞ − + − + − = = = − = + > ⇒ > − − + + +

The Laplace transform is therefore given by

1 2 2 1 1 6 ( ) : : ( 3 Re{ } 3) 3 3 9 X s I II with ROC R R R or R s s s s − = + = − = = − < < + − − ∩ .

(2)

(c)

(

)

0 2 1 2 10 10 2

( )

( )

st

cos(10 ) ( )

st j t j t st j

X s

x t e dt

t

t u t e dt

t e

e

e dt

∞ ∞ − − − − −∞ −∞ −∞

=

=

=

(

)

(

)

[

]

3 3 3 0 0 2 ( 10) 2 ( 10) 1 1 2 2 0 0.5 ( 10) 2 2 ( 10) 0 0.5 ( 10) 2 2 ( 10) 0.5 0.5 ( 10) ( 10) 2( 10) 2 ( 10) 2( 10) 2 s 10 2 0 s j t s j t j j j s j t s j j s j t s j j j s j t e dt t e dt e s j t s j t e s j t s j t j − − − + −∞ −∞ − − − −∞ − + + −∞ − = −   = − + − +   − + + + + ≠ ± = − −

[

]

3 3 3 ( 10) 1 1 ( 10) ( 10) ( 1 2 0 Re {s j10}<0 ROC: Re{s}<0 s j s j s j s j j j + − + + − ±   = = 3 3 2 2 3 3 2 3 2 3 0) ( 10) 6 10 2000 60 2000 ( 10) ( 10) ( 100) ( 100) ROC: Re{s}<0 s j s j j s s j s j j s s − − − − + − + = + = + (d)

∞ ∞ − ∞ + − ∞ − − − − ∞ ∞ − − = == + = II t s I t s st t stdt e t e dt e t dt e t dt e t x s X 0 ) 3 ( 0 ) 3 (

3 cos(5 ) cos(5 ) cos(5)

) ( ) ( . Integral I reduces to

[

]

0 0 (3 ) (3 ) (3 ) 2 2 1 2 2 2 2 1

cos(5 ) (3 ) cos(5 ) 5 sin( )

(3 ) 5 1 ( 3) (3 0) (0 0) Re{(3 )} 0 : Re{ } 3 (3 ) 5 ( 3) 5 s t s t s t I e t dt s e t e bt s s s provided s ROC R s s s − − − −∞ −∞   = = − + − + − − = − + − + = − > ⇒ < − + − +

while integral II reduces to

[

]

[

]

Re{( 3)} 0 :Re{} 3 5 ) 3 ( ) 3 ( ) 0 ) 3 ( ( ) 0 0 ( 5 ) 3 ( 1 ) 5 sin( 5 ) 5 cos( ) 3 ( 5 ) 3 ( 1 ) 5 cos( 1 2 2 2 2 0 ) 3 ( ) 3 ( 2 2 0 ) 3 ( − > ⇒ > + + + + = + + − − + + + = + + − + + = = ∞ + − + − ∞ + −

s R ROC s provided s s s s t e t e s s dt t e II s t s t s t

The Laplace transform is therefore given by

1 2 2 2 2 2 3 3 ( ) : : ( 3 Re{ } 3) ( 3) 5 ( 3) 5 s s X s I II with ROC R R R or R s s s + − = + = − = − < < + + − + ∩ .

(3)

(e) 7 ( 7) 0 ( ) ( ) st tcos(9 ) ( ) st s tcos(9 ) X s x t e dt e t u t e dt e t dt ∞ ∞ ∞ − − − − −∞ −∞ =

=

=

[

]

( 7) ( 7) 2 2 0 2 2 2 2 1

( 7) cos(9 ) 9 sin(9 ) provided Re{( 7)} 0

( 7) 9 1 (0 0) ( ( 7) 0) ( 7) 9 ( 7) ( 7) 9 s t s t s e t e t s s s s s s ∞ − − − −   = − − + − > − + = + − − − + − + − = − + ROC R: Re{ } 7s > (e) 0 7 ( 7) ( ) ( ) st tcos(9 ) ( ) st s tcos(9 ) X s x t e dt e t u t e dt e t dt ∞ ∞ − − − − −∞ −∞ −∞ =

=

− =

[

]

0 ( 7) ( 7) 2 2 2 2 2 2 1

( 7) cos(9 ) 9 sin(9 ) provided Re{( 7)} 0

( 7) 9 1 ( 7) 0 (0 0) ( 7) 9 ( 7) ( 7) 9 s t s t s e t e t s s s s s s − − − − −∞   = − − + − < − + = − − + − + − + − − = − + ROC R: Re{ } 7s < (f) 1 1 2 0 0 0 ( )s ( ) 2 (1 ) 2 0.5 1 X s x t dt t dt t t ∞ = −∞   =

=

− = = 0 1 0 1 0 ( ) ( ) st (1 ) st (1 ) st s I II X s x t e dt t e dt t e dt ∞ − − − ≠ −∞ − =

=

+ +

− where

(

)

(

)

2 2 2 2 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 (1 ) ( 1) 1 1 ( 1) 1 ( 1) 1 st st st st st s s s s s s s s s s s I t e dt e dt te dt e e st e e s se s e s e s − − − − − − − − − − −     = + = + = + − −     = − + − − − = − − − − = − −

and

(

)

(

)

2 2 2 2 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 (1 ) ( 1) 1 ( 1) 1 ( 1) 1 1 st st st st st s s s s s s s s s s s II t e dt e dt te dt e e st e e s s se e s e s − − − − − − − − − − −     = − = − = − −     = − − − − + = − + + − = + −

The Laplace transform is therefore given by

(

)

2 1 1 0 ( ) : Entire s-plane 2 0 s s s s X s ROC e es =  =  +  ▌

(4)

Problem 6.2 (a) ∞ − − − − − − ∞ −         − − − + − − − + − − − = =

0 6 5 4 2 3 3 2 4 5 0 5 ) ( 120 ) ( 120 ) ( 60 ) ( 20 ) ( 5 ) ( ) ( s e s e t s e t s e t s e t s e t dt e t s X st st st st st st st .

Applying the limits, we obtain 6 6 ! 5 120 ) ( s s s

X = = with ROC: Re{s} > 0.

(b) 1

(

6 6

)

2 0 0 0 ( ) sin(6 ) ( ) st sin(6 ) st j t j t st j X s t u t e dt t e dt e e e dt − ∞ ∞ ∞ − − − − =

=

=

− ( 6) ( 6) 1 1 2 2 0 0 0.5 ( 6) 0.5 ( 6) 0 6 0 6 0 0.5 0.5 6 6 1 1 6 s Re {s j6}>0 0.5 s j t s j t j j j s j t j s j t s j s j j j s j s j s j e dt e dt e e j j ω ∞ ∞ − − − + ∞ ∞ − − − + − + − + + = −     = ≠ ± = − + ± = −

2 2 12 6 36 6 36 0.5 ROC: Re{s}>0 j s j s s j − − + +   = ×   =

c)

∞ − ∞ − ∞ − ∞ −             + + − + = + = =

0 2 2 0 0 0 2 12 ) 12 sin( 12 ) 12 cos( 2 1 2 1 ) 12 cos( 2 1 2 1 ) 6 ( cos ) ( st st st e st s t t s s dt t e dt e dt e t s X which reduces to ) 144 ( ) 72 ( 12 2 1 2 1 ) ( 2 2 2 2 + + = + × + = s s s s s s s

X with ROC: Re{s} > 0.

(d) 3 ( 3) 0 ( ) ( ) st tcos(9 ) ( ) st s tcos(9 ) X s x t e dt e t u t e dt e t dt ∞ ∞ ∞ − − − − + −∞ −∞ =

=

=

[

]

( 3) ( 3) 2 2 0 2 2 2 2 1

( 3) cos(9 ) 9 sin(9 ) provided Re{( 3} 0

( 3) 9 1 (0 0) ( ( 3) 0) ( 3) 9 3 ( 3) 9 s t s t s e t e t s s s s s s ∞ − + − +   = − + + + < + + = + − − + + + + + = + + : ROC R Re{ }s < −3

(e)

II j s I j s stdt t e dt t e dt e t t s X

∞ + − ∞ − − ∞ − = + = 0 ) 10 ( 2 0 ) 10 ( 2 0 2 2 1 2 1 ) 10 cos( ) ( . Integral I reduces to

(5)

3 0 3 ) 10 ( 2 ) 10 ( ) 10 ( 2 ) 10 ( 2 ) 10 ( 2 ) 10 ( 2 ) 10 ( s j s j e j s e t j s e t I t j s t j s t j s − =         − − + − − − − = ∞ − − − − − −

with ROC: Re{s} > 0. Integral II reduces to 3 0 3 ) 10 ( 2 ) 10 ( ) 10 ( 2 ) 10 ( 2 ) 10 ( 2 ) 10 ( 2 ) 10 ( s j s j e j s e t j s e t II t j s t j s t j s + =         + − + + − + − = ∞ + − + − + −

with ROC: Re{s} > 0. The Laplace transform is, therefore, given by

3 3 ( 10) 1 ) 10 ( 1 ) ( j s j s s X + + −

= with ROC: Re{s} > 0.

(f)

1 2 1 1 2 0 0 0 0 ( )s ( ) (1 ) 0.5 X s x t dt t dt t t − ∞ = =

=

− = −  =

(

)

(

)

2 2 2 2 1 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 ( ) ( ) (1 ) ( 1) 1 ( 1) 1 ( 1) 1 1 st st st st s st st s s s s s s s s s s s X s x t e dt t e dt e dt te dt e e st e e s s se e s e s − ∞ − − − − ≠ − − − − − − − − = = − = −       = − − = − − − − +   = − + + − = + −

Therefore,

(

)

2 1 2 1 0 ( ) : Entire s-plane 1 0 s s s X s ROC es s =  =  + − ≠  ▌ Problem 6.3

(a) Using partial fraction expansion and associating the ROC to individual terms, yields 2 2 2 ( 1) 2 1 1 ( 1)( 2)( 3) ( 2)( 3) 2 3 ( 1)( 5 6) ROC:Re{ } 2 ROC:Re{ } 3

( )

s s s s A B s s s s s s s s s s s s

X s

+ + + + + + + + + + + + + + >− >−

=

=

=

=

+

where 1 1 3 2

1,

2 3

2

s s s s s s

A

+

B

+ + =− + =−

=

 

 

= −

=

 

 

=

. Calculating the inverse transform of X(s), yields

(

)

2 3 3 2

( )

t

( ) 2

t

( )

2

t t

( ).

x t

= −

e u t

+

e u t

=

e

e

u t

(b) Using partial fraction expansion and associating the ROC to individual terms, yields 2 22 1 ( 2)(1 3) 2 3 ( 1)( 5 6) ROC:Re{ } 2 ROC:Re{ } 3

( )

s s s A B s s s s s s s s s

X s

+ + + + + + + + + + <− <−

=

=

=

+

where constants A, and B were computed in part (a) as A = −1, and B = 2.

In other words, 1 2 2 3 ROC:Re{ } 2 ROC:Re{ } 3

( )

s s s s

X s

− + + <− <−

=

+

(6)

Using the transform pair s a a s t u e at L <− + → ← −

− − with ROC: Re{ }

) ( 1 ) ( , the inverse transform of X(s) yields

(

)

2 3 2 3

( )

t

( )

t

( )

t t

( ).

x t

=

e u t

− −

e u t

− =

e

e

u t

Note that the same rational fraction for X(s) yields different time domain representations if the associated ROC is different.

(c) ( 1)(2 23 54 6) ( 1)(2 32)(4 3) 1 2 3

ROC:Re{ } 1 ROC:Re{ } 2 ROC:Re{ } 3

( )

s s s s A B C s s s s s s s s s s s s

X s

+ − + − + + + + + + + + + >− >− >−

=

=

=

+

+

where 2 3 4 2 3 4 2 3 4 (ss 2)(ss 3)s 1

3,

( 1)(ss ss 3)s 2

6,

(ss 1)(ss 3) s 2

2

A

+ −

B

+ −

C

+ − + + =− + + =− + + =−

=

= −

=

=

=

= −

.

( )

X s

can be expressed as: 3 6 2

1 2 3

ROC:Re{ } 1 ROC:Re{ } 2 ROC:Re{ } 3

( )

s s s s s s

X s

− − + + + >− >− >−

=

+

+

.

The inverse transform of X(s) yields

(

2 3

)

( )

3

t

6

t

2

t

( )

x t

= −

e

+

e

e

u t

(d) ( 1)(2 23 54 6) ( 1)(2 32)(4 3) 1 2 3

ROC:Re{ } 1 ROC:Re{ } 2 ROC:Re{ } 3

( )

s s s s A B C s s s s s s s s s s s s

X s

+ − + − + + + + + + + + + <− <− <−

=

=

=

+

+

where constants A, B, and C were computed in part (a) as A = -3, B = 6, and C =-2.

( )

X s

can be expressed as: 3 6 2

1 2 3

ROC:Re{ } 1 ROC:Re{ } 2 ROC:Re{ } 3

( )

s s s s s s

X s

− − + + + <− <− <−

=

+

+

.

Using the transform pair s a

a s t u e at L <− + → ← −

− − with ROC: Re{ }

) ( 1 ) ( , the inverse transform of X(s) yields

(

2 3

)

( ) 3 t 6 t 2 t ( ) x t = e e+ eu t− .

(e) Using partial fraction expansion and associating the ROC to individual terms, yields

} 4 1 Re{ } Re{ : ROC ) 17 2 ( 1 } Re{ : ROC ) 1 ( 0 } Re{ : ROC ) 17 2 )( 1 ( 1 2 2 2 ) ( j s s s D Cs s sB s s A s s s s s s X ± − > + + + − > + > + + + + = + + = where . 8 1 ) 1 ( and 17 1 1 ) 17 2 ( 1 1 ) 17 2 )( 1 ( 1 0 ) 17 2 )( 1 ( 1 0 ) 17 2 )( 1 ( 1 2 2 2 2 2 2 2 2 − =     =     + = =     =     = − = + ++ − = + + + + = + + + + = + + + + s s s s s s s s s s s s s s s s s s s s s s s B s A

(7)

) 1 ( ) ( ) 17 2 ( ) 17 2 )( 1 ( 1 2 2 2 + =As+ s + s+ +Bs s + s+ + Cs+D s s+ s

and compare the coefficients of s3 and s2. We get

D C B A C B A + + + ==3 + 2+ 1 0

which has a solution C = 9/136 and D = 137/136. The Laplace transform may be expressed as

1 } Re{ : ROC ) 4 ) 1 (( 136 4 32 1 } Re{ : ROC ) 4 ) 1 (( 136 ) 1 ( 9 1 } Re{ : ROC ) 1 ( 8 1 0 } Re{ : ROC 171 2 2 2 2 ) ( − > + + × − > + + + − > + > + + − = s s s s s s s s s s X

Taking the inverse transform of X(s) yields

(

)

9 1 1 4 17 8 136 17 9 1 1 4 17 8 136 17

( )

( )

( )

cos(4 ) ( )

sin(4 ) ( )

cos(4 )

sin(4 ) ( ).

t t t t t t

x t

u t

e u t

e

t u t

e

t u t

e

e

t

e

t u t

− − − − − −

=

+

+

=

+

+

(f) Using partial fraction expansion and associating the ROC to individual terms yields

4 } Re{ ) 4 ( 3 } Re{ ) 3 ( 2 } Re{ ) 2 ( 2 } Re{ ) 2 ( ) 4 )( 3 ( ) 2 ( 1 2 2 ) ( − > + − > + − > + − > + + + + + = + + + = s sD s sC s s B s sA s s s s s X where

[

]

[

]

[

] [

]

[

] [

]

. 4 3 ) 4 ( and 2 ) 3 ( 2 1 ) 2 ( 4 ) 3 ( ) 2 ( 1 4 ) 4 )( 3 ( ) 2 ( 1 3 ) 4 ( ) 2 ( 1 1 ) 4 )( 3 ( ) 2 ( 1 2 ) 4 )( 3 ( 1 1 2 ) 4 )( 3 ( ) 2 ( 1 2 2 2 2 2 = = + = − = = + = − = = + = − = + + + − = + + + + − = + + + − = + + + + − = + + + − = + + + + s s s s s s s s s s s s s s s s s s s s s s s s s s s s D s C s B To evaluate A, expand X(s) as ) 3 ( ) 2 ( ) 4 ( ) 2 ( ) 4 )( 3 ( ) 4 )( 3 )( 2 ( 1= + + + + + + + + 2 + + + 2 + + A s s s B s s C s s D s s s

and compare the coefficients of s3. We get

D C

A+ +

= 0

which has a solution A = 5/4.

Taking the inverse transform of X(s) yields

(

)

2 2 3 3 5 1 3 4 2 4 2 2 3 3 5 1 3 4 2 4

( )

( )

( ) 2

( )

( )

2

( ).

t t t t t t t t

x t

e u t

te u t

e u t

e u t

e

te

e

e

u t

− − − − − − − −

=

+

=

+

(g) Using partial fraction expansion and associating the ROC to individual terms, gives

0 } :Re{ ROC ) 16 ( ) ( 1 } :Re{ ROC ) 1 ( 1 } :Re{ ROC ) 1 ( 1 } :Re{ ROC ) 1 ( ) 16 ( ) 1 ( 1 2 2 3 2 2 3 2 ) ( < + + − < + − < + − < + + + + − = + + + = s s E Ds s s C s s B s sA s s s s s X where

(8)

[

] [ ]

. 17 4 ) 1 ( 2 ) 16 ( 1 2 1 3 ) 16 ( ) 1 ( 1 2 2 2 2 3 2 = = + = − = + + − − = + + + − s s s s s s s s s s C

To evaluate A, B, and C expand X(s) as

3 2 2 2 2 2 2s+1=A(s+1) (s +16)+B(s+1)(s +16)+C(s +16)+(Ds+E)(s+1) s

and compare the coefficients of s4, s3 , s2, and s. We get

) of nts (coefficie 3 16 32 2 ) of nts (coefficie 3 3 17 1 ) of nts (coefficie 3 2 0 ) of nts (coefficie 0 2 3 4 s E D B A s E D C B A s E D B A s D A + + + = − = + + + + + + + = + = , or, E D B A E D B A B D E A D A 3 16 32 2 3 3 172 3 0 0 17 13 + + + = − + + + = + + + = + = .

which has a solution of A = 0.0206, B = −0.2076, D = −0.0206, and E = 0.2282. Taking the inverse transform of X(s) yields

2 ( ) 0.0206 t ( ) 0.2076 t ( ) 0.1176 t ( ) 0.0206cos(4 ) ( ) 0.057 sin(4 ) ( ) x t = − e u t− + te u t− − t e u t− + t u t− − t u t 2 0.0206et 0.2076tet 0.1176t et 0.0206 cos(4 ) 0.057 sin(4 )t t u t( ).   = − + − + − − ▌ Problem 6.4

The Laplace transform of the combined signal x1(t) +2x2(t) is given by

2 2 2 2 2 2 1

( ) 2 ( )

2 5 6 5 6 5 6 ( 2)( 3) L s s s s s s s s s s s

x t

x t

+ + + + + + + + + +

+

←→

+

=

=

.

The ROC of L x t

{

1( ) 2 ( )+ x t2

}

includes the region (R1 ∩ R2), or, Re{s} > −2. However, simplifying the expression of L x t

{

1( ) 2 ( )+ x t2

}

, we obtain 1 1

( ) 2 ( )

2 3 L s

x t

+

x t

←→

+ .

Since the pole at s = −2 cancels out, the overall ROC is greater than the intersection of the two individual

ROC’s and is given by R: Re{s} > −3.

Problem 6.5

Using partial fraction expansion, the Laplace transform is given by

) 5 4 ( 125 . 0 375 . 0 ) 5 4 ( 125 . 0 375 . 0 ) 1 (.025 0 ) 1 (.025 0 2 2 ) ( + ++ + − + − − + + + + − = s ss s s s s s s X .

(a) For ROC R: Re{s} < −2, the ROC’s associated with individual terms are given by

2 } Re{ ) 5 4 ( 125 . 0 375 . 0 2 } Re{ ) 5 4 ( 125 . 0 375 . 0 1 } Re{ ) 1 (.025 0 1 } Re{ ) 1 (.025 0 2 2 ) ( − < + ++ < + − + − < − − < + + + + − = s s s s s s s s s s s s s X .

Taking the inverse Laplace transform, the time domain representation is obtained as ). ( sin 125 . 0 ) ( cos 375 . 0 ) ( sin 125 . 0 ) ( cos 375 . 0 ) ( 025 . 0 ) ( 025 . 0 ) ( 2 2 2 2 t tu e t tu e t tu e t tu e t u e t u e t x t t t t t t − − − − − − − + − − − = − − −

(9)

(b) For ROC R: −2 < Re{s} < −1, the ROC’s associated with individual terms are given by 2 } Re{ ) 5 4 ( 125 . 0 375 . 0 2 } Re{ ) 5 4 ( 125 . 0 375 . 0 1 } Re{ ) 1 (.025 0 1 } Re{ ) 1 (.025 0 2 2 ) ( − > + ++ < + − + − < − − < + + + + − = s s s s s s s s s s s s s X .

Note that the ROC associated with the last term is changed. Taking the inverse Laplace transform, the time domain representation is obtained as

). ( sin 125 . 0 ) ( cos 375 . 0 ) ( sin 125 . 0 ) ( cos 375 . 0 ) ( 025 . 0 ) ( 025 . 0 ) ( 2 2 2 2 t tu e t tu e t tu e t tu e t u e t u e t x t t t t t t − − − + + − − − + − − − =

(c) For ROC R: −1 < Re{s} < 1, the ROC’s associated with individual terms are given by

2 } Re{ ) 5 4 ( 125 . 0 375 . 0 2 } Re{ ) 5 4 ( 125 . 0 375 . 0 1 } Re{ ) 1 (.025 0 1 } Re{ ) 1 (.025 0 2 2 ) ( − > + ++ < + − + − < − − > + + + + − = s s s s s s s s s s s s s X .

Taking the inverse Laplace transform, the time domain representation is obtained as ). ( sin 125 . 0 ) ( cos 375 . 0 ) ( sin 125 . 0 ) ( cos 375 . 0 ) ( 025 . 0 ) ( 025 . 0 ) ( 2 2 2 2 t tu e t tu e t tu e t tu e t u e t u e t x t t t t t t − − − + + − − − + − − − =

(d) For ROC R: 1 < Re{s} < 2, the ROC’s associated with individual terms are given by

2 } Re{ ) 5 4 ( 125 . 0 375 . 0 2 } Re{ ) 5 4 ( 125 . 0 375 . 0 1 } Re{ ) 1 (.025 0 1 } Re{ ) 1 (.025 0 2 2 ) ( − > + ++ < + − + − > − − > + + + + − = s s s s s s s s s s s s s X .

Taking the inverse Laplace transform, the time domain representation is obtained as ). ( sin 125 . 0 ) ( cos 375 . 0 ) ( sin 125 . 0 ) ( cos 375 . 0 ) ( 025 . 0 ) ( 025 . 0 ) ( 2 2 2 2 t tu e t tu e t tu e t tu e t u e t u e t x t t t t t t − − − + + − − − + + − =

(e) For ROC R: Re{s} > 2, the ROC’s associated with individual terms are given by

2 } Re{ ) 5 4 ( 125 . 0 375 . 0 2 } Re{ ) 5 4 ( 125 . 0 375 . 0 1 } Re{ ) 1 (.025 0 1 } Re{ ) 1 (.025 0 2 2 ) ( − > + ++ > + − + − > − − > + + + + − = s s s s s s s s s s s s s X .

Calculating the inverse Laplace transform, the time domain representation is obtained as

2 2 2 2

( )

0.025

( ) 0.025

( ) 0.375

cos ( ) 0.125

sin ( )

0.375

cos ( ) 0.125

sin ( )

t t t t t t

x t

e u t

e u t

e

tu t

e

tu t

e

tu t

e

tu t

− − −

= −

+

+

+

+

2 2 2 2

0.025et 0.025et 0.375e tcost 0.125e tsint 0.375etcost 0.125etsint u t( ).

  = − + − + + + Problem 6.6 Assume that R s X t x()←→L ( ) with ROC: . By definition

(10)

) ( ) ( ) ( ) ( 0 ( 0) 0 0 x t e x t e dt x t e dt X s s est ←→L

st st =

s s t = − ∞ ∞ − − − ∞ ∞ − − .

with ROC: R + Re{s0} because the new transform is a shifted version of X(s). For any s in the ROC R of

x(t), the values of s + Re{s0} are in the ROC of exp[s0t] x(t).

Problem 6.7

Unilateral Laplace Transform: By definition, the unilateral Laplace transform is given by

∞ − − = 0 ) ( ) (s x t e dt X st .

Dividing both sides with s and integrating the right hand side by parts, we get

[ ]

∫ ∫

∞ − ∞ − ∞ − − − − − −         α α − α α = = 0 0 0 0 0 ) ( ) ( ) ( ) ( dt e d x s e d x dt s e t x s s X t st I Term st t st .

The time integration property for unilateral Laplace transform follows directly from the above relationship by noting that Term I is zero at both the upper and lower limits.

Bilateral Laplace Transform: The proof for the bilateral Laplace transform is similar except that Term I

is nonzero. ▌

Problem 6.8

To prove the initial value theorem, we expand x(t) using the Taylor series expansion about t = 0+ as follows. 2 (1) (2) ( ) 2! ! ( ) (0 ) (0 ) t (0 ) tn n (0 ) n x t =x + +tx + + x + + + x + +

where x(n) denotes the n’th order derivative of x(t).

Because, x(t) is a causal function, it can be expressed as follows. 2 (1) (2) ( ) 2! ! ( ) ( ) ( ) (0 ) ( ) (0 ) ( ) (0 )t ( ) n(0 )tn ( ) n x t =x t u t =x + u t +x + tu t +x + u t + +x + u t + ,

Taking the Laplace transform of both sides of the above equation, we get

2 3 1 (1) (2) ( ) 1 1 1 1 ( ) (0 ) (0 ) (0 ) (0 ) n n s s s s X s x x x x + + + + + = + + + + + ,

Multiplying both sides of the above equation with s and applying the limit, t → ∞, gives

2 2 ( ) (1) (2) ( ) (1) (2) ( ) 0, assuming (0 ) for 1,2,3,... 1 1 1 1 1 1 lim ( ) lim (0 ) (0 ) (0 ) (0 ) lim (0 ) lim (0 ) (0 ) (0 ) lim n n r n s s n s s x r s s s s s s s sX s x x x x x x x x + + + + + →∞ →∞ + + + + →∞ →∞ = <∞ =   = + + + + +   = + + + + + = x(0 )+ →∞ .

In proving the theorem, we assumed x(t)u(t) = x(t) which is valid only for causal signals, and therefore, the initial value theorem holds true for the unilateral Laplace transform and not for the bilateral Laplace

(11)

transform. In addition, x(t) should not contain an impulse function or any other discontinuity at t=0 so

that x( )r (0 )+ < ∞ for r=1, 2,3,....

Problem 6.9

From the time differentiation property, we know

R x s sX dt dx→L ( ) (0) with ROC: or, −

( )

− ∞ − =

( ) 0 0 x s sX dt e st dt dx .

Applying the limit, s → 0, on both sides of the equation, we get or, 0 0 0 lim dx st lim ( ) (0 ) dt s e dt s sX s x ∞ − − → →     = −     

which simplifies to lim lim

[

( ) (0 )

]

0 0 0 − → − → ∞ − =    

e dt sX s x s st s dt dx or, 0 0 0 lim ( ) (0 ) lim st 1 dx dtdt s sX s x s e − ∞ − − →    →  = =

∵ .

Applying the limits to

0 0 ( ) lim ( ) (0 ) s x tsX s x ∞ − → = − , we get 0 ( ) lim ( ) s x sX s → ∞ = ,

which proves the final value theorem. ▌

Problem 6.10

(a) From Table 6.1,

2 2 0 ) ( ) cos( 0t u t L ss + ω → ← ω .

Using the s-domain differentiation property (see Table 6.2), we get 2 2 2 0 2 2 0 2 2 0 ( ) ) 2 ( ) ( 0 ) ( ) cos( ss s ss s dsd L t u t t ω ←→ ω + = ω+ω +− − or, 2 02 2 2 2 0 0 ( )

cos(

) ( )

L s s

t

ω

t u t

←→

+ωω . (b) From Table 6.1, 2 2 0 0 ) ( ) sin( 0 s L t u t ←→ωω+ ω .

Using the s-domain differentiation property (see Table 6.2), we get 2 2 2 0 0 2 2 0 0 ) ( ) 2 ( 0 ) ( ) sin( s s s dsd L t u t t ω ←→ ωω+ =− ωω+

(12)

or, 0 2 2 2 0 2 0 ( )

sin(

) ( )

L s s

t

ω

t u t

←→

+ωω .

(c) Using the results from part (b) and using the linearity property, we get

(

)

   → ← − + 2+−2 2 2 2 2 2 3 3 ( ) ) ( ) ( 2 1 2 1 sin( ) cos( ) ( ) s a a s s a a a L a at at at u t a which reduces

(

)

(

2 2

)

2 3 1 2 1 sin( ) cos( ) ( ) a s L a atat at u t ←→ + . ▌ Problem 6.11 (a) ( ) cos(10 ) ( ) ( ) 5 ( ). 2 1 5 2 1 1 t t x t e x t e x t f = = j t +j t

Using the s-shifting property, we obtain

[

shiftedby 5

] [

shiftedby 5

]

: ROC ) 5 ( ) 5 ( ) ( 21 2 1 1 s = X s− + X s+ R s= R s= F xx . (b) )f2(t)=e−5tx(4t−3 .

Using the time-shifting property,

x s

L e X s R

t

x( −3)←→ −3 ( ) ROC: . Using the scaling property,

x s s L e X R t x(4 3) 41 4 (4) ROC:2 3 − → ← − .

Using the s-shifting property, we obtain

. 5 by shifted 2 : ROC ) ( ) ( ) 3 4 ( ) ( ( 5) 45 4 1 2 5 2 4 3 − = = → ← − =ex t F s e− + X + R s t f t L s s x

(c) Using the time-shifting property,

x s

L e X s R

t

x( 4)→ −4 ( ) ROC: . Using the time differentiation property,

[ ]

L x dtd x(t) sX(s) x(0 ) ROC:R − − → ← .

We now use the s-plane differentiation property

If L dsd

[

]

x

x

L X s R txt X s R

t

x()←→ ( ) ROC: then − ()←→ ( ) ROC: . Using the s-plane differentiation property,

[ ]

L dsd

[

]

x dtd x t sX s R t) ( ) ( ) ROC: ( 4 4 4 → − .

Using the time shifting property,

[

]

L s dsd

[

]

x dtd x t e sX s R t 4) ( 4) ( ) ROC: ( 4 4 4 4 → − − .

(13)

(d)

[

]

2 2

4

( )

( ) 2

( ) 4 ( ) 4

f t

=

x t

+

=

x t

+

x t

+

Using the s-convolution property, we obtain

{ }

2

( )

1

( )* ( ) ROC :

2

L x

x t

X s

X s

R

π

←→

.

{ }

( ) L ( ) ROC : x x t ←→X s R

1

1

L

ROC : Re{ } 0

s

s

←→

>

Using the linearity property, we obtain

{

}

4

1

4

( )

( )* ( ) 4 ( )

ROC :

Re( ) 0 .

2

x

F s

X s

X s

X s

R

s

s

π

=

+

+

>

(e) Using the s-shifting property, we obtain

{

}

0 0 0 ( ) ( ) ROC : Re( ) s t L x ex t ←→X s s+ Rs .

Using the time integration property,

{

} {

}

0 0 0 0 ( ) 1 0

( ) ( ) ROC : Re( ) Re{ } 0 .

t X s s s L s x s s e α xα αd e αxα αd R s s − + − − −∞ −∞ ←→ +  − > 

∩ ▌ Problem 6.12

To determine the ROC, we use Property 2 that states:

For a right sided (causal) function, the ROC takes the form Re{s} > σ0 and consists of the right side of the complex s-plane

(a) Poles lie at s = −6.8541 and s = −0.1459, and hence the ROC is given by R: s > −0.1459. Since the ROC contains both s = 0 and s = ∞, the initial and final value theorems can be applied.

Initial value: lim 0 ( ) lim ( ) lim lim 1.

2 1 7 2 2 1 1 1 7 = →∞ = ∞ → = ∞ → = → + + + + s s s s s sX s t x t s s s

Final value: lim ( ) lim 0 ( ) lim 0 0.

1 7 2 2 = → = → = ∞ → s + s+ s s s sX s t x t Note that x(t)=1.0217e−6.8541tu(t)−0.0217e−0.1459tu(t), and therefore the initial and final value theorems compute the correct answer.

(b) Poles lie at s = −5.7016 and s = 0.7016, and hence the ROC is given by R: s > 0.7016. Since the ROC contains s = ∞, the initial value theorem can be applied. The final value theorem may give an incorrect answer.

Initial value: lim 0 ( ) lim ( ) lim lim 1.

2 4 5 2 2 1 1 4 5 = →∞ = ∞ → = ∞ → = → + + + − s s s s s sX s t x t s s s

Final value: lim ( ) lim 0 ( ) lim 0 0.

4 5 2 2 = → = → = ∞ → s + ss s s sX s t x t

(14)

Note that x(t)=0.8904e−5.7016tu(t)+0.1096e0.1096tu(t),

and therefore the value of x(∞) obtained from the final value theorem is incorrect. The initial value theorem computes the correct answer.

(c) Poles lie at s = −5 and s = 5, and hence the ROC is given by R: s > 5. Since the ROC contains s = ∞, the initial value theorem can be applied. The final value theorem may give an incorrect answer.

Initial value: lim 0 ( ) lim ( ) lim lim .

2 25 2 9 2 2 1 1 25 ) 9 ( = ∞ → = ∞ → = ∞ → = → −       + − + s s s s s s s s s sX s t x t

Final value: lim ( ) lim 0 ( ) lim 0 0.

25 ) 9 ( 2 2 = → = → = ∞ → − + s s s s s sX s t x t Note that x(t)=δ(t)+3.4e5tu(t)−3.4e−5tu(t),

and therefore the value of x(∞) obtained from the final value theorem is incorrect. The initial value theorem computes the correct answer of x(0) = ∞.

(d) Poles lie at s = −1.5 + j1.323 and s = −1.5 − j1.323, and hence the ROC is given by R: s > −1.5. Since the ROC contains both s = 0 and s = ∞, the initial and final value theorems can be applied.

Initial value: lim 0 ( ) lim ( ) lim

(

)

lim

(

2

)

.

2 2 2 / 4 / 3 1 / 1 / 2 1 4 3 1 2 = ∞ → = ∞ → = ∞ → = → + + + + + + + + s s s s s s s s s s s s s sX s t x t

Final value: lim ( ) lim 0 ( ) lim 0

(

2 32 41

)

0. 2 = → = → = ∞ → + + + + s s s s s s s sX s t x t

Note that x(t) (t) e t cos( 2.75t)u(t) e 1.5t sin( 2.75t)u(t

75 . 2 3 5 . 1 − − − δ = ,

and therefore the initial and final value theorems compute the correct answer.

(e) Poles lie at s = 0, −1, s = −2, and s = −3, and hence the ROC is given by R: s > 0. Since the ROC contains s = ∞, the initial value theorem can be applied. The final value theorem may give an incorrect answer. Initial value: 2 5 2 ( 4) (1 4 / ) 5 ( 1)( 2)( 3) (1 1/ )(1 2/ )( 3) 0

lim ( ) lim ( ) lim

lim

s

0.

s s s s s s e s s s t

x t

s

sX s

s

e

s + + − + + + + + + →

=

→∞

=

→∞

=

→∞

=

Final value: lim ( ) lim 0 ( ) lim 0 32.

) 3 )( 2 )( 1 ( ) 4 ( 5 2 = → = → = ∞ → + + + + − s s s s s e s s sX s t x t Note that ( ) ( 4) ( 5) ( 5) 4 2( 5) ( 5) 133 3( 5) ( 5) 2 5 3 2δ + = t e− − u t e− − u t e− − u t t x t t t ,

and therefore the initial value theorem computes the correct answer. The value of x(∞) obtained

from the final value theorem is incorrect. ▌

Problem 6.13

(a) Calculating the Laplace transform of both sides, we obtain 2 0 0 0

( )

(0 )

(0 )

3

( )

(0 )

2 ( ) 1

s Y s

s y

y

sY s

y

Y s

= = =

+

+

=

or, 1(s2 +3s+2)Y(s)= or 2 1 ( 1)(1 2) 11 12 ( 3 2)

( )

s s s s s s

Y s

=

+ +

=

+ +

=

+

+ .

(15)

Calculating the inverse Laplace transform, we obtain

(

)

2 2

( )

t

( )

t

( )

t t

( ).

y t

=

e u t

e u t

=

e

e

u t

(b) Calculating the Laplace transform of both sides, we obtain

2 1 0 0 0 ( ) (0 ) (0 ) 4 ( ) (0 ) 4 ( ) s s Y s s yysY s yY s = = =     − − + − + =             or, (s2+4s+4)Y(s)=s1 or 2 2 1 2 ( 2) ( 2)

( )

A B C s s s s s

Y s

=

+

= +

+

+

+ ,

where the partial fraction coefficients are calculated as 2 1 1 ( 2) 0 2

1

1

, and

4

s

2

s s s

A

+

C

=− =

=

=

=

 

 

= −

Expanding Y(s), and comparing the numerator of both sides, we get 2 2 1 ( 2) ( 2) ( ) (4 2 ) 4 A s Bs s Cs A B s A B C A = + + + + = + + + + +

Comparing the coefficients of s2 in both sides, we get (A + B) = 0 or B = −1/4. In other words,

Y s

( )

=

s s( 1+2)2

=

1/ 4s

s1/ 4+2

(s1/ 2+2)2

Calculating the inverse Laplace transform of Y(s) yields

2 2 2 1 1 4 4

( )

1

t

2

t

( )

1 (2

1)

t

( )

y t

=

e

te

u t

=

t

+

e

u t

.

(c) Calculating the Laplace transform of both sides, we obtain 2 2 1 ( 3) 1 1 1

( )

(0 )

(0 )

6

( )

(0 )

8 ( )

s

s Y s

s y

y

sY s

y

Y s

+ = = =

+

+

=

or, ( 6 8) ( ) ( 13)2 ( 1 6) 2 + + = + + + + s s Y s s s or

Y s

( )

=

(s+2)(s+13) (2 s+4)

+

(s+2)(s+7s+4). Calculating the partial fraction expansion of the two terms separately, we obtain

2 1/ 2 0 2 1/ 2 1 1 2 3 4 ( 2)( 3) ( 4) ( 3) 7 5/ 2 3/ 2 ( 2)( 4) 2 4 and

s s s s s s s s s s s s + + + + + + + + + + + +

=

+

=

Expanding Y(s) as 2 2 1/ 2 1 1/ 2 5/ 2 3/ 2 3 1 2 2 ( 3) 4 2 4 2 ( 3) 4

( )

s s s s s s s s

Y s

=

+

+

+

+

+

+

=

+

+

+ .

Calculating the inverse Laplace transform of Y(s) yields

(

2 3 4

)

( )

3

t t

2

t

( )

(16)

(d) Calculating the Laplace transform of both sides, we obtain 2 3 2 2 1 1 0 0 1 0 1 ( ) (0 ) (0 ) (0 ) 8 ( ) (0 ) (0 ) 19 ( ) (0 ) 12 ( ) s s Y s s ys yys Y s s yysY s yY s = = = = = =       − − − + − − + − + =                   or, ( 3 8 2 19 12) ( ) 1 ( 2 8 19) 2 + + + = + + + s s Y s s s s s or 2 4 3 2 3 5 1 2 4 2( 3 8 12 19 12) 3 828 1919 12 2( 81)( 193)( 14) 2 1 3 4 ( ) s s s s s k k k k k s s s s s s s s s s s s s s s s Y s + + + + + + + + + + + + + + + + + = + = = + + + + where

(

)

(

)

(

)

(

)

4 3 2 4 3 2 2 2 2 8 19 1 1 ( 1)( 3)( 4) 0 4 3 2 8 19 1 1 ( 1)( 3)( 4) ( 1) ( 3) ( 4) 0 3 2 19 1 1 1 12 144 144 144 0 8 19 1 ( 1)( 3)( 4) 0 8 19 12 19 s s s s s s s s s s s s s s s s s s d k ds d d s s s s s s ds ds d s s s ds + + + + + + = + + + + + + + + + = =   =    = + + + − + + +     = × − × + + + = − × = −   4 83 192 1 1 2 (ss 1)(ss 3)(ss 4)s 0 12

k

+ + + + + + =

=

=

4 3 2 28 19 1 1 8 19 1 13 3 ( 3)( 4) 1 1 2 3 6 s s s s s s s

k

+ + + − + + × × + + =−

=

=

=

4 3 2 28 19 1 81 216 171 1 37 4 ( 1)( 4) 9 ( 2) 1 18 3 s s s s s s s

k

+ + + − + + × − × − + + =−

=

=

=

4 3 2 28 19 1 256 512 304 1 49 5 ( 1)( 3) 4 16 ( 3) ( 1) 48 s s s s s s s

k

+ + + − + + × − × − + + =−

=

=

=

In other words, Y s( )= −19 /144s +1/12s2 +13/ 6s+1 −37/18s+3 + 49 / 48s+4 . Therefore,

(

19 1 13 37 3 49 4

)

144 12 6 18 48 ( ) t t t ( ) y t = − + t+ e e+ eu t . An Alternative (Equivalent) Solution of (d)

Calculating the Laplace transform of both sides, we get

2 3 2 2 1 1 0 0 1 0 1 ( ) (0 ) (0 ) (0 ) 8 ( ) (0 ) (0 ) 19 ( ) (0 ) 12 ( ) s s Y s s ys yys Y s s yysY s yY s = = = = = =       − − − + − − + − + =                 or, ( 3 8 2 19 12) ( ) 1 ( 2 8 19) 2 + + + = + + + s s Y s s s s s or 2 2 2( 3 8 21 19 12) 3 8 28 1919 12 2( 1)(1 3)( 4) ( 1)( 8 193)( 4)

( )

s s s s s s s s s s s s s s s s s s

Y s

+ + + + + + + + + + + + + + + +

=

+

=

+

Taking the partial fraction expansion of the two terms separately

2 3 2 2 2 3 2 0.0208 0.0556 0.1667 0.1319 0.0833 1 ( 4) ( 3) ( 1) ( 8 19 12) 8 19 1 2 2 ( 4) ( 3) ( 1) ( 8 19 12)

and

s s s s s s s s s s s s s s s s s + + + + + + + + + + + + + +

=

+

+

=

+

(17)

Expanding Y(s), we get 2 2 0.0208 0.0556 0.1667 0.1319 0.0833 1 2 2 ( 4) ( 3) ( 1) ( 4) ( 3) ( 1) 1.0208 2.0556 2.1667 0.1319 0.0833 ( 4) ( 3) ( 1)

( )

s s s s s s s s s s s s s

Y s

+ + + + + + + + +

=

+

+

+

+

=

+

+

.

Taking the inverse Laplace transform of Y(s) gives

4 3 3 4

( ) 1.0208

( ) 2.0556

( ) 2.1667

( ) 0.1319 ( ) 0.0833 ( )

0.1319 0.0833

2.1667

2.0556

1.0208

( )

t t t t t t

y t

e u t

e u t

e u t

u t

tu t

t

e

e

e

u t

− − − − − −

=

+

+

= −

+

+

+

(e) 4 2 4

2

2

( )

( );

(0 )

(0 )

(0 )

(0 ) 0.

d y

d y

y t

u t

y

y

y

y

dt

dt

− − − −

+

+

=

=

=

=

=

Calculating the Laplace transform of both sides, we get

3 2 2 1 0 0

4 ( )

(0 )

(0 )

(0 )

(0 )

2

( )

(0 )

(0 )

( )

s

s Y s

s y

s y

sy

y

s Y s

sy

y

Y s

= =

+

+

=

or, (s4 +2s2 +1)Y(s)=s1 or 2 2 2 2 4 ) 1 ( ) 1 ( ) 1 2 ( 1 ) ( ++ + + + + = + + = s E Ds s C Bs s A s s s s Y . where

[

] [

]

1. 0 ) 1 2 ( 1 0 ) 1 2 ( 1 2 4 2 4 = = = = + + = + + s s s s s s s s A

Equating numerator of Y(s) in both sides, we get (Note: A=1)

2 2 2 4 3 2 1 ( 1) ( ) ( 1) ( ) (1 ) (2 ) ( ) 1 s Bs C s s Ds E s B s Cs B D s C E s = + + + + + + = + + + + + + + +

Comparing the coefficients of polynomials of different order we get

4 3 2 Coefficients of : 1 0 1 Coefficients of : 0 Coefficients of : 2 0 1 0 1 Coefficients of : 0 0 s B B s C s B D D D s C E E + = ⇒ = − = + + = ⇒ + = ⇒ = − + = ⇒ =

The partial fraction expansion of Y(s) is given by

2 2 2 1 1 ( 1)

( )

s s s s s

Y s

= −

+

+

Noting that (see Problem 6.10(b))

(

2 02

)

2 0 2 0 sin( ) ( ) L s s t t u t ω ω

ω

+

←→ , the inverse transform is obtained as

[

]

( ) 1 cos( ) 0.5 sin( ) ( )

(18)

Problem 6.14 (a) (i) ( )

{

4 ( )

}

4 s X s =L u t = and

{

}

2 22 2 1 1 2 2 ( 2) ( ) ( ) t ( ) s s s s s s Y s L tu t e u t− + + + + = + = + = .

The transfer function is given by 22 2

( ) 2 2 ( ) ( 2) 4 4 ( 2) ( ) Y s s s s s s X s s s s s H s + + + + + + = = × = .

(ii) The impulse response is given by

{

2

}

{

}

{

}

(

)

1 2 1 1 2 1 1 1 2 1 2 4 ( 2) 4 ( 2) 4 2 4

( )

s s

1

s

1

( )

( ) 2

t

( )

s s s s s s

h t

L

− + +

L

− −

L

δ

t

u t

e u t

− + + +

=

=

+

=

+ −

=

+

(iii) In order to calculate the input-output relationship in the form of a differential equation, we represent the transfer function as follows.

2 2 ( ) 4 ( 2) ( )

( )

s s Y s s s X s

H s

+ + +

=

=

or,

(4

s

2

+

8 ) ( ) (

s Y s

=

s

2

+ +

s

2) ( )

X s

Calculating the inverse Laplace transform and assuming zero initial conditions, the differential equation representing the system is given by

2 2

2 2

4

d y

8

dy

d x dx

2 ( )

x t

dt

+

dt

=

dt

+

dt

+

.

(b) (i) The Laplace transform of the input and output signals are given by

) 2 ( 1 4 ) 2 ( 1 and ( ) 3 ) ( = + = − s s+ s Y s e s X .

Dividing Y(s) with X(s), the transfer function is given by

s s X s Y e s H( )= (()) =3 −4 .

(ii) The impulse response is obtained by calculating the inverse Laplace transform. The impulse response is given by

h(t)=3δ(t−4).

(iii) In order to calculate the input-output relationship in the form of a differential equation, we represent the transfer function as

) ( ) ( 4 3 ) (s e s XY ss H = − = .

Cross multiplying, we get Y(s)=3e−4sX(s).

Calculating the inverse Laplace transform, the input-output relationship of the system is given by ) 4 ( 3 ) (t = x ty .

(c) (i) The Laplace transform of the input and output signals are given by

) 4 ( 1 2 1 and ( ) 3 ) (s = s2 Y s =s3 − s+ X .

Dividing Y(s) with X(s), the transfer function is given by ) 4 (3 2 ) ( ) ( 2 ) ( = = − s+s s s X s Y s H .

(19)

(ii) The impulse response is obtained by calculating the inverse Laplace transform. The impulse response is given by

[

( )

]

. 3 ) ( 2 ) ( 2 4 2 t u e t u t h t dt d − − =

(iii) In order to calculate the input-output relationship in the form of a differential equation, we represent the transfer function as

) ( ) ( ) 4 ( 3 ) 4 ( 2 3 ) (s ss s s XY ss H = ++− = .

Cross multiplying, we get s2Y(s)+4sY(s)=−3s3X(s)+2sX(s)+8X(s).

Calculating the inverse Laplace transform, the input-output relationship of the system is given by ) ( 8 2 3 4 33 2 2 t x dt dx dt x d dt dy dt y d + + − = + .

(d) (i) The Laplace transform of the input and output signals are given by

3 1 1 1 2 1 and ( ) ) (s =s+ Y s = s+ +s+ X .

Dividing Y(s) with X(s), the transfer function is given by

3 1 1 1 ) 3 ( ) 2 ( ) 1 ( ) 2 ( ) ( ) ( 2 ) ( = = ++ + ss++ ≡ + s+s+ s s s X s Y s H .

(ii) The impulse response is obtained by calculating the inverse Laplace transform. The impulse response is given by ). ( ) ( ) ( 2 ) (t u t e u t e 3u t h = + −t − − t

(iii) In order to calculate the input-output relationship in the form of a differential equation, we represent the transfer function as

) ( ) ( ) 3 )( 1 ( ) 3 1 )( 2 ( ) (s s s s s s XY ss H = + + +++ + = .

Cross multiplying, we get2s2Y(s)+8sY(s)+8Y(s)=s2X(s)+4sX(s)+3X(s).

Calculating the inverse Laplace transform, the input-output relationship of the system is given by ) ( 3 4 ) ( 8 8 2 2 2 2 2 t x dt dx dt x d t y dt dy dt y d + + = + + .

(e) Note that there is no overlap between the ROC’s of the two terms exp(t)u(−t) and exp(−3t)u(t), and

hence the Laplace transform for y(t) does not exist.

Problem 6.15 (a) 22 2 ( )( ) 1 2 1 ( 1) ( ) s s j s j s s s H s + + − + + + = = Two zeros: at

s

= −

j

,

j

Two poles: at

s

= − −

1, 1

. The zeros and poles are shown in Fig. S6.15(a).

Referências

Documentos relacionados

The fourth generation of sinkholes is connected with the older Đulin ponor-Medvedica cave system and collects the water which appears deeper in the cave as permanent

As inscrições para o “Programa de Férias de Verão 2016” decorrem de 4 a 13 de maio de 2016 e poderão ser efetuadas na CAF e na sede administrativa, dentro dos horários

Na cultura da cana-de-açúcar o manejo químico é o mais utilizado, no entanto é importante conhecer todas as formas de controle, e visar integra-las de modo a

Peça de mão de alta rotação pneumática com sistema Push Button (botão para remoção de broca), podendo apresentar passagem dupla de ar e acoplamento para engate rápido

Os pedidos de esclarecimentos referentes a este processo licitatório deverão ser enviados ao Pregoeiro, até 03 (três) dias úteis anteriores à data designada para

Portanto, buscou-se a avaliação da origem da arborização urbana na Praça Pública Centenário, localizada no município de Curitibanos, Santa Catarina, por meio do estudo

Neste item serão abordados os tópicos relativos aos sistemas de sinalização e os dispositivos de controle a serem aplicados em cada etapa da obra, que visam a segurança do

Despercebido: não visto, não notado, não observado, ignorado.. Não me passou despercebido