• Nenhum resultado encontrado

De acordo com os resultados encontrados neste estudo, pode-se concluir que o pré-tratamento com as cepas dos probióticos Lactobacillus plantarum CNPC003 e Lactobacillus mucosae CNPC007 foi capaz de atenuar o processo inflamatório intestinal induzido por DNBS em ratos, considerando que:

 Melhorou os parâmetros clínicos da DII como representados no DAI;

 Diminuiu parâmetros macroscópicos da DII como IDM e a relação peso/comprimento colônico;

 Modulou o processo inflamatório intestinal reduzindo MPO, iNOS, MMP-9, a via de sinalização NF-κB, as citocinas pró-inflamatórias TNF-α, IL-β e IL-17, e aumentou a citocina anti-inflamatória IL-10;

 Melhorou o estresse oxidativo colônico, reduzindo o MDA;

 Aumentou a expressão de marcadores MUC-2, ZO-1 e OCL relacionados à integridade de barreira intestinal;

Com a provada eficácia das cepas LM CNPC007 e LP CNPC003 isoladas em promover a redução dos parâmetros inflamatórios intestinais, se faz importante a utilização de novos grupos experimentais para verificar o efeito sinérgico da interação destas cepas com o fármaco padrão SSZ em vista de gerar resultados superiores àqueles encontrados. Além disso, estudos adicionais são necessários para esclarecer os mecanismos exatos de interação entre as cepas e a sinalização celular da qual fazem parte diversos mediadores.

REFERÊNCIAS

ABRAHAM, Bincy P.; AHMED, Tasneem; ALI, Tauseef. Inflammatory Bowel Disease: Pathophysiology and Current Therapeutic Approaches. Gastrointestinal Pharmacology, [s.l.], p.115-146, 2017.

ABRAHAM, Bincy P.; QUIGLEY, Eamonn M.m.. Probiotics in Inflammatory Bowel Disease. Gastroenterology Clinics Of North America, [s.l.], v. 46, n. 4, p.769-782, dez. 2017.

ABEGUNDE, Ayokunle T et al. Environmental risk factors for inflammatory bowel diseases: Evidence based literature review. World Journal Of Gastroenterology, [s.l.], v. 22, n. 27, p.6296-6317, 2016.

A KAMM, Michael. Rapid changes in epidemiology of inflammatory bowel disease. The

Lancet, [s.l.], v. 390, n. 10114, p.2741-2742, dez. 2017.

ALMEIDA, L.B.; MARINHO, C. B.; SOUZA, C. S.; CHEIB, V. B. P. Disbiose intestinal.

Revista Brasileira de Nutrição Clínica. São Paulo, v. 24, n. 1, p. 58-65, dez. 2009.

AMWAL, Sumit; KUMAR, Puneet. Animal Models of Inflammatory Bowel Disease. Animal Models For The Study Of Human Disease, [s.l.], p.467-477, 2017. AMDEKAR, Sarika; SINGH, Vinod. Studies on anti-inflammatory and analgesic properties of Lactobacillus rhamnosus in experimental animal models. Journal Of

Complementary And Integrative Medicine, [s.l.], v. 13, n. 2, p.145-150, 1 jan. 2016.

ANANTHAKRISHNAN, Ashwin N.. Environmental Risk Factors for Inflammatory Bowel Disease. Gastroenterology & Hepatology, Massachusetts, v. 9, n. 6, p.367-374, jun. 2013.

ARAðJO, Daline Fernandes de Souza et al. Goat whey ameliorates intestinal inflammation on acetic acid-induced colitis in rats. Journal Of Dairy Science, [s.l.], v. 99, n. 12, p.9383-9394, dez. 2016.

BARREIROS, André L. B. S.; DAVID, Jorge M.; DAVID, Juceni P.. Estresse oxidativo: relação entre geração de espécies reativas e defesa do organismo. Química Nova, [s.l.], v. 29, n. 1, p.113-123, fev. 2006.

BALMUS, Ioanamiruna et al. The implications of oxidative stress and antioxidant therapies in Inflammatory Bowel Disease: Clinical aspects and animal models. Saudi

Journal Of Gastroenterology, [s.l.], v. 22, n. 1, p.3-17, 2016.

BELL, C. J.; GALL, D. G.; WALLACE, J. L.. Disruption of colonic electrolyte transport in experimental colitis. American Journal Of Physiology-gastrointestinal And Liver

Physiology, [s.l.], v. 268, n. 4, p.622-630, 1 abr. 1995.

BEHMER, O.A.; TOLOSA, E.M.C.; FREITAS NETO, A.G. Manual de técnicas para histologia normal e patológica. São Paulo: Edart, 1976. 256p.

BIEDERMANN, Luc et al. Smoking Cessation Alters Intestinal Microbiota. Inflammatory Bowel Diseases, [s.l.], v. 20, n. 9, p.1496-1501, set. 2014. BILKOVÁ, Andrea; DUBNIčKOVÁ, Martina; SEPOVÁ, Hana Kiňová. Antimicrobial susceptibility and immunomodulatory properties of lamb isolate of lactobacillus mucosae, new probiotic candidate. Acta Facultatis Pharmaceuticae Universitatis

Comenianae, [s.l.], v. 60, n. 2, p.1-6, 1 dez. 2013.

CABRÉ, Eduard; MAÑOSA, Míriam; GASSULL, Miquel A.. Omega-3 fatty acids and inflammatory bowel diseases – a systematic review. British Journal Of Nutrition, [s.l.], v. 107, n. 2, p.240-252, 17 maio 2012.

CELIBERTO, Larissa Sbaglia et al. Probiotics: The Scientific Evidence in the Context of Inflammatory Bowel Disease. Critical Reviews In Food Science And Nutrition, [s.l.], p.1759-1768, 21 maio 2015.

COLOMBEL, Jean Frédéric et al. Infliximab, Azathioprine, or Combination Therapy for Crohn's Disease. New England Journal Of Medicine, [s.l.], v. 362, n. 15, p.1383- 1395, 15 abr. 2010.

COHEN, Benjamin L; SACHAR, David B. Update on anti-tumor necrosis factor agents and other new drugs for inflammatory bowel disease. Bmj, [s.l.], p.1-17, 19 jun. 2017. COOPER, H. S. et al. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Laboratory Investigation, v. 69, n. 2, p. 238-249, 1993.

CHAMPAGNE, Claude P.; GARDNER, Nancy J.; ROY, Denis. Challenges in the Addition of Probiotic Cultures to Foods. Critical Reviews In Food Science And Nutrition, [s.l.], v. 45, n. 1, p.61-84, jan. 2005.

CHARAFE-JAUFFRET, Emmanuelle et al. Immunophenotypic analysis of inflammatory breast cancers: identification of an‘inflammatory signature’. The Journal

Of Pathology, [s.l.], v. 202, n. 3, p.265-273, 24 fev. 2004.

CHOI, Sun-hae et al. Lactobacillus plantarum CAU1055 ameliorates inflammation in lipopolysaccharide-induced RAW264.7 cells and a dextran sulfate sodium–induced colitis animal model. Journal Of Dairy Science, [s.l.], v. 102, n. 8, p.6718-6725, ago. 2019.

CHO, Judy H.; BRANT, Steven R.. Recent Insights Into the Genetics of Inflammatory Bowel Disease. Gastroenterology, [s.l.], v. 140, n. 6, p.1704-1712, maio 2011. CUI, Yanjun et al. Lactobacillus reuteri ZJ617 maintains intestinal integrity via regulating tight junction, autophagy and apoptosis in mice challenged with lipopolysaccharide. Oncotarget, [s.l.], v. 8, n. 44, p.77489-77499, 27 ago. 2017. DARBY, T.m.; JONES, R.m.. Beneficial Influences of Lactobacillus plantarum on Human Health and Disease. The Microbiota In Gastrointestinal Pathophysiology, [s.l.], p.109-117, 2017.

DAVE, Maneesh; PAPADAKIS, Konstantinos A.; FAUBION, William A.. Immunology

of Inflammatory Bowel Disease and Molecular Targets for

Biologics. Gastroenterology Clinics Of North America, [s.l.], v. 43, n. 3, p.405-424, set. 2014.

DEVI, Sundru Manjulata; KURREY, Nawneet K.; HALAMI, Prakash M.. In vitro anti- inflammatory activity among probiotic Lactobacillus species isolated from fermented foods. Journal Of Functional Foods, [s.l.], v. 47, p.19-27, ago. 2018.

DICKS, L.; BOTES, M.. Probiotic lactic acid bacteria in the gastro-intestinal tract: health benefits, safety and mode of action. Beneficial Microbes, [s.l.], v. 1, n. 1, p.11-29, mar. 2010.

DOLAN, Kyle T.; CHANG, Eugene B.. Diet, gut microbes, and the pathogenesis of inflammatory bowel diseases. Molecular Nutrition & Food Research, [s.l.], v. 61, n. 1, p.1-20, 15 ago. 2016.

DUIJVESTEIN, Marjolijn et al. Novel Therapies and Treatment Strategies for Patients with Inflammatory Bowel Disease. Current Treatment Options In Gastroenterology, [s.l.], v. 16, n. 1, p.129-146, 6 fev. 2018.

ERMOLENKO, E. et al. Influence of monostrain and multistrain probiotics on immunity, intestinal ultrastructure and microbiota in experimental dysbiosis. Beneficial

Microbes, [s.l.], v. 9, n. 6, p.937-949, 7 dez. 2018.

EKMEKCIU, Ira et al. The Probiotic Compound VSL#3 Modulates Mucosal, Peripheral, and Systemic Immunity Following Murine Broad-Spectrum Antibiotic Treatment. Frontiers In Cellular And Infection Microbiology, [s.l.], v. 7, p.1-19, 5 maio 2017.

FAURSCHOU, Mikkel; BORREGAARD, Niels. Neutrophil granules and secretory vesicles in inflammation. Microbes And Infection, [s.l.], v. 5, n. 14, p.1317-1327, nov. 2003.

FLAMMER, Jamie R.; ROGATSKY, Inez. Minireview: Glucocorticoids in Autoimmunity. Molecular Endocrinology, [s.l.], v. 25, n. 7, p.1075-1086, jul. 2011. GALVEZ, J. et al. Intestinal anti-inflammatory activity of morin on chronic experimental colitis in the rat. Alimentary Pharmacology And Therapeutics, [s.l.], v. 15, n. 12, p.2027-2039, dez. 2001.

GAJENDRAN, Mahesh et al. A comprehensive review and update on Crohn's disease. Disease-a-month, [s.l.], v. 64, n. 2, p.20-57, fev. 2018.

GANJI-ARJENAKI, Mahboube; RAFIEIAN-KOPAEI, Mahmoud. Probiotics are a good choice in remission of inflammatory bowel diseases: A meta analysis and systematic review. Journal Of Cellular Physiology, [s.l.], v. 233, n. 3, p.2091-2103, 3 maio 2017. GEREMIA, Alessandra et al. Innate and adaptive immunity in inflammatory bowel disease. Autoimmunity Reviews, [s.l.], v. 13, n. 1, p.3-10, jan. 2014.

GOYAL, Nidhi et al. Animal models of inflammatory bowel disease: a review. Inflammopharmacology, [s.l.], v. 22, n. 4, p.219-233, 7 jun. 2014.

Guarner F et al. Diretrizes Mundiais da Organização Mundial de Gastroenterologia. Probióticos e prebióticos. 2017.

GUO, Shuangshuang et al. Secretions of Bifidobacterium infantis and Lactobacillus acidophilus Protect Intestinal Epithelial Barrier Function. Journal Of Pediatric

Gastroenterology And Nutrition, [s.l.], v. 64, n. 3, p.404-412, mar. 2017.

HALLORAN, Katrina et al. Probiotic mechanisms of action. Early Human

Development, [s.l.], v. 135, p.58-65, ago. 2019.

HASHASH, Jana G. et al. Patterns of Antibiotic Exposure and Clinical Disease Activity in Inflammatory Bowel Disease. Inflammatory Bowel Diseases, [s.l.], v. 21, n. 11, p.2576-2582, nov. 2015.

HAN, Chaoqun et al. The Role of Probiotics in Lipopolysaccharide-Induced Autophagy in Intestinal Epithelial Cells. Cellular Physiology And Biochemistry, [s.l.], v. 38, n. 6, p.2464-2478, 2016.

HEIDARI, Reza et al. Sulfasalazine-induced renal injury in rats and the protective role of thiol-reductants. Renal Failure, [s.l.], v. 38, n. 1, p.137-141, 19 out. 2015.

HEIDARI, Reza et al. Sulfasalazine-induced renal and hepatic injury in rats and the protective role of taurine. Bioimpacts, [s.l.], v. 6, n. 1, p.3-8, 15 jul. 2016.

HEENEY, Dustin D; GAREAU, Mélanie G; MARCO, Maria L. Intestinal Lactobacillus in health and disease, a driver or just along for the ride? Current Opinion In

Biotechnology, [s.l.], v. 49, p.140-147, fev. 2018.

HENRICK, Bethany M. et al. Elevated Fecal pH Indicates a Profound Change in the Breastfed Infant Gut Microbiome Due to Reduction of Bifidobacterium over the Past Century. Msphere, [s.l.], v. 3, n. 2, p.1-5, 7 mar. 2018.

ŀTOFILOVÁ, Jana et al. Cytokine production in vitro and in rat model of colitis in response to Lactobacillus plantarum LS/07. Biomedicine & Pharmacotherapy, [s.l.], v. 94, p.1176-1185, out. 2017.

JOSTINS, Luke et al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature, [s.l.], v. 491, n. 7422, p.119-124, 31 out. 2012. KAPLAN, Gilaad G.; NG, Siew C.. Understanding and Preventing the Global Increase of Inflammatory Bowel Disease. Gastroenterology, [s.l.], v. 152, n. 2, p.313-321, jan. 2017.

KASER, Arthur; ZEISSIG, Sebastian; BLUMBERG, Richard S.. Inflammatory Bowel Disease. Annual Review Of Immunology, [s.l.], v. 28, n. 1, p.573-621, mar. 2010.

KARCZEWSKI, Jurgen et al. Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. American Journal Of Physiology-gastrointestinal And Liver Physiology, [s.l.], v. 298, n. 6, p.851-859, jun. 2010.

KIM, Duk Hwan; CHEON, Jae Hee. Pathogenesis of Inflammatory Bowel Disease and Recent Advances in Biologic Therapies. Immune Network, [s.l.], v. 17, n. 1, p.25-40, 2017.

KIM, Young S.; HO, Samuel B.. Intestinal Goblet Cells and Mucins in Health and Disease: Recent Insights and Progress. Current Gastroenterology Reports, [s.l.], v. 12, n. 5, p.319-330, 13 ago. 2010.

KIM, Han Geun et al. Lactobacillus plantarum lipoteichoic acid down-regulated Shigella flexneri peptidoglycan-induced inflammation. Molecular Immunology, [s.l.], v. 48, n. 4, p.382-391, jan. 2011.

KOZUCH, Patricia L; HANAUER, Stephen B. Treatment of inflammatory bowel disease: A review of medical therapy. World Journal Of Gastroenterology, [s.l.], v. 14, n. 3, p.354-377, 2008.

KOLIOS, George; VALATAS, Vassilis; WARD, Stephen G.. Nitric oxide in inflammatory bowel disease: a universal messenger in an unsolved puzzle. Immunology, [s.l.], v. 113, n. 4, p.427-437, dez. 2004.

KUMAR, C.s.v. Satish et al. Protective effect of Lactobacillus plantarum 21, a probiotic on trinitrobenzenesulfonic acid-induced ulcerative colitis in rats. International

Immunopharmacology, [s.l.], v. 25, n. 2, p.504-510, abr. 2015.

KHOR, Bernard; GARDET, Agnès; XAVIER, Ramnik J.. Genetics and pathogenesis of inflammatory bowel disease. Nature, [s.l.], v. 474, n. 7351, p.307-317, jun. 2011. LANDY, Jonathan et al. Tight junctions in inflammatory bowel diseases and inflammatory bowel disease associated colorectal cancer. World Journal Of

Gastroenterology, [s.l.], v. 22, n. 11, p.3117-3126, 2016.

LE, Bao; YANG, Seung Hwan. Efficacy of Lactobacillus plantarum in prevention of inflammatory bowel disease. Toxicology Reports, [s.l.], v. 5, p.314-317, 2018. LEE, Yong-soo et al. Microbiota-Derived Lactate Accelerates Intestinal Stem-Cell- Mediated Epithelial Development. Cell Host & Microbe, [s.l.], v. 24, n. 6, p.833-846, dez. 2018.

LEE, Seung Hoon; KWON, Jeong Eun; CHO, Mi-la. Immunological pathogenesis of inflammatory bowel disease. Intestinal Research, [s.l.], v. 16, n. 1, p.26-42, 2018. LIU, Jimmy Z et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nature Genetics, [s.l.], v. 47, n. 9, p.979-986, 20 jul. 2015.

LIU, Yen-wenn et al. Oral administration of Lactobacillus plantarum K68 ameliorates DSS-induced ulcerative colitis in BALB/c mice via the anti-inflammatory and immunomodulatory activities. International Immunopharmacology, [s.l.], v. 11, n. 12, p.2159-2166, dez. 2011.

MCGOVERN, Dermot P.b.; KUGATHASAN, Subra; CHO, Judy H.. Genetics of Inflammatory Bowel Diseases. Gastroenterology, [s.l.], v. 149, n. 5, p.1163-1176, out. 2015.

MALOY, Kevin J.; POWRIE, Fiona. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature, [s.l.], v. 474, n. 7351, p.298-306, jun. 2011. MASOOD, Muhammad Irfan; QADIR, Muhammad Imran; SHIRAZI, Jafir Hussain; KHAN, Ikram Ullah. Beneficial effects of lactic acid bacteria on human beings. Critical

Reviews In Microbiology, [s.l.], v. 37, n. 1, p.91-98, 17 dez. 2010.

MONOSTORI, Péter et al. Determination of glutathione and glutathione disulfide in biological samples: An in-depth review. Journal Of Chromatography B, [s.l.], v. 877, n. 28, p.3331-3346, out. 2009.

MORAMPUDI, Vijay et al. DNBS/TNBS Colitis Models: Providing Insights Into Inflammatory Bowel Disease and Effects of Dietary Fat. Journal Of Visualized

Experiments, [s.l.], n. 84, p.1-8, 27 fev. 2014.

MORAES, Georgia Maciel Dias de et al. Functional Properties of Lactobacillus mucosae Strains Isolated from Brazilian Goat Milk. Probiotics And Antimicrobial

Proteins, [s.l.], v. 9, n. 3, p.235-245, 10 dez. 2016.

Moraes, GMD. Aptidão tecnológica de 13 cepas de Lactobacillus plantarum para fabricação de produtos lácteos. In: CONGRESSO LATINO AMERICANO DE ANALISTAS DE ALIMENTOS, 6., 2017, Belém. Anais [...] . Belém: M, 2017. p. 1 - 4. MORRIS, Gerald P. et al. Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology, [s.l.], v. 96, n. 3, p.795-803, mar. 1989. MOAYYEDI, Paul et al. Fecal Microbiota Transplantation Induces Remission in Patients With Active Ulcerative Colitis in a Randomized Controlled Trial. Gastroenterology, [s.l.], v. 149, n. 1, p.102-109, jul. 2015.

MICHIELAN, Andrea; D’INCÀ, Renata. Intestinal Permeability in Inflammatory Bowel Disease: Pathogenesis, Clinical Evaluation, and Therapy of Leaky Gut. Mediators Of

Inflammation, [s.l.], v. 2015, p.1-10, 2015.

NG, Siew C et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. The Lancet, [s.l.], v. 390, n. 10114, p.2769-2778, dez. 2017.

NANAU, Radu M.; NEUMAN, Manuela G.. Metabolome and inflammasome in inflammatory bowel disease. Translational Research, [s.l.], v. 160, n. 1, p.1-28, jul. 2012.

NEURATH, M F. New targets for mucosal healing and therapy in inflammatory bowel diseases. Mucosal Immunology, [s.l.], v. 7, n. 1, p.6-19, 2 out. 2013.

Neta et al. Fermented Dessert with Whey, Ingredients from the Peel of Jabuticaba (Myrciaria cauliflora) and an Indigenous Culture of Lactobacillus plantarum: Composition, Microbial Viability, Antioxidant Capacity and Sensory Features. Nutrients, [s.l.], v. 10, n. 9, p.1-19, 2 set. 2018.

NIKNAHAD, Hossein et al. Sulfasalazine induces mitochondrial dysfunction and renal injury. Renal Failure, [s.l.], v. 39, n. 1, p.745-753, jan. 2017.

OREL, Rok. Intestinal microbiota, probiotics and prebiotics in inflammatory bowel disease. World Journal Of Gastroenterology, [s.l.], v. 20, n. 33, p.11505-11524, 2014.

PARK, Jae Hyon et al. IBD immunopathogenesis: A comprehensive review of inflammatory molecules. Autoimmunity Reviews, [s.l.], v. 16, n. 4, p.416-426, abr. 2017.

PAJARILLO, Edward Alain B. et al. Quantitative Proteogenomics and the Reconstruction of the Metabolic Pathway in Lactobacillus mucosae LM1. Korean

Journal For Food Science Of Animal Resources, [s.l.], v. 35, n. 5, p.692-702, 31

out. 2015.

PEREIRA, Cristiana et al. Oxidative Stress and DNA Damage. Inflammatory Bowel

Diseases, [s.l.], p.2403-2417, jul. 2015.

PEREIRA, Ana Lúcia Fernandes et al. Impact of fermentation conditions on the quality and sensory properties of a probiotic cupuassu (Theobroma grandiflorum) beverage. Food Research International, [s.l.], v. 100, p.603-611, out. 2017.

PIECHOTA-POLANCZYK, Aleksandra; FICHNA, Jakub. Review article: the role of oxidative stress in pathogenesis and treatment of inflammatory bowel diseases. Naunyn-schmiedeberg's Archives Of Pharmacology, [s.l.], v. 387, n. 7, p.605-620, 6 maio 2014.

PORITZ, Lisa S. et al. Loss of the Tight Junction Protein ZO-1 in Dextran Sulfate Sodium Induced Colitis. Journal Of Surgical Research, [s.l.], v. 140, n. 1, p.12-19, jun. 2007.

QUIGLEY, Eamonn M.m.. Prebiotics and Probiotics in Digestive Health. Clinical

Gastroenterology And Hepatology, [s.l.], v. 17, n. 2, p.333-344, jan. 2019.

RAMOS, Guilherme Piovezani; PAPADAKIS, Konstantinos A.. Mechanisms of Disease: Inflammatory Bowel Diseases. Mayo Clinic Proceedings, [s.l.], v. 94, n. 1, p.155-165, jan. 2019.

RANDHAWA, Puneet Kaur et al. A Review on Chemical-Induced Inflammatory Bowel Disease Models in Rodents. The Korean Journal Of Physiology & Pharmacology, [s.l.], v. 18, n. 4, p.279-288, 2014.

RIBEIRO, Ronaldo de Albuquerque et al. Bases da Resposta Inflamatória do Trato Gastrintestinal. Sistema Digestório: Integração Básico-Clínica, [s.l.], p.763-808, nov. 2016.

RIBEIRO et al. Development of a probiotic non-fermented blend beverage with juçara fruit: Effect of the matrix on probiotic viability and survival to the gastrointestinal tract. Lwt, [s.l.], v. 118, p.1-19, jan. 2020.

RODRIGUES, Raphaela et al. Lactobacillus rhamnosus EM1107 in goat milk matrix modulates intestinal inflammation involving NF-κB p65 and SOCs-1 in an acid-induced colitis model. Journal Of Functional Foods, [s.l.], v. 50, p.78-92, nov. 2018.

ROLIM, Fernanda et al. Survival of Lactobacillus rhamnosus EM1107 in simulated gastrointestinal conditions and its inhibitory effect against pathogenic bacteria in semi- hard goat cheese. Lwt - Food Science And Technology, [s.l.], v. 63, n. 2, p.807-813, out. 2015.

SÁNCHEZ, Borja et al. Probiotics, gut microbiota, and their influence on host health and disease. Molecular Nutrition & Food Research, [s.l.], v. 61, n. 1, p.1-15, 10 out. 2016.

SAIRENJI, Tomoko; COLLINS, Kimberly L.; EVANS, David V.. An Update on Inflammatory Bowel Disease. Primary Care: Clinics in Office Practice, [s.l.], v. 44, n. 4, p.673-692, dez. 2017.

SARTOR, R Balfour. Mechanisms of Disease: pathogenesis of Crohn's disease and ulcerative colitis. Nature Clinical Practice Gastroenterology & Hepatology, [s.l.], v. 3, n. 7, p.390-407, jul. 2006.

SCALDAFERRI, Franco; FIOCCHI, Claudio. Inflammatory bowel disease: Progress and current concepts of etiopathogenesis. Journal Of Digestive Diseases, [s.l.], v. 8, n. 4, p.171-178, nov. 2007.

SCALDAFERRI, Franco et al. Gut Microbial Flora, Prebiotics, and Probiotics in IBD: Their Current Usage and Utility. Biomed Research International, [s.l.], v. 2013, p.1- 9, 2013.

SHAW, Souradet y; BLANCHARD, James F; BERNSTEIN, Charles N. Association Between the Use of Antibiotics in the First Year of Life and Pediatric Inflammatory Bowel Disease. American Journal Of Gastroenterology, [s.l.], v. 105, n. 12, p.2687- 2692, dez. 2010.

SHOUVAL, Dror S.; RUFO, Paul A.. The Role of Environmental Factors in the Pathogenesis of Inflammatory Bowel Diseases. Jama Pediatrics, [s.l.], v. 171, n. 10, p.999-1005, 1 out. 2017.

SEDDIK, Hamza Ait et al. Lactobacillus plantarum and Its Probiotic and Food Potentialities. Probiotics And Antimicrobial Proteins, [s.l.], v. 9, n. 2, p.111-122, 7 mar. 2017.

SILOŞI, Isabela et al. Matrix metalloproteinases (MMP-3 and MMP-9) implication in the pathogenesis of inflammatory bowel disease (IBD). Rom J Morphol Embryol 2014, 55(4):1317–1324.

SU, Hau-jyun et al. Inflammatory bowel disease and its treatment in 2018: Global and Taiwanese status updates. Journal Of The Formosan Medical Association, [s.l.], v. 118, n. 7, p.1083-1092, jul. 2019.

STROBER, Warren; FUSS, Ivan J.. Proinflammatory Cytokines in the Pathogenesis of Inflammatory Bowel Diseases. Gastroenterology, [s.l.], v. 140, n. 6, p.1756-1767, maio 2011.

SMOKVINA, Tamara; DEGFVRY, Marie-christine. NOVEL STRAIN OF LACTOBACILLUS MUCOSA. FR nº PCT/IB201 1/055876, 21 dez. 2011, 27 jun.

2013.

SMITH, Andrew M. et al. Disordered macrophage cytokine secretion underlies impaired acute inflammation and bacterial clearance in Crohn's disease. The Journal

Of Experimental Medicine, [s.l.], v. 206, n. 9, p.1883-1897, 3 ago. 2009.

TIAN, Tian; WANG, Ziling; ZHANG, Jinhua. Pathomechanisms of Oxidative Stress in Inflammatory Bowel Disease and Potential Antioxidant Therapies. Oxidative

Medicine And Cellular Longevity, [s.l.], v. 2017, p.1-18, 2017.

TRIANTAFILLIDIS, John. Current and emerging drugs for the treatment of inflammatory bowel disease. Drug Design, Development And Therapy, [s.l.], p.185- 210, abr. 2011.

TRINDADE, L.m. et al. Oral administration of Simbioflora® (synbiotic) attenuates intestinal damage in a mouse model of 5-fluorouracil-induced mucositis. Beneficial

Microbes, [s.l.], v. 9, n. 3, p.477-486, 25 abr. 2018.

UNDERWOOD, Mark A. et al. Bifidobacterium longum subsp. infantis in experimental necrotizing enterocolitis: alterations in inflammation, innate immune response, and the microbiota. Pediatric Research, [s.l.], v. 76, n. 4, p.326-333, 7 jul. 2014.

VALERIANO, Valerie Diane V. et al. Comparative genomic analysis of Lactobacillus mucosae LM1 identifies potential niche-specific genes and pathways for gastrointestinal adaptation. Genomics, [s.l.], v. 111, n. 1, p.24-33, jan. 2017.

VALERIANO, V.d.; PARUNGAO-BALOLONG, M.m.; KANG, D.-k.. In vitro evaluation of the mucin-adhesion ability and probiotic potential ofLactobacillus mucosaeLM1. Journal Of Applied Microbiology, [s.l.], v. 117, n. 2, p.485-497, 2 jun. 2014.

WALLER, Derek G.; SAMPSON, Anthony P.. Inflammatory bowel disease. Medical

Pharmacology And Therapeutics, [s.l.], p.411-416, 2018.

WANG, Yongjun et al. Oral 5-aminosalicylic acid for induction of remission in ulcerative colitis. Cochrane Database Of Systematic Reviews, [s.l.], p.1-118, 21 abr. 2016. YIN, Mingming et al. Micro Integral Membrane Protein (MIMP), a Newly Discovered Anti-Inflammatory Protein of Lactobacillus Plantarum, Enhances the Gut Barrier and Modulates Microbiota and Inflammatory Cytokines. Cellular Physiology And

Biochemistry, [s.l.], v. 45, n. 2, p.474-490, 2018.

YU, Xiaomin et al. A novel strain of Lactobacillus mucosae isolated from a Gaotian villager improves in vitro and in vivo antioxidant as well as biological properties in d- galactose-induced aging mice. Journal Of Dairy Science, [s.l.], v. 99, n. 2, p.903-914, fev. 2016.

YOKOTA, Yasushi et al. Lactobacillus plantarum AN1 cells increase caecal L. reuteri in an ICR mouse model of dextran sodium sulphate-induced inflammatory bowel disease. International Immunopharmacology, [s.l.], v. 56, p.119-127, mar. 2018. ZHANG, Yi-zhen. Inflammatory bowel disease: Pathogenesis. World Journal Of

Gastroenterology, [s.l.], v. 20, n. 1, p.91-99, 2014.

ZEA-IRIARTE, W.-l. et al. Impairment of Antioxidants in Colonic Epithelial Cells Isolated from Trinitrobenzene Sulphonic Acid-Induced Colitis Rats Protective Effect of Rebamipide. Scandinavian Journal Of Gastroenterology, [s.l.], v. 31, n. 10, p.985- 992, jan. 1996.

ANEXO A – Cadastrado das espécies Lactobacillus plantarum CNPC003 e

Lactobacillus mucosae CNPC007 no Sistema Nacional de Gestão do

ANEXO B - Protocolo aprovado pelo Comitê de Ética no uso de animais (CEUA)/UFRN

Documentos relacionados