• Nenhum resultado encontrado

Capítulo 3. Efeito do processamento do leite por alta Pressão isostática e

3.5 Conclusão

O uso da enzima TGase apresenta uma excelente opção para aumentar a consistência e viscosidade aparente do iogurte. Contudo, para o comportamento viscoelástico (análise de EOBA) a adição de TGase em leite processado por API apresentou a maior consistência e para comportamento ao fluxo (análise EREE) a TGase aumentou a viscosidade aparente no iogurte produzido com leite processado termicamente (95°C por 5min). O processo de API causa fragmentação da micela de caseína que aumenta a exposição de resíduos de lisina e glutamina, favorecendo, assim, a atuação da TGase. Por outro lado, o processo de HAP prejudicou a atuação da TGase principalmente em concentrações mais elevadas de gordura, não alterando significativamente consistência e viscosidade aparente do iogurte. Este fato ocorreu devido à fragmentação excessiva dos glóbulos de gordura que adsorvem sobre proteínas bloqueando os resíduos de aminoácidos necessários para a atuação da TGase.

3.6 Referências

AKALIN, A. S. et al. Microstructural, textural, and sensory characteristics of probiotic yogurts fortified with sodium calcium caseinate or whey protein concentrate. Journal of Dairy Science, v. 95, n. 7, p. 3617–28, 2012.

low-fat yoghurt as affected by high pressure. International Dairy Journal, v. 10, n. 1–2, p. 105–111, 2000.

ANEMA, S. G. et al. Rheological properties of acid gels prepared from pressure- and transglutaminase-treated skim milk. Food Hydrocolloids, v. 19, n. 5, p. 879–887, 2005.

AUGUSTO, P. E. D.; VITALI, A. A. Assessing juice quality: Advances in the determination of rheological properties of fruit juices and derivatives. In: FALGUERA, V.; IBARZ, A. (Eds.). Juice processing quality, safety and value- added opportunities. 1. ed. [s.l.] CRC Press, 2014. p. 83–136.

BÖNISCH, M. P. et al. Transglutaminase cross-linking of milk proteins and impact on yoghurt gel properties. International Dairy Journal, v. 17, n. 11, p. 1360–1371, 2007a.

BÖNISCH, M. P. et al. Yoghurt gel formation by means of enzymatic protein cross-linking during microbial fermentation. Food Hydrocolloids, v. 21, n. 4, p. 585–595, 2007b.

BÖNISCH, M. P.; LAUBER, S.; KULOZIK, U. Improvement of enzymatic cross-linking of casein micelles with transglutaminase by glutathione addition. International Dairy Journal, v. 17, n. 1, p. 3–11, 2007.

BÖNISCH, M. P.; TOLKACH, A.; KULOZIK, U. Inactivation of an indigenous transglutaminase inhibitor in milk serum by means of UHT-treatment and membrane separation techniques. International Dairy Journal, v. 16, n. 6, p. 669–678, 2006.

BRAVO, F. I. et al. Skim milk protein distribution as a result of very high hydrostatic pressure. Food Research International, v. 72, p. 74–79, 2015.

CIRON, C. I. E. et al. Comparison of the effects of high-pressure microfluidization and conventional homogenization of milk on particle size, water retention and texture of non-fat and low-fat yoghurts. International Dairy Journal, v. 20, n. 5, p. 314–320, 2010.

CIRON, C. I. E. et al. Effect of microfluidization of heat-treated milk on rheology and sensory properties of reduced fat yoghurt. Food Hydrocolloids, v. 25, n. 6, p. 1470–1476, 2011.

CONSIDINE, T. et al. Interactions of milk proteins during heat and high hydrostatic pressure treatments - A Review. Innovative Food Science and

Emerging Technologies, v. 8, n. 1, p. 1–23, 2007.

DUMAY, E. et al. Technological aspects and potential applications of (ultra) high-pressure homogenisation. Trends in Food Science and Technology, v. 31, n. 1, p. 13–26, 2013.

ERCILI-CURA, D. et al. Structural mechanisms leading to improved water retention in acid milk gels by use of transglutaminase. Food Hydrocolloids, v. 30, n. 1, p. 419–427, 2013.

GRÁCIA-JULIÁ, A. et al. Effect of dynamic high pressure on whey protein aggregation: A comparison with the effect of continuous short-time thermal treatments. Food Hydrocolloids, v. 22, n. 6, p. 1014–1032, 2008.

HARTE, F. et al. Yield stress and microstructure of set yogurt made from high hydrostatic pressure-treated full fat milk. Journal of Food Science, v. 67, n. 6, p. 2245–2250, 2002.

HAYES, M. G.; KELLY, A. L. High pressure homogenisation of milk (b) effects on indigenous enzymatic activity. The Journal of Dairy Research, v. 70, n. 3, p. 307–313, 2003a.

HAYES, M. G.; KELLY, A. L. High pressure homogenisation of raw whole bovine milk (a) effects on fat globule size and other properties. The Journal of Dairy Research, v. 70, n. 3, p. 297–305, 2003b.

HERNÁNDEZ, A.; HARTE, F. M. Manufacture of acid gels from skim milk using high-pressure homogenization. Journal of Dairy Science, v. 91, n. 10, p. 3761–7, out. 2008.

HUPPERTZ, T. et al. High pressure-induced changes in bovine milk proteins: A review. Biochimica et Biophysica Acta - Proteins and Proteomics, v. 1764, n. 3, p. 593–598, 2006.

JAROS, D. et al. Excessive cross-linking of caseins by microbial transglutaminase and its impact on physical properties of acidified milk gels. International Dairy Journal, v. 20, n. 5, p. 321–327, 2010.

JONG, G. A H.; WIJNGAARDS, G.; KOPPELMAN, S. J. Transglutaminase inhibitor from milk. Journal of Food Science, v. 68, n. 3, p. 820–825, 2003.

LAUBER, S. et al. Oligomerization of β-lactoglobulin by microbial transglutaminase during high pressure treatment. European Food Research and

Technology, v. 213, n. 3, p. 246–247, 2001.

LAUBER, S. et al. Microbial transglutaminase crosslinks β-casein and β-lactoglobulin to heterologous oligomers under high pressure. European Food Research and Technology, v. 216, p. 15–17, 2003.

LAUBER, S.; HENLE, T.; KLOSTERMEYER, H. Relationship between the crosslinking of caseins by transglutaminase and the gel strength of yoghurt. European Food Research and Technology, v. 210, p. 305–309, 2000.

LEE, W. J.; LUCEY, J. A. Structure and physical properties of yogurt gels: effect of inoculation rate and incubation temperature. Journal of Dairy Science, v. 87, n. 10, p. 3153–3164, 2004.

LEE, W. J.; LUCEY, J. A. Rheological properties, whey separation, and microstructure in set-style yogurt: Effects of heating temperature and incubation temperature. Journal of Texture Studies, v. 34, n. 5–6, p. 515–536, 2003.

LEE, W. J.; LUCEY, J. A. Formation and physical properties of milk protein gels. Journal of Dairy Science, v. 85, n. 9, p. 281–294, 2010.

LEITE, B. R. DE C. et al. Characterization of rennet-induced gels using calf rennet processed by high pressure homogenization: Effects on proteolysis, whey separation, rheological properties and microstructure. Innovative Food Science & Emerging Technologies, v. 26, p. 517–524, dez. 2014.

LÓPEZ-FANDIÑO, R. High pressure-induced changes in milk proteins and possible applications in dairy technology. International Dairy Journal, v. 16, n. 10, p. 1119–1131, out. 2006.

LORENZEN, P. C. et al. Effect of enzymatic cross-linking of milk proteins on functional properties of set-style yoghurt. International Journal of Dairy Technology, v. 55, n. 3, p. 152–157, 2002.

LOVEDAY, S. M.; SARKAR, A.; SINGH, H. Innovative yoghurts: Novel processing technologies for improving acid milk gel texture. Trends in Food Science and Technology, v. 33, n. 1, p. 5–20, 2013.

NEEDS, E. C. et al. High-pressure treatment of milk: effects on casein micelle structure and on enzymic coagulation. The Journal of Dairy Research, v. 67, n. 1, p. 31–42, 2000a.

NEEDS, E. C. et al. Comparison of heat and pressure treatments of skim milk, fortified with whey protein concentrate, for set yogurt preparation:

effects on milk proteins and gel structure. The Journal of Dairy Research, v. 67, n. 3, p. 329–348, 2000b.

NGUYEN, Q. D.; BOGER, D. V. Measuring the flow properties of yield stress fluids. Annual Review of Fluid Mechanics, v. 24, p. 47–88, 1992.

OLIVEIRA, M. M. et al. Effect of dynamic high pressure on milk fermentation kinetics and rheological properties of probiotic fermented milk. Innovative Food Science & Emerging Technologies, v. 26, p. 67–75, dez. 2014.

O’SULLIVAN, M. M.; KELLY, A. L.; FOX, P. F. Effect of transglutaminase on the heat stability of milk: a possible mechanism. Journal of Dairy Science, v. 85, n. 1, p. 1–7, 2002.

OZER, B. et al. Incorporation of microbial transglutaminase into non-fat yogurt production. International Dairy Journal, v. 17, n. 3, p. 199–207, 2007.

PENNA, A. L. B.; SUBBARAO-GURRAM; BARBOSA-CÁNOVAS, G. V. High hydrostatic pressure processing on microstructure of probiotic low-fat yogurt. Food Research International, v. 40, n. 4, p. 510–519, 2007.

ROACH, A.; HARTE, F. Disruption and sedimentation of casein micelles and casein micelle isolates under high-pressure homogenization. Innovative Food Science and Emerging Technologies, v. 9, n. 1, p. 1–8, 2008.

SANDRA, S.; DALGLEISH, D. G. Effects of ultra-high-pressure homogenization and heating on structural properties of casein micelles in reconstituted skim milk powder. International Dairy Journal, v. 15, n. 11, p. 1095–1104, 2005.

SANLI, T. et al. Effect of using transglutaminase on physical, chemical and sensory properties of set-type yoghurt. Food Hydrocolloids, v. 25, n. 6, p. 1477–1481, 2011.

SERRA, M. et al. Acid coagulation properties and suitability for yogurt production of cows’ milk treated by high-pressure homogenisation. International Dairy Journal, v. 17, n. 7, p. 782–790, jul. 2007.

SERRA, M. et al. Ultra-high pressure homogenization-induced changes in skim milk: impact on acid coagulation properties. The Journal of Dairy Research, v. 75, n. 1, p. 69–75, fev. 2008.

and stirred yogurts made from ultra-high pressure homogenization-treated milk. Food Hydrocolloids, v. 23, n. 1, p. 82–91, jan. 2009.

TAMIME, A. Y.; ROBINSON, R. K. Yoghurt Science and Technology. 2 ed. ed. [s.l.] Woodhead Publishing Ltda, 2007.

THIEBAUD, M. et al. High-pressure homogenisation of raw bovine milk. Effects on fat globule size distribution and microbial inactivation. International Dairy Journal, v. 13, n. 6, p. 427–439, 2003.

TRUJILLO, A. J. et al. Applications of high hydrostatic pressure on milk and dairy products: a review. Innovative Food Science & Emerging Technologies, v. 3, n. 4, p. 295–307, 2002.

TSEVDOU, M. S.; ELEFTHERIOU, E. G.; TAOUKIS, P. S. Transglutaminase treatment of thermally and high pressure processed milk: Effects on the properties and storage stability of set yoghurt. Innovative Food Science and Emerging Technologies, v. 17, p. 144–152, 2013.

UDABAGE, P. et al. Properties of low-fat stirred yoghurts made from high-pressure-processed skim milk. Innovative Food Science and Emerging Technologies, v. 11, n. 1, p. 32–38, 2010.

ZAMORA, A. et al. Changes in the surface protein of the fat globules during ultra-high pressure homogenisation and conventional treatments of milk. Food Hydrocolloids, v. 29, n. 1, p. 135–143, 2012.

Capítulo 4. Efeito do processamento de leite por alta pressão

Documentos relacionados