• Nenhum resultado encontrado

Tomados em conjunto, os resultados indicam que:

• A CQ promove uma alteração fenotípica e funcional das DCs capaz de interferir na função das células T CD4+, devido à diminuição na expressão dos marcadores de superfície das DCs, à alteração na expressão genica das citocinas inflamatórias e à capacidade de modular a atividade das células T para um perfil de resposta tolerogênica;

• Além disso, os dados obtidos sugerem que o efeito indutor de tolDCs pela CQ depende, em parte, de uma inibição da ativação da via não canônica do NF-B. Isso porque observamos os mesmos efeitos sobre as DCs obtidas de camundongos tratadas com a CQ nas DCs que foram tratadas in vitro com a CQ na presença do ativador da via (LPS);

• Por fim, os resultados mostram que a presença de um ambiente imunologicamente ativado pela EAE não foi suficiente para reverter o efeito terapêutico das DCs tratadas com a CQ sugerindo uma provável relação entre o efeito terapêutico dessas tolDCs e a inibição a via não canônica do NF-B promovida pela CQ.

REFERÊNCIAS BIBLIOGRÁFICAS

ADORINI, L.; GIARRATANA, N.; PENNA, G. Pharmacological induction of tolerogenic dendritic cells and regulatory T cells. Seminars in Immunology, v. 16, n. 02, p. 217-134, 2004. AIBA, S.; MANOME, H.; NAKAGAWA, S.; MOLLAH, Z.U.A.; MIZUASHI, M.; OHTANI, T.; YOSHINO, Y.; TAGAMI, H. p38 Mitogen-activated protein kinase and extracellular signal- regulated kinases play distinct roles in the activation of dendritic cells by two representative haptens, NiCl2 and 2,4-dinitrochlorobenzene. Journal of Investigative Dermatology, v. 120, n.

3, p. 390-399, 2003.

AL-BARI, A.A. Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. Journal of

Antimicrobial Chemother, v. 70, n. 06, p. 1608-1021, 2015.

AWASTHI, A.; CARRIER, Y.; PERON, J.P.S.; BETTELLI, E.; KAMANAKA, M.; FLAVELL, R.A.; KUCHROO, V.K.; OUKKA, M.; WEINER, H. A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nature Immunology, v. 8, n. 12, p. 1380-1389, 2007.

BALTIMORE, D. NF-B is 25. Nature Immunology, v. 12, n. 8, p. 683-685, 2011.

BANCHEREAU J.; BRIERE, F.; CAUX, C.; DAVOUST, J.; LEVECQUE S.; LIU YJ.; PULENDRAN, B.; PALUCKA, K. Immunobiology of Dendritic Cells. Annual Review of

Immunology, v. 18, p. 767-811, 2000.

BANCHEREAU J.; STEINMAN, R.M. Dendritic cells and the control of immunity. Nature, v. 392, n. 6673, p. 245-252, 1998.

BANDZAR, S.; GUPTA, S.; PLATT, M.O. Crohn’s disease: A review of treatment options and current research. Cellular Immunology, v. 286, p. 45-52, 2013.

BARRATT-BOYES, S.M.; THOMSON, A.W. Dendritic Cells: Tools and Targets for Transplant Tolerance. American Journal of Transplantation, v. 05, n. 12, p. 2807-2813, 2005.

BERGER, T.G.; SCHULTZ, E.S. Dendritic cell-based immunotherapy. Current topics in

microbiology and immunology, v. 276, p. 163-197, 2003.

BENHAM, H.; NEL, H.J.; LAW, S.C.; MEHDI, A.M.; STREET, S.; RAMNORUTH, N.; PAHAU, H.; LEE, B.T.; NG, J.; BRUNCK, M.E.G.; HYDE, C.; TROUW, L.A.; DUDEK, N.L.; PURCELL, A.W.; O’SULLIVAN, B.J.; CONNOLLY, J.E.; PAUL, S.K.; CAO, KA.L.; THOMAS, R. Citrullinated peptide dendritic cell immunotherapy in HLA risk genotype- positive rheumatoid arthritis patients. Science Transplantation Medicine, v. 7, n. 290, p. 1-11, 2015.

BHATTACHARYYA, S.; BORTHAKUR, A.; DUDEJA, P.K.; TOBACMAN, J.K. Lipopolyssaccharide-induce Activation of NF-B Non-Canonical Pathway Requires BCL10 Serine 138 and NIK Phosphorylations. Experimental Cell Research, v. 316, n. 19, p. 3317- 3327, 2010.

BIANCHI, M.E. DAMPs, PAMPs and alarmins: all we need to know about danger. Journal of

Leukocyte Biology, v. 81, n. 1, p. 1-5, 2007.

BLAECKE, A.; DELNESTE, Y.; HERBAULT, N.; JEANNIN, P.; BONNEFOY, JY.; BECK, A.; AUBRY, JP. Measurement of Nuclear Factor-Kappa B Translocation on Lipopolysaccharide-Activated Human Dendritic Cells by Confocal Microscopy and Flow Cytometry. Cytometry, v.48, n. 2, p. 71-79, 2002.

BOKS, M.A.; KAGER-GROENLAND, J.R.; HAASJES, M.S.P.; ZWAGINGA, J.J.; van HAM, S.M.; ten BRINKE, A. IL-10-generated tolerogenic dendritic cells are optimal for functional regulatory T cell induction – A comparative study of human clinical-applicable DCs. Clinical

Immunology, v. 142, p. 332-342, 2012.

BOL, K.F.; SCHREIBELT, G.; GERRITSEN, W.R.; VRIES, J.M., FIGDOR, C.G. Dendritic cell-based immunotherapy: state of the art and beyond. Clinical Cancer Research, v. 22, n. 8, p. 1897-1906, 2016.

BOLON, B. Cellular and Molecular Mechanisms of Autoimmune Disease. Toxicologic

Pathology, v. 40, p. 216-229, 2012.

BONIZZI G.; KARIN, M. The two NF-B activation pathways and their role in innate and adaptive immunity. Trends in Immunology, v. 25, n. 06, p. 280-288, 2004.

BORRIELLO, F.; SETHNA, M.P.; BOYD, S.D.; SCHWEITZER, A.N.; TIVOL, E.A.; JACOBY, D.; STROM, T.B. B7-1 and B7-2 Have overlapping, Critical Roles in Immunoglobulin Class Switching and Germinal Center Formation. Immunity, v. 06, p. 303- 313, 1997.

BOULTON, T.G.; NYE, S.H.; ROBBINS, D.J.; IP, N.Y.; RADZIELEWSKA, E.; MORGENBESSER, S.G., DePINHO, R.A.; PANAYOTATOS, N.; COBB, M.H.; YANCOPOULOS, G.D. ERKS: A family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell, v. 65, p. 663-675, 1991. BURKLY, L.; HESSION, C.; OGATA, L.; REILLY, C.; MARCONL, L.A.; OLSON, D.;

TIZARD, R.; CATE, R.; LO, D. Expression of relB is required for the development of thymic medulla and dendritic cells. Nature, v. 373, p. 531-536, 1995.

CAAMAÑO J.; HUNTER, C.A. NF-B Family of Transcription Factors: Central Regulators of Innate and Adaptive Immune Functions. Clinical Microbiology Reviews, v. 15, n. 03, p. 414- 429, 2002.

CEPPI, M.; PEREIRA, P.M.; DUNAND-SAUTHIER, I.; BARRAS, E.; REITH, W.; SANTOS, M.A.; PIERRE, P. MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. PNAS, v. 106, n. 8, p. 2735-2740, 2009.

COLONNA, M.; TRINCHIERI, G.; LIU, YJ. Plasmacytoid dendritic cells in immunity. Nature

Immunology, v. 15, n. 12, p. 1219-1226, 2004.

COMABELLA, M.; MONTALBAN, X.; MUNZ, C.; LUNEMANN, D. Targeting dendritic cells to treat multiple sclerosis. Nature Reviews Neurology, v. 6, p. 499-507, 2010.

COOPE, H.J.; ATKINSON, P.G.P.; HUHSE, B.; BELICH, M.; JANZEN, J.; HOLMAN, M.J.; KLAUS, G.G.B.; JOHNSTON, L.H.; LEY, S.C. CD40 regulates the processing of NF-kB p100 to 52. The EMBO Journal, v. 21, n. 20, p. 5375-5385, 2002.

CUENDA, A.; ROUSSEAU, S. p38 MAP-Kinases pathway regulation, function and role in human diseases. Biochimica et Biophysica Acta, v. 1773, p. 1358-1375, 2007.

D’AMBROSIO, A.; COLUCCI, M.; PUGLIESE, O.; QUINTIERI, F. Cholera toxin B subunit promotes the induction of regulatory T cells by preventing human dendritic cell maturation.

Journal of Leukocyte Biology, v. 84, p. 661-668, 2008.

ELGUETA, R.; BENSON, M.J.; de VRIES, V.C.; WASIUK, A.; GUO, Y.; NOELLE, R.J. Molecular mechanism and function of CD40/CD40L engagement in the immune system.

Immunology Review, v. 229, n. 01, p. 152-172, 2009.

EZZELARAB, M.; THOMSON, A.W. Tolerogenic dendritic cells and their role in transplantation. Seminars in Immunology, v. 23, n. 04, p. 252-263, 2011.

FONG, L.; BROCKSTEDT, D.; BENIKE, C.; BREEN, J.K.; STRANG, G.; RUEGG, C.L.; ENGLEMAN, E.G. Dendritic cell-based xenoantigen vaccination for prostate cancer immunotherapy. The Journal of Immmunology, v. 167, p. 7150-7156, 2001.

GHOSH, S.; MAY, M.J.; KOPP, E.B. NF-B AND REL PROTEINS: Evolutionarily Conserved Mediators of Immune Responses. Annual Review of Immunology, v. 16, p. 225-260, 1998. GIANNOUKAKIS, N.; PHILIPS, B.; FINEGOLD, D.; HARNAHA, J.; TRUCCO, M. Phase I

(Safety) study of autologous tolerogenic dendritic cells in type 1 diabetic patients. Diabetes

Care, v. 34, p. 2026-2032, 2011.

GILMORE, TD.; HERSCOVITCH, M. Inhibitors of NF-B signaling: 785 and counting.

Oncogene, v. 25, n. 01, p. 6887-6899, 2006.

GOLDENBERG, M.M. Multiple Sclerosis Review. P&T, v. 37, n. 3, p. 175-184, 2012.

GOONESEKERA, S. A global epidemiological forecast of Multiple Sclerosis and Disease Subtypes. Neurology, v. 88 (16 Supplement), 2017.

GREGORI, S.; TOMASONI, D.; PACCIANI, V.; SCIRPOLI, M.; BATTAGLIA, M.; MAGNANI, C.F.; HAUBEN, E.; RONCAROLO, MG. Differentiation of type 1 T regulatory cells (Tr1) by tolerogenic DC-10 requires the IL-10-dependent ILT4/HLA-G pathway.

Immunobiology, v. 116, n. 6, p. 935-944, 2010.

GRIFFIN, M.D.; LUTZ, W.H.; PHAN, V.A.; BACHMAN, L.A. Potent inhibition of dendritic cell differentiation and maturation by vitamin D analogs. Biochemical and Biophysical

Research Communications, v. 270, p. 701-708, 2000.

GROSS, C.C.; JONULEIT, H.; WIENDL, H. Fulfilling the dream: tolerogenic dendritic cells to treat multiple sclerosis. European Journal of Immunology, v. 42, n. 03, p. 569-572, 2012. HACKSTEIN, H.; MORELLI, A.E.; LARREINA, A.T.; GANSTER, R.W.; PAPWORTH, G.D.;

LOGAR, A.J.; WATKINS, S.C.; FALO, L.D.; THOMSON, A.W. Aspirin inhibits in vitro maturation and in vivo immunostimulatory function of murine myeloid dendritic cells. The

Journal of Immunology, v. 166, p. 7053-7062, 2001.

HAINES J.L.; TER-MINASSIAN M.; BAZYK A.; GUSELLA J.F.; KIM D.J.; TERWEDOW H., PERICAK-VANCE M.A.; RIMMLER J.B.; HAYNES C.S.; ROSES A.D.; LEE A.; SHANER B.; MENOLD M.; SEBOUN E.; FITOUSSI R.P.; GARTIOUX C.; REYES C.; RIBIERRE F.; GYAPAY G.; WEISSENBACH J.; HAUSER S.L.; GOODKIN D.E.; LINCOLN R.; USUKU K.; GARCIA-MERINO A.; GATTO N., YOUNG S.; OKSENBERG J.R. A complete genomic screen for multiple sclerosis underscores a role for the major histocompatibility complex. Nature Genetics, v. 13, n. 04, p. 469-471, 1996.

HÄMMERLING, G.J.; SCHÖNRICH, G.; FERBER, I.; ARNOLD, B. Peripheral Tolerance as a Multi-Step Mechanism. Immunological Reviews, n. 133, p. 93-104, 1993.

HASHIMI, S.T.; FULCHER, J.A.; CHANG, M.H.; GOV, L.; WANG, S.; LEE, B. MicroRNA profiling identifies miR-34a and miR-21 and their target genes JAG1 and WNT1 in the coordinate regulation of dendritic cell differentiation. Blood, v. 114, n. 2, p. 404-414, 2009. HATHCOCK, K.S.; LASZLO, G.; PUCILLO, C.; LINSLEY, P.; HODES, R.J. Comparative

Analysis of B7-1 and B7-2 costimulatory ligands: expression and function. The Journal of

Experimental Medicine, v. 180, p. 631-640, 1994.

ILARREGUI, J.M.; CROCI, D.O.; BIANCO, G.A.; TOSCANO, M.A.; SALATINO, M.; VERMEULEN, M.E.; GEFFNER, J.R.; RABINOVICH, G.A. Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10. Nature Immunology, v. 10, n. 09, p. 981-991, 2009.

INABA, K.; WITMER-PACK, M.; INABA, M.; HATHCOCK, K.S.; SAKUTA, H.; AZUMA, M.; YAGITA, H.; OKUMURA, K.; LINSLEY, P.S.; IKEHARA, S.; MURAMATSU, S.; HODES, R.J.; STEINMAN, R.M. The Tissue Distribution of the B7-2 Costimulatory in Mice: Abundant Expression on Dendritic Cells in Situ and During Maturation in Vitro. The Journal

IRURETAGOYENA, M.I.; SEPÚLVEDA, S.E.; LEZANA, J.P.; HERMOSO, M.; BRONFMAN, M.; GUTIÉRREZ, M.A.; JACOBELLI, S.H.; KALERGIS, A.M. Inhibition of Nuclear Factor-ϰB Enhances the Capacity of Immature Dendritic Cells to Induce Antigen- Specific Tolerance in Experimental Autoimmune Encephalomyelitis. The Journal of

Pharmacology and Experimental Therapeutics, v. 318, n. 01, p. 59-67, 2006.

ITO, T.; YANG, M.; WANG, YH.; LANDE, R.; GREGORIO, J.; PERNG, O.A.; QIN, XF.; LIU, YJ; GILLIET, M. Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulatory ligand. Journal of Experimental Medicine, v. 204, n. 01, p. 105-115, 2007.

JANEWAY, C. A., Jr. Approaching the asymptote? Evolution and revolution in immunology.

Cold Spring Harbor Symposia on Quantitative Biology, n. 54, p. 1–13, 1989.

JANEWAY Jr., C.A.; MEDZHITOV, R. Innate Immune Recognition. Annual Review of

Immunology, v. 20, p. 197-216. 2002.

JAUREGUI-AMEZAGA, A.; CABEZÓN, R.; RAMÍREZ-MORROS, A.; ESPAÑA, C.; RIMOLA, J.; BRU, C.; PINÓ-DONNAY, S.; GALLEGO, M.; MASAMUNT, M.C.; ORDÁS, I.; LOZANO, M.; CID, J.; PANÉS, J.; BENÍTEZ-RIIBAS, D.; RICART, E. Intraperitoneal administration of autologous tolerogenic dendritic cells for refractory Crohn’s Disease: A phase I study. Journal of Crohn’s and Colitis, v. 9, n. 12, p. 1071-1078, 2015.

KAISHO, T.; AKIRA, S. Toll-like receptor function and signaling. Journal of Allergy and

Clinical Immunology, v. 11, n. 5, pp. 979-987, 2006.

KAPLAN, M.H.; SCHINDLER, U.; SMILEY, S.T.; GRUSBY, M.J. Stat6 is required for mediating responses to IL-4 and foR the development of Th2 cells. Immunity, v. 4, p. 313-319, 1996.

KARIN, M.; BEM-NERIAH, Y. Phosphorylation Meets Ubiquitination: The Control of NF-B Activity. Annual Review of Immunology, v. 18, p. 621-663, 2000.

KARRES, I.; KREMER, JP.; DIETL, I.; STECKHOLZER, U.; JOCHUM, M.; ERTEL, W. Chloroquine inhibits proinflammatory cytokine release into human whole blood. American

Journal of Physiology, v. 274, n. 04, R1058-R1064, 1998.

KIM, S.J.; DIAMOND, B. Modulation of tolerogenic dendritic cells and autoimmunity.

Seminars inn Cell & Developmental Biology, v. 41, p. 49-58, 2015.

KNIGHT, S.C.; FARRANT, J.; CHAN, J.; BRYANT, A.; BEDFORG, P.A.; BATEMAN, C. Induction of Autoimmunity with Dendritic Cells: Studies on Thyroiditis in Mice. Clinical

Immunology and Immunopathology, v. 48, p. 277-289, 1988.

KYRIAKIS, J.M.; BANERJEE, P.; NIKOLAKAKI, E.; DAL, T.; RUBLE, E.A.; AHMAD, M.F.; AVRUCH, J.; WOODGETT, J.R. The stress-activated protein kinase subfamily of c-Jun kinases. Nature, v. 368, 0. 156-160, 1994

LANDE, R.; GAFA, V.; SERRAFINI, B.; GIACOMINI, E.; VISCONTI, A.; REMOLI, M.E.; SEVERA, M.; PARMENTIER, M.; RISTORI, G.; SALVETTI, M.; ALOISI, F.; COCCIA, E.M. Plasmacytoid Dendritic Cells in Multiple Sclerosis: Intracerebral Recruitment and Impaired Maturation in Response to Interferon-ß. Journal of Neuropathology &

Experimental Neurology, v. 67, n. 05, p. 388-401, 2008.

LAWRENCE, T. The Nuclear Factor NF-B Pathway in Inflammation. Cold Spring Harbor

Perspectives in Biology, v. 01, n. 06, a001651, 2009.

LI, H.; SHI, B. Tolerogenic dendritic cells and their applications in transplantation. Cellular &

Molecular Immunology, v. 12, p. 24-30, 2015.

LIND, E.F.; AHONEN, C.L.; WASIUK, A.; KOSAKA, Y.; BECHER, B.; BENNETT, K.A.; NOELLE, R.J. Dendritic Cells Require the NF-B2 Pathway for Cross-Presentation of Soluble Antigens. The Journal of Immunology, v. 181, n. 1, p. 354-363, 2008.

LONGHINI, A.L.F.; von GLEHN, F.; BRANDÃO, C.O.; de PAULA, R.FO.; PRADELLA, F.; MORAES, A.S.; FARIAS, A.S.; OLIVEIRA, E.C.; QUISPE-CABANILLAS, J.G.; ABREU, C.H.; DAMASCENO, A.; DAMASCENO, B.P.; BALASHOV, K.E.; SANTOS, L.M.B.S. Plasmacytoid dendritic cells are increased in cerebrospinal fluid of untreated patients during multiple sclerosis relapse. Journal of Neuroinflammation, v. 08, n. 02, doi:10.1186/1742- 2094-8-2, 2011.

LÓPEZ, C.B.; FERNANDEZ-SESMA, A.; CZELUSNIAK, S.M.; SCHULMAN, J.L.; MORAN, T.M. A mouse model for immunization with ex vivo virus-infected dendritic cells. Cellular

Immunology, v. 206, p. 107-115, 2000.

LUGO-VILLARINO, G. MALDONADO-LÓPEZ, R.; POSSEMATO, R.; PEÑARANDA, C.; GLIMCHER, L.H. T-bet is required for optimal production of IFN-γ and antigen-specific T cell activation by dendritic cells. PNAS, v. 100, n. 13, p. 7749-7754, 2003.

LUTZ, M.B.; KUKUTSCH, N.; OGILVIE, A.L.J.; RÖßNER, S.; KOCH, F.; ROMANI, N.; SCHULER, G. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. Journal of Immunological Methods, v. 223, n. 01, p. 77-92, 1999.

LUTZ, M.B.; SCHULER, G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends in Immunology, v. 23, n. 09, p. 445-449, 2002. MARTÍN, P.; DEL HOYO, G.M.; ANJUÈRE, F.; RUIZ, S.R.; ARIAS, C.F. MARÍN, A.R.;

ARDAVÍN, C. Concept of lymphoid versus myeloid dendritic cell lineages revisited: both CD8α- and CD8α+ dendritic cells are generated from CD4low lymphoid-committed precursors. Blood, v. 96, n. 7, p. 2511-2519, 2000.

MALDONADO, R.A.; von ANDRIAN, U.H. How Tolerogenic Dendritic Cells Induce Regulatory T Cells. Advances in Immunology, v. 108, p. 111-165, 2010.

MANEY, N.J.; REYNOLDS, G.; KRIPPNER-HEIDENREICH, A.; HILKENS, C.M.U. Dendritic cell maturation and survival are differentially regulated by TNFR1 and TNFR2. The

Journal of Immunology, v, 193, n. 10, p. 4914-4923, 2014.

MATTIOLI, B.; GIORDANI, L.; QUARANT, M.G.; VIORA, M. Leptin exerts an anti-apoptotic effect on human dendritic cells via the PI3K-Akt signaling pathway. FEBS Letters, v. 158, p. 1102-1106, 2009.

McGUIRK, P.; McCANN, C.; MILLS, K.H.G. Pathogen-specific T regulatory 1 cells induced in the respiratory tract by a bacterial molecule that stimulates interleukin 10 production by dendritic cells: a novel strategy for evasion of protective T helper type 1 responses by

Bordetella pertussis. The Journal of Experimental Medicine, v. 195, n. 2, p. 221-231, 2002.

MENDEL, I.; ROSBO, N.K.; BEN-NUM, A. A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H-2b mice: fine specificity and T cell receptor Vβ expression of encephalitogenic T cells. European Journal of

Immunology, v. 25, p. 1951-1959, 1995.

MENGES, M.; RÖβNER, S.; VOIGTLANDER, C.; SCHINDLER, H.; KUKUTSCH, N.A.; BOGDAN, C.; ERB, K.; SCHULER, G.; LUTZ, M.B. Repetitive injections of Dendritic Cells Matured with Tumor Necrosis Factor α Induce Antigen-specific Protection of Mice from Autoimmunity. Journal of Experimental Medicine, v. 195, n. 1, p. 15-21, 2002.

MILDNER, A.; JUNG, S. Development and function of dendritic cell subsets. Immunity, v. 40, n. 5, p. 642-656, 2014.

MILLARD, A.L.; MERTES, P.M.; ITTELET, D.; VILLARDS, F.; JEANNESSON, P.; BERNARD, J. Butyrate affects differentiation, maturation and function of human monocyte- derived dendritic cells and macrophages. Clinical of Experimental Immunology, v. 130, p. 245-255, 2002.

MIN, WP.; ZHOU, D.; ICHIM, T.E.; STREJAN, G.H.; YANG, J.; HUANG, X.; GARCIA, B.; WHITE, D.; DUTARTRE, P.; JEVNIKAR, A.M.; ZHONG, R. Inhibitory feedback loop between tolerogenic dendritic cells and regulatory T cells in transplant tolerance. The Journal

of Immunology, v. 170, p. 1304-1312, 2003.

MIRENDA, V.; BERTON, I.; READ, J.; COOK, T.; SMITH, J.; DORLING, A.; LECHLER, R.I. Modified dendritic cells coexpressing self and allogeneic major histocompatibility complex molecules: an efficient way to induce indirect pathway regulation. Journal of the American

Society of Nephrology, v. 15, p. 987-997, 2004.

MIYAZAWA, M.; ITO, Y.; KOSAKA, N.; NUKADA, Y.; SAKAGUCHI, H.; SUZUKI, H.; NISHIYAMA, N. Role of MAPK signaling pathway in the activation of dendritic type cell line, THP-1, induced by DNCB and NiSO4. The Journal of Toxicological Sciences, v. 33, n. 1, p.

MORDMULLER, B.; KRAPPMANN, D.; ESEN, M.; WEGENER, E.; SCHEIDEREIT. C. Lymphotoxin and lipopolysaccharide induce NF-B-p52 generation by a co-translational mechanism. EMBO reports, v. 4, n. 1, p. 82-87, 2003.

MORELLI, A.E.; THOMSON, A.W. Tolerogenic dendritic cells and the quest for transplant tolerance. Nature, v. 7, p. 610-621, 2007.

MOSMANN, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, v. 65, p. 55-63, 1983.

MUSHTAQUE, M.; SHAHJAHAN. Reemergence of chloroquine (CQ) analogs as multi- targeting antimalarial agents: a review. European Journal of Medicinal Chemistry, v. 27, n. 90, p. 280-295, 2015.

NAKAMURA, K.; ZHOU CJ.; PARENTE, J.; CHEW, C.S. Parietal cell MAP kinases: multiple activation pathways. American Journal of Physiology, 271:G640– G649, 1996.

NAKANO, H.; YANAGITA, M.; DEE GUNN, M. CD11c+B220+Gr-1+ cells in mouse lymph nods and spleen display characteristics of plasmacytoid dendritic cells. The Journal of

Experimental Medicine, v. 194, n. 8, p. 1171-1178, 2001.

NARBUTT, J.; LESIAK, A.; ZAK-PRELICH, M.; WOZNIACKA, A.; SYSA- JEDRZEJOWSKA, A.; TYBURA, M.; ROBAK, T.; SMOLEWSKI, P. The distribution of peripheral blood dendritic cells assayed by a new ppanel of anti-BDCA monoclonal antibodies in healthy representatives of the polish population. Cellular & Molecular Biology Letters, v. 9, p. 497-509, 2004.

NATHAN, D.M.; GENUTH, S.; LACHIN, J.; CLEARY, P.; CROFFORD, O.; DAVIS, M.; RAND, L.; SIEBERT, C. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The New

England Journal of Medicine, v. 329, n. 14, p. 977-986, 1993.

NESTLE, F.O.; TURKA, L. A.; NICKOLOFF, B.J. Characterization of Dermal Dendritic Cells in Psoriasis Autostimulation of T Lymphocytes and Induction of Th1 Type Cytokines. The

Journal of Clinical Investigation, v. 94, n. 1, p. 202-209, 1994.

O’NEILL, L. A.J.; BOWIE, A.G. The family of five: TIR-domain-containing adaptors in Toll- like receptor signaling. Nature Reviews, v . 7, p. 353-364 ,2 007.

O’SULLIVAN, B.J.; THOMAS, R. CD40 Ligation Conditions Dendritic Cell Antigen-Presenting Function through Sustained Activation of NF-B. The Journal of Immunology, v. 168, n. 11, p. 5491-5498, 2002.

PATIL, S.; PINCAS, H.; SETO, J.; NUDELMAN, G.; NUDELMAN, I.; SEALFON, S.C. Signaling network of dendritic cells in response to pathogens: a community-input supported knowledgebase. BMC Systems Biology, 4: 137, 2010.

PASHENKOV, M.; HUANG, YM.; KOSTULAS, V.; HAGLUND, M.; SÖDERSTRÖM, M.; LINK, H. Two subsets of dendritic cells are presented in human cerebrospinal fluid. Brain, v. 124, n. 03, p. 480-492, 2001.

PENA, G.; ADORINI, L. 1α,25-Dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. The

Journal of Immunology, v. 164, p. 2405-2411, 2000.

PHILIPS, B.E.; GARCIAFIGUEROA, Y.; TRUCCO, M.; GIANNOUKAKIS, N. Clinical tolerogenic dendritic cells: exploring therapeutic impact on human autoimmune disease.

Frontiers in Immunology, v. 8, n. 1279, p. 1-9, 2017.

POT, C.; AWASTHI, J.A.; LIU, S.M.; LAI, CY.L.; MADAN, R.; SHARPE, A.H.; KARP, C.L.; MIAW, SC.; HO, IC.; KUCHROO, V.K. Cutting Edge: IL-27 induces the transcription factor c- Maf, cytokine IL-21, and the costimulatory receptor ICOS that coordinately act together to promote differentiation of IL-10-producing Tr1 cells. The Journal of Immunology, v. 183, n. 2, p. 797-801, 2009.

RAÏCH-REGUÉ, D.; GRAU-LÓPEZ, L.; NARANJO-GÓMEZ, M.; RAMO-TELLO, C.; PUJOL-BORRELL, R.; MARTÍNEZ-CÁCERES, E.; BORRÀS, F.E. Stable antigen-specific T- cell hyperresponsiveness induced by tolerogenic dendritic cells from multiple sclerosis patients.

European Journal of Immunology, v. 42, n. 03, p. 771-782, 2012.

RE, F.; STROMINGER, J.L. Heterogeneity of TLR-induced responses in dendritic cells: from innate to adaptive immunity. Immunobiology, v. 209, n. 1-2, p. 191-198, 2004.

RESCINGO, M.; MARTINO, M.; SUTHERLAND, C.L.; GOLD, M.R.; RICCIARDI- CASTAGNOLI, P. Dendritic Cell Survival and Maturation Are Regulated by Different Signaling Pathways. Brief Definitive Report, v. 188, n. 11, p. 2175-2180, 1998.

RODRIGUEZ-CARUNCHO, C.; MARSOL, I. B. Antipalúdicos en dermatología: mecanismo de acción, indicaciones y efectos secundarios. Actas Dermo-Sifiliográficas, v. 105, n. 3, p. 243- 252, 2014.

RUBARTELLI, A.; LOTZE, M.T. Inside, outside, upside down: damage-associated molecular- pattern molecules (DAMPs) and redox. Trends in Immunology, v. 28, n. 10, p. 429-436, 2007. RUIZ-IRASTORZA, G.; RAMOS-CASALS, M.; BRITO-ZERON P.; KHAMASHTA, M.A. Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Annals of the Rheumatic Diseases, v. 69, n. 1, p. 20-28, 2010.

RYSECK, RP.; BULL, P.; TAKAMIYA, M.; BOURS, V.; SIEBENLIST, U.; DOBRZANSKI, P.; BRAVO, R. RelB, a New Rel Family Transcription Activator That Can Interact with p50- NF-B. Molecular and Cellular Biology, v. 12, n. 2, p. 674-684, 1992.

SARKAR, S.N.; PETERS, K.L.; ELCO, C.P.; SAKAMOTO, S.; PAL, S.; SEN, G.C. Novel roles of TLR3 tyrosine phosphorylation and PI3 kinase in double-stranded RNA signaling. Nature

Structural & Molecular Biology, v. 11, n. 11, p. 1060-1067, 2004.

SATO, K.; FUJITA, S. Dendritic Cells-Nature and Classification. Allergology International, v.56, n. 03, p. 183-191, 2007.

SCHÖN, E.; HARANDI, A.M.; NORDSTRÖM, I.; HOLMGREN, J.; ERIKSSON, K. Dendritic cell vaccination protects mice against lethality caused by genital herpes simplex virus type 2 infection. Journal of Reproductive Immunology, v. 50, p. 87-104, 2001.

SCHULER-THURNER, B.; SCHULTZ, E.; BERGER, T.G.; WEINLICH, G.; EBNER, S.; WOERL, P.; BENDER, A.; FEUERSTEIN, B.; FRITSCH, P.O.; ROMANI, N.; SCHULER, G. Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. The

Journal of Experimental Medicine, v. 195, n. 10, p. 1279-1288, 2002.

SCHWARTZ, R.H. Historical Overview of Immunological Tolerance. Cold Spring Harb

Perspect Biol, v. 4, n. 4, a006908, 2012.

SENFTLEBEN, U.; CAO, Y.; XIAO, G.; GRETEN, F.R.; KRÄHN, G.; BONIZZI, G.; CHEN, Y.; HU, Y.; FONG, A.; SUN, SC.; KARIN, M. Activation by IKKα of a Second Evolutionary Conserved, NF-B Signaling Pathway. Science, v. 293, n. 5534, p. 1495-1499, 2001.

SERAFINI, B.; ROSICARELLI, B.; MAGLIOZZI, R.; STIGLIANO, E.; CAPELLO, E.; MANCARDI, G.L.; ALOISI, F. Dendritic Cells in Multiple Sclerosis Lesions: Maturation Stage, Myelin Uptake, and Interaction with Proliferating T Cells. Journal of Neuropathology

& Experimental Neurology, v. 65, n. 02, p. 124-141, 2006.

SERBINA, N.V.; SALAZAR-MATHER, T.P.; BIRON, C.A.; KUZIEL, W.A.; PAMER, E.G. TNF/iNOS-Producing Dendritic Cells Mediate Innate Immune Defense against Bacterial Infection. Immunity, v.19, n. 01, p. 59-70, 2003.

SHIH, V.FS.; DAVIS-TURAK, J.; MACAL, M.; HUANG, J.Q.; PONOMARENKO, J.; KEARNS, J.D.; YU, T.; FAGERLUND, R.; ASAGIRI, M.; ZUNIGA, E.I.; HOFFMANN, A. Control of RelB during dendritic cell activation integrates canonical and noncanonical NF-B pathways. Nature Immunology, v. 13, n. 12, p. 1162-1170, 2012.

SMALL, E.J.; FRATESI, P.; REESE, D.M.; STRANG, G.; LAUS, R.; PESHWA, M.V.; VALONE, F.H. Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells. Journal of Clinical Oncology, v. 18, n. 23, p. 3894-3903, 2000.

SMOLEN, J.S.; ALETAHA, D.; MCLNNES, I.B. Rheumatoid arthritis. Lancet, v. 338, n. 10055, p. 2023-2038, 2016.

SPEIRS, K.; LIEBERMAN, L.; CAAMANO, J.; HUNTER, C.A.; SCOTT, P. Cutting Edge: NF- B2 is a negative regulator of dendritic cell function. The Journal of Immunology, v. 172, n. 02, p. 752-756, 2004.

SUZUKI, K.; BOSE, P.; LEONG-QUONG, R.YY.; FUJITA, D.J.; RIABOWOL, K. REAP: A two minute cell fractionation method. BMC Research Notes, v. 3, n. 1, p. 1-6, 2010.

SWEENEY, C.M.; LONERGAN, R.; BASDEO, S.A.; KINSELLA, K.; DUGAN, L.S.; HIGGINS, S.C.; KELLY, P.J.; COSTELLOE, L.; TUBRIDY, N.; MILLS, K.H.G.; FLETCER, J.M. IL-27 mediates the response to IFN-β therapy in multiple sclerosis patients by inhibiting Th17 cells. Brain, Behavior, and Immunity, n. 25, v. 06, p. 1170-1181, 2011.

TAK, P.P.; FIRESTEIN, G.S. NF-kB: a key role in inflammatory diseases. The Journal of

Clinical Investigation, v. 107, n. 01, p. 7-11, 2001.

TANER, T.; HACKSTEIN, H.; WANG, Z.; MORELLI, A.E.; THOMSON, A.W. Rapamycin- treated, alloantigen-pulsed host dendritic cells induce Ag-specific T cell regulation and prolong graft survival. American Journal of Transplantation, v. 5, p. 228-236, 2005.

THOMAS, R.; DAVIS, L.S.; LIPSKY, P.E. Rheumatoid synovium is enriched in mature antigen- presenting dendritic cells. The Journal of Immunology, v. 152, p. 2613-2623, 1994.

THOMÉ, R.; MORAES, A.S.; BOMBEIRO, A.L.; FARIAS, A.S.; FRANCELIN, C.; COSTA, T.A.; DI GANGI, R.; SANTOS, L.M.B., OLIVEIRA, A.L.R., VERINAUD; L. Chloroquine Treatment Enhances Regulatory T Cells and Reduces the Severity of Experimental Autoimmune Encephalomyelitis. PLOS one, v. 08, n. 06, e65913, 2013.

THOMÉ, R.; ISSAYAMA, L.K.; DiGANGI, R.; BOMBEIRO, A.L.; COSTA, T.A.; FERREIRA, I.T.; OLIVEIRA, A.L.R.; VERINAUD, L. Dendritic cells treated with chloroquine modulate experimental autoimmune encephalomyelitis. Immunology and Cell Biology, v. 92, n. 02, p. 124-132, 2014.

THURNER, B.; HAENDLE, I.; RÖDER, C.; DIECKMANN, D.; KEIKAVOUSSI, P.; JONULEIT, H.; BENDER, A.; MACZEK, C.; SCHREINER, D.; VON DEN DRIESCH, P.; BRÖCKER, E.B.; STEINMAN, R.M.; ENK, A.; KÄMPGEN, E.; SCHULER, G. Vaccination with Mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma.

The Journal of Experimental Medicine, v. 190, n 11, p. 1669-1678, 1999.

TOMASONI, S.; AIELLO, S.; CASSIS, L.; NORIS, M.; LONGARETTI, L.; CAVINATO, R.A.; AZZOLINI, N.; PEZZOTTA, A.; REMUZZI, G.; BENIGNI, A. Dendritic cells genetically engineered with adenoviral vector encoding dnIKK2 induce the formation of potent CD4+ T- regulatory cells. Transplantation, v. 79, n. 9, p. 1056-1061, 2005.

TOWBIN, H.; STAEHELIN, T.; GORDON, J. Eletrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proceedings of

the National Academy of Sciences, v. 76, n. 9, p. 4350-4354, 1979.

TRINCHIERI, G. PFLANZ, S. KASTELEIN, R.A. The IL-12 Family of Heterodimeric Cytokines: New Players in the Regulation of T Cell Responses. Immunity, v. 19, p. 641-644, 2003.

URBAN, B.C.; FERGUSON, D.J.; PAIN, A.; WILLCOX, N.; PLEBANSKI, M.; AUSTYNS, J.M.; ROBERTS, D.J. Plasmodium falciparum infected erythrocytes modulate the maturation of dendritic cells. Nature, v. 400, p. 73-77, 1999.

VAN BRUSSEL, I.; LE, W.P.; ROMBOUTS, M.; NUYTS, A.H.; HEYLEN, M.; DE WINTER, B.Y.; COOLS, N.; SCHRIJVERS, D.M. Tolerogenic dendritic cell vaccines to treat autoimmune diseases: Can the unattainable dream turn into reality? Autoimmune Reviews, v. 13, p. 138-150, 2014.

VAN DER BRUGGEN, P.; TRAVERSARI, C.; CHOMEZ, P.; LURQUIN, C.; DE PLAEN, E.; VAN DE EYNDE, B.L.; KNUTH, A.; BOON, T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science, v. 254, n. 5038, p. 1643-1647, 1991. VAN DE LAAR, L.; BIUTENHUIS, M.; WENSVEEN, F.M.; JANSSEN, H.L.A.; COFFER,

P.J.; WOLTMAN, A.M. Human CD34-Derived myeloid dendritic cell development requires intact phosphatidylinositol 3-kinase-protein kinase B-mammalian target of rapamycin signaling.

The Journal of Immunology, v. 184, n. 12, p. 6600-6611, 2010.

VIGOUROUX, S.; YVON, E.; BIAGI, E.; BREENNER, M.K. Antigen-induced regulatory T

Documentos relacionados