• Nenhum resultado encontrado

Propostas de continuação

do trabalho

147

Como propostas de continuação deste trabalho, listam-se:

1. Simular termodinamicamente os casos em que houve precipitação de asfaltenos. A modelagem termodinâmica permite construir o envelope de fases dos asfaltenos nas condições de interesse, a partir do ajuste das curvas simuladas com um número reduzido de dados experimentais de precipitação dessa fração. Desenvolver equações de estado com termos associativos para modelar a precipitação dos asfaltenos.

2. Desenvolver modelagem molecular com compostos modelo de asfaltenos para elucidar o mecanismo de formação de agregados, visando o desenvolvimento de processos para evitar a precipitação da fração asfaltênica nos sistemas de produção de petróleo.

3. Coletar amostras de asfaltenos precipitados a partir de óleos vivos por despressurização isotérmica e compará-los quimicamente aos asfaltenos extraídos de óleo morto com n-heptano e outros n-alcanos. Investir na utilização de técnicas ambientais de ionização (DART, DESI, LTP, EASI) para avaliar os asfaltenos através de espectrometria de massas, não necessitando de preparação prévia das amostras.

4. Utilizar o aparato do ressonador de cristal de quartzo (RCQ) para avaliar a eficiência de inibidores químicos de deposição de asfaltenos. Implementar experimentos na RCQ capazes de quantificar o depósito aderido sobre o sensor piezoelétrico, de forma a criar uma classificação de óleos em relação ao risco de deposição de asfaltenos. Também com a RCQ, estudar o efeito de revestimentos antiaderentes, com vistas à minimização de deposição.

5. Validar os resultados obtidos para os óleos vivos nos testes de despressurização isotérmica realizados com o microscópio de alta pressão com os possíveis problemas de deposição de asfaltenos encontrados no campo. Tal validação criará um banco de dados de poços problemáticos à deposição de asfaltenos e permitirá desenvolver correlações entre a estabilidade dos asfaltenos e as características dos óleos, mortos e vivos, que promoveriam a deposição dessa fração ao longo do sistema de produção de petróleo.

149

151

1. 2011 Key World Energy Statistics, International Energy Agency.

http://www.iea.org/textbase/nppdf/free/2011/key_world_energy_stats.pdf. Acessado em 17/01/2012.

2. Gruse, W. A.; Stevens, D.R. The chemical technology of petroleum. 3rd edition, McGraw-Hill: New York, 1960, 675 p.

3. Kharrat, A. M.; Zacharia, J.; Cherian, V.J.; Anyatonwu, A. Issues with comparing SARA methodologies. Energy & Fuels, 2007, 21, 3618–3621.

4. Boysen, R. B.; Schabron, J. F. The automated asphaltene determinator coupled with saturates, aromatics, and resins separation for petroleum residua characterization.

Energy & Fuels, 2013, 27, 4654-4661.

5. Bisht, H.; Reddy, M.; Malvanker, M.; Patil, R. C.; Gupta, A.; Hazarika, B.; Das, A. K. Efficient and quick method for saturates, aromatics, resins, and asphaltenes analysis of whole crude oil by thin-layer chromatography–flame ionization detector. Energy & Fuels,

2013, 27, 3006-3013.

6. Fan, T.; Buckley, J. S. Rapid and accurate SARA analysis of medium gravity crude oils. Energy & Fuels, 2002, 16,1571-1575.

7. Andersen, S.I.; Speight, J. G. Petroleum resins separation, character, and role in petroleum. Petroleum Science and Technology, 2001,19, 1-34.

8. Guo, B.; Song, S.; Chacko, J.; Ghalambor, A. Flow assurance. Offshore Pipelines,

2005, 169-214.

9. Mullins, O. C.; Sheu, E. Y. Structures and dynamics of asphaltenes. Plenum Press: New York, 1999, 438 p.

10. Mullins, O. C. The modified Yen model, Energy & Fuels, 2010, 24, 2179-2207. 11. Buenrostro-Gonzalez, E.; Groenzin, H.; Lira-Galeana, C.; Mullins, O. C. The overriding chemical principles that define asphaltenes. Energy & Fuels, 2001, 15, 972- 978.

12. Durand, E.; Clemancey, M.; Lancelin, J-M.; Jan Verstraete, J.; Espinat, D.; Quoineaud, A-A. Effect of chemical composition on asphaltenes aggregation. Energy &

Fuels, 2010, 24, 1051–1062.

13. Spiecker, P.M.; Gawrys, K. L.; Kilpatrick, P. K. Aggregation and solubility behavior of asphaltenes and their subfractions. Journal of Colloid and Interface Science, 2003, 267, 178-193.

14. Nellensteyn, F. J. The Constitution of asphalt. Journal of the lnstitute of Petroleum

Technologists, 1924, 10, 311–325.

15. Pfeiffer, J. P.; Saal, R. N. Asphaltic bitumen as colloid system. Journal of Physical

Chemistry, 1940, 44, 139-149.

16. Dickie, J. P.; Yen, T. F. Macrostructures of the asphaltic fractions by various instrumental methods. Analytical Chemistry, 1967, 39, 1847-1852.

17. Mullins, O. C.; Sabbah, H.; Eyssautier, J.; Pomerantz, A. E.; Barré, L.; Andrews, A. B.; Ruiz-Morales, Y.; Mostowfi, F.; McFarlane, R.; Goual, L.; Lepkowicz, R.; Cooper, T.;

152

Orbulescu, J.; Leblanc, R. M.; Edwards, J.; Zare, R. N. Advances in asphaltene science and the Yen–Mullins model. Energy & Fuels, 2012, 26, 3986-4003.

18. Rogel, E. Molecular thermodynamic approach to the formation of mixed asphaltene−resin aggregates. Energy & Fuels, 2008, 22, 3922–3929.

19. Sedghi, M.; Goual, L. Role of resins on asphaltene stability. Energy & Fuels, 2010, 24, 2275-2280.

20. Gray, M. R.; Tykwinski, R. R.; Stryker, J. M.; Tan, X. Supramolecular assembly model for aggregation of petroleum asphaltenes. Energy & Fuels, 2011, 25, 3125–3134. 21. Ibrahim, H.H.; Idem, R. O. CO2-miscible flooding for three Saskatchewan crude oils: 

Interrelationships between asphaltene precipitation inhibitor effectiveness, asphaltenes characteristics, and precipitation behavior. Energy & Fuels, 2004, 18, 743-754.

22. Joshi, N. B.; Mullins, O. C.; Jamaluddin, A.; Creek, J.; McFadden, J. Asphaltene precipitation from live crude oil, Energy & Fuels, 2001, 15, 979-986.

23. Cao, M.; Gu, Y. Oil recovery mechanisms and asphaltene precipitation phenomenon in immiscible and miscible CO2 flooding processes. Fuel, 2013, 109, 157-166.

24. Cao, M.; Gu, Y. Temperature effects on the phase behaviour, mutual interactions and oil recovery of a light crude oil–CO2 system. Fluid Phase Equilibria, 2013, 356, 78-

89.

25. Hamouda, A. A.; Tabrizy, V. A. The effect of light gas on miscible CO2 flooding to

enhance oil recovery from sandstone and chalk reservoirs. Journal of Petroleum

Science and Engineering, 2013, 108, 259-266.

26. Buckley, J. S. Predicting the onset of asphaltene precipitation from refractive index measurements. Energy & Fuels, 1999, 13, 328-332.

27. Asomaning, S. Test methods for determining asphaltene stability in crude oils.

Petroleum Science and Technology, 2003, 21, 581-590.

28. Jamaluddin, A.; Creek, J.; Kabir, C.; McFadden, J.; D’Cruz, D.; Manakalathil, J.; Joshi, N.; Ross, B. Laboratory techniques to measure thermodynamic asphaltene instability, Journal of Canadian Petroleum Technology, 2002, 41, 44-52.

29. Maqbool, T.; Balgoa, A. T.; Fogler, H. S. Revisiting asphaltene precipitation from crude oils: A case of neglected kinetic effects. Energy & Fuels, 2009, 23, 3681-3686. 30. Li, Z.; Firoozabadi, A. Modeling asphaltene precipitation by n-Alkanes from heavy oils and bitumens using cubic-plus-association equation of state. Energy & Fuels, 2010, 24, 1106-1113.

31. Vargas, F. M.; Gonzalez, D. L.; Hirasaki, G. J.; Chapman, W. G. Modeling asphaltene phase behavior in crude oil systems using the perturbed chain form of the statistical associating fluid theory (PC-SAFT) equation of state. Energy & Fuels, 2009, 23, 1140-1146.

32. Buttry, D. A.; Ward, M. D. Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance, Chemical Reviews,

153

33. Aschero, G.; Gizdulich, P.; Mango, F.; Romano, S. M. Converse piezoelectric effect detected in fresh cow femur bone, Journal of Biomechanics, 1996, 29, 1169-1174. 34. Varela, H.; Malta, M.; Torresi, R. M. Técnicas in situ de baixo custo em eletroquímica: A microbalança a cristal de quartzo. Química Nova, 2000, 23, 664-679. 35. Kanazawa. K. K.; Gordon, J. G. Frequency of a quartz microbalance in contact with liquid, Analytical Chemistry, 1985, 57, 1770-1771.

36. Ekholm, P.; Blomberg, E.; Claesson, P.; Auflem, I. H.; Sjöblom, J.; Kornfeldt, A. A quartz crystal microbalance study of the adsorption of asphaltenes and resins onto a hydrophilic surface. Journal of Colloid and Interface Science, 2002, 247, 342-350. 37. Rudrake, A.; Karan, K.; Horton, J. H. A combined QCM and XPS investigation of asphaltene adsorption on metal surfaces. Journal of Colloid and Interface Science,

2009, 332, 22-31.

38. Abudu, A.; Goual, L. Adsorption of crude oil on surfaces using quartz crystal microbalance with dissipation (QCM-D) under flow conditions. Energy & Fuels, 2009, 23, 1237-1248.

39. Zahabi. A.; Gray, M. R.; Dabros, T. Kinetics and properties of asphaltene adsorption on surfaces. Energy & Fuels, 2012, 26, 1009-1018.

40. Tavakkoli, M.; Panuganti, S. R.; Vargas, F. M.; Taghikhani, V.; Pishvaie, M. R.; Chapman, W. G. Asphaltene deposition in different depositing environments: Part 1. Model oil. Energy & Fuels, 2014, 28, 1617-1628.

41. Tavakkoli, M.; Panuganti, S. R.; Taghikhani, V.; Pishvaie, M. R.; Chapman, W. G. Asphaltene deposition in different depositing environments: Part 2. Real oil. Energy &

Fuels, 2014, 28, 3594-3603.

42. Nenningsland, A. L.; Simon, S.; Sjöblom, J. Influence of interfacial rheological properties on stability of asphaltene-stabilized emulsions. Journal of Dispersion Science

and Technology, 2014, 35, 231-243.

43. Andersen, S. I.; Lindeloff, N.; Stenby, E. H. Investigation of asphaltene precipitation at elevated temperature. Petroleum Science and Technology,1998, 16, 323-334.

44. Alizadeh, A.; Nakhli, H.; Kharrat, R.; Ghazanfari, M. H. An experimental investigation of asphaltene precipitation during natural production of heavy and light oil reservoirs: The role of pressure and temperature. Petroleum Science and Technology,

2011, 29, 1054-1065.

45. Verdier, S.; Carrier, H.; Andersen, S. I.; Daridon, J. L. Study of pressure and temperature effects on asphaltene stability in presence of CO2. Energy & Fuels, 2006,

20, 1584-1590.

46. Marcano, F.; Ranaudo, M. A.; Chirinos, J.; Castillo, J.; Daridon, J-L.; Carrier, H. Study of asphaltenes aggregation in toluene/n-heptane/CO2 mixtures under high-

154

47. Aquino-Olivos, M. A.; Buenrostro-Gonzalez, E.; Andersen, S. I.; Lira-Galeana, C. Investigations of Inhibition of Asphaltene Precipitation at High Pressure Using Bottomhole Samples. Energy & Fuels, 2001, 15, 236-240.

48. Karan, K.; Ratulowski, J.; German, P. Measurement of waxy crude properties using novel laboratory techniques. In: SPE Annual Technical Conference and Exhibition,

2000, SPE 62945, 12 p.

49. Mullins, O. C. Asphaltenes in crude oil: absorbers and/or scatterers in the near- infrared region? Analytical Chemistry, 1990, 62(5), 508-514.

50. Hammami, A.; Phelps, C. H.; Monger-McClure, T.; Little, T. M. Asphaltene precipitation from live oils:  An experimental investigation of onset conditions and reversibility. Energy & Fuels, 2000, 14, 14-18.

51. Takabayashi, K.; Maeda, H.; Miyagawa, Y.; Ikarashi, M.; Okabe, H.; Takahashi, S.; Al-Shehhi, H. R.; Al-Hammadi, H. M. Do asphaltene deposition troubles happen in low asphaltene content of crude oil? In: Abu Dhabi International Petroleum Exhibition &

Conference, 2012 , SPE 161489, 12 p.

52. Hustad, O. S.; Jia, N. J.; Pedersen, K. S.; Memon, A.; Leekumjorn, S. High pressure data and modeling results for phase behavior and asphaltene onsets of GoM oil mixed with nitrogen. In: SPE Annual Technical Conference and Exhibition, 2013, SPE 166097, 17 p.

53. Amin, J. S.; Alamdari, A.; Mehranbod, N.; Ayatollahi, S.; Nikooee,E. Prediction of asphaltene precipitation: Learning from data at different conditions. Energy & Fuels,

2010, 24, 4046-4053.

54. Soorghali, F.; Zolghadr, A.; Ayatollahi, S. Effect of resins on asphaltene deposition and the changes of surface properties at different pressures: A microstructure study.

Energy & Fuels, 2014, 28, 2415-2421.

55. Skinner, J. F.; Cussler, E. L.; Fuoss, R. M. Pressure dependence of dielectric constant and density of liquids. The Journal of Physical Chemistry, 1968, 72, 1057- 1064.

56. Tharanivasan, A. K.; Yarranton, H. W.; Taylor, S. D. Application of a regular solution-based model to asphaltene precipitation from live oils. Energy & Fuels, 2011, 25, 528-538.

57. Creek, J. L.; Buckley, J. S.; Wang, J. Asphaltene instability induced by light hydrocarbons. In: Offshore Technology Conference, 2008, OTC 19690, 12 p.

58. Negahban, S.; Joshi, N.; Jamaluddin, A. K. M.; Nighswander,J. A systematic approach for experimental study of asphaltene deposition for an Abu Dhabi reservoir under WAG development plan. In: SPE Oilfield Chemistry Symposium, 2003, SPE 80261, 16 p.

59. Karan, K.; Hammami, A.; Flannery, M.; Stankiewicz, B. A. Evaluation of asphaltene instability and a chemical control during production of live oils. Petroleum Science and

155

60. www.spe.org/dl/docs/2012/stankiewicz.pdf. Stankiewicz, A. Origin and behaviour of oil asphaltenes - Integration of disciplines. 2012. In: SPE Distinguished Lecturer

Program. Acessado em 23/10/2014.

61. ASTM D6560-12, Standard test method for determination of asphaltenes (heptane insolubles) in crude petroleum and petroleum products, ASTM International, West Conshohocken, PA, 2012, www.astm.org

62. Castillo, J.; Canelón, C.; Acevedo, S.; Carrier, H.; Daridon, J-L. Optical fiber extrinsic refractometer to measure RI of samples in a high pressure and temperature systems: Application to wax and asphaltene precipitation measurements. Fuel, 2006, 85, 2220-2228.

63. Hoepfner, M. P.; Limsakoune, V.; Chuenmeechao, V.; Maqbool, T.; Fogler, H. S. A fundamental study of asphaltene deposition. Energy & Fuels, 2013, 27, 725–735.

64. Hoepfner, M. P.; Favero, C. V. B.; Haji-Akbari, N.; Fogler, H. S. The fractal aggregation of asphaltenes. Langmuir, 2013, 29, 8799-8808.

65. Daridon, J. L.; Cassiède, M.; Paillol, J.H.; Pauly, J. Viscosity measurements of liquids under pressure by using the quartz crystal resonators. Review of Scientific

Instruments, 2011, 82, 095114.

66. Site do NIST: http://webbook.nist.gov/chemistry. Acessado em 27/08/2012.

67. Toda, K.; Furuse, H. Extension of Einstein’s viscosity equation to that for concentrated dispersions of solutes and particles. Journal of Bioscience and

Bioengineering, 2006, 102, 524-528.

68. Cassiède, M.; Daridon, J-L.; Paillol, J. H.; Pauly, J. Impedance analysis for characterizing the influence of hydrostatic pressure on piezoelectric quartz crystal sensors. Journal of Applied Physics, 2010, 108, 034505.

69. Cassiède, M.; Daridon, J-L.; Paillol, J. H.; Pauly, J. Electrical behavior of a quartz crystal resonator immersed in a pressurized fluid (gas or liquid). Journal of Applied

Physics, 2011, 109, 074501.

70. Nakhli, H.; Alizadeh, A.; Afshari, S.; Kharrat, R.; Ghazanfari, M. Experimental and modeling investigations of asphaltene precipitation during pressure depletion and gas injection operations. Petroleum Science and Technology, 2014, 32, 1868-1875.

71. Ting, P. D. Thermodynamic stability and phase behavior of asphaltenes in oil and of other highly asymmetric mixtures. PhD Thesis. Rice University, Houston, 2003, 227 p. 72. Ashoori, S.; Balavi, A. An investigation of asphaltene precipitation during natural production and the CO2 injection process. Petroleum Science and Technology, 2014,

32, 1283-1290.

73. Gonzalez, D. L.; Vargas, F. M.; Hirasaki, G. J.; Chapman, W. G. Modeling of CO2-

induced asphaltene precipitation. Energy & Fuels, 2008, 22, 757−762.

74. Lyons, W. C.; Plisga, G. J. Standard handbook of petroleum & natural gas engineering. 2nd edition, Gulf Professional Publishing: Burlington, 2004, 1568 p.

156

75. Pauly, J.; Daridon, J. L.; Coutinho, J. A. P.; Lindeloff, N.; Andersen, S. I. Prediction of solid–fluid phase diagrams of light gases–heavy paraffin systems up to 200 MPa using an equation of state–GE model. Fluid Phase Equilibria, 2000, 167, 145-159.

76. Paso, K.; Silset, A.; Sørland, G.; Gonçalves, M. A. L.; Sjöblom, J. Characterization of the formation, flowability, and resolution of Brazilian crude oil emulsions. Energy &

Fuels, 2009, 23, 471-480.

77. Kashchiev, D.; Firoozabadi, A. Induction time in crystallization of gas hydrates.

Journal of Crystal Growth, 2003, 250, 499–515.

78. Zhou, Y.; Sarma, H. K. Asphaltene precipitation behavior during gas injection in a UAE carbonate reservoir and a faster experimental strategy to predict asphaltene onset pressure. In: Abu Dhabi International Petroleum Exhibition & Conference, 2012, SPE 161147, 13 p.

79. Maqbool, T.; Srikiratiwong, P.; Fogler, H. S. Effect of temperature on the precipitation kinetics of asphaltenes. Energy & Fuels, 2011, 25, 694-700.

80. Datta, A. Evidence for cluster sites on catalytic alumina. The Journal of Physical

Chemistry, 1989, 93, 7053-7054.

81. Ballinger, T. H.; Yates, J. T. IR spectroscopic detection of Lewis acid sites on alumina using adsorbed carbon monoxide. Correlation with aluminum-hydroxyl group removal. Langmuir, 1991, 7, 3041-3045.

82. Jeffrey, G. C.; Ottewill, R. H. Reversible aggregation Part I. Reversible flocculation monitored by turbidity measurements. Colloid and Polymer Science, 1988, 266, 173- 179.

83. Sirota, E. B. Physical Structure of Asphaltenes. Energy & Fuels, 2005, 19, 1290- 1296.

84. Al Ghafri, S. Z.; Maitland, G. C.; Trusler, J. P. M. Experimental and modeling study of the phase behavior of synthetic crude oil + CO2. Fluid Phase Equilibria, 2014, 365,

20-40.

85. Gardner, J. W.; Orr, F. M.; Patel, P. D. The effect of phase behavior on CO2-flood

displacement efficiency. Journal of Petroleum Technology, 1981, SPE 8367, 2067- 2081.

86. Orr Jr., F. M.; Yu, A. D.; Lien, C.L. Phase behavior of CO2 and crude oil in low-

temperature reservoirs. Society of Petroleum Engineers Journal, 1981, SPE 8813, 480- 492.

87. Turek, E. A.; Metcalfe, R. S.; Fishback, R. E. Phase behavior of several CO2/West-

Texas-reservoir-oil systems. SPE Reservoir Engineering, 1988, SPE 13117, 505-516. 88. Mendoza de la Cruz, J. L.; Argüelles-Vivas, F. J.; Matías-Pérez, V.; Durán-Valencia, C. A.; López-Ramírez, S. Asphaltene-induced precipitation and deposition during pressure depletion on a porous medium: An experimental investigation and modeling approach. Energy & Fuels, 2009, 23, 5611-5625.

157

89. Yang, Z.; Ma, C.-F.; Lin, X.-S.; Yang, J.-T.; Guo, T.-M. Experimental and modeling studies on the asphaltene precipitation in degassed and gas-injected reservoir oils.

Fluid Phase Equilibria, 1999, 157, 143-158.

90. Gonzalez, D. L.; Garcia, M. E.; Diaz, O. Unusual asphaltene phase behavior of fluids from lake Maracaibo, Venezuela. In: SPE Latin American and Caribbean

Petroleum Engineering Conference, 2012, SPE 153602, 10 p.

91. Cao, M. Oil recovery mechanisms and asphaltene precipitation phenomenon in CO2

flooding processes. MSc Thesis. University of Regina, Regina, 2012, 124 p.

92. Zanganeh, P.; Ayatollahi, S.; Alamdari, A., Zolghadr, A.; Dashti, H.; Kord, S. Asphaltene deposition during CO2 injection and pressure depletion: A visual study. Energy & Fuels, 2012, 26, 1412-1419.

93. ASTM D4052-11, Standard test method for density, relative density, and API gravity of liquids by digital density meter, ASTM International, West Conshohocken, PA, 2011, www.astm.org

94. ASTM D5291-10, Standard test methods for instrumental determination of carbon, hydrogen, and nitrogen in petroleum products and lubricants, ASTM International, West Conshohocken, PA, 2010, www.astm.org.

95. Juyal, P.; McKenna, A. M.; Fan, T.; Cao, T.; Rueda-Velásquez, R. I.; Fitzsimmons, J. E,; Yen, A.; Rodgers, R. P.; Wang, J.; Buckley, J. S.; Gray, M. R.; Allenson, S. J.; Creek, J. Joint industrial case study for asphaltene deposition. Energy & Fuels, 2013, 27, 1899-1908.

96. Juyal, P.; Yen, A. T.; Rodgers, R. P.; Allenson, S.; Wang, J.; Creek, J. Compositional variations between precipitated and organic solid deposition control (OSDC) asphaltenes and the effect of inhibitors on deposition by electrospray ionization Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Energy &

Fuels, 2010, 24, 2320-2326.

97. Fergoug, T.; Bouhadda, Y. Determination of Hassi Messaoud asphaltene aromatic structure from 1H & 13C NMR analysis. Fuel, 2014, 115, 521-526.

98. Lima, V. S. Avaliação da influência da temperatura de corte sobre as frações asfaltênicas. Dissertação de Mestrado. UFRJ/Escola de Química, Rio de Janeiro, 2008, 139 p.

99. Buenrostro-Gonzalez, E.; Espinosa-Pena, M.; Andersen, S. I.; Lira-Galeana, C. Characterization of asphaltenes and resins from problematic Mexican crude oils.

Petroleum Science and Technology, 2001, 19, 299-316.

100. Spiecker, P. M.; Gawrys, K. L.; Trail, C. B.; Kilpatrick, P. K. Effects of petroleum resins on asphaltene aggregation and water-in-oil emulsion formation. Colloids and

Surfaces A: Physicochemical and Engineering Aspects, 2003, 220, 9-27.

101. Moschopedis, S. E.; Speight, J. G. Investigation of hydrogen bonding by oxygen functions in Athabasca bitumen. Fuel, 1976, 55, 187-192.

158

102. Mullins, O. C.; Betancourt, S. S.; Cribbs, M. E.; Dubost, F. X.; Creek, J. L.; Andrews, A. B.; Venkataramanan, L. The colloidal structure of crude oil and the structure of oil reservoirs. Energy & Fuels, 2007, 21, 2785-2794.

103. León, O.; Rogel, E.; Espidel, J.; Torres, G. Asphaltenes:  Structural

characterization, self-association, and stability behavior. Energy & Fuels, 2000, 14, 6- 10.

104. Gaspar, A.; Zellermann, E.; Lababidi, S.; Reece, J.; Schrader, W. Impact of different ionization methods on the molecular assignments of asphaltenes by FT-ICR mass spectrometry. Analytical Chemistry, 2012, 84, 5257-5267.

105. Sabbah, H.; Morrow, A. L.; Pomerantz, A. E.; Zare, R. N. Evidence for island structures as the dominant architecture of asphaltenes. Energy & Fuels, 2011, 25, 1597-1604.

106. Apicella, B.; Alfè, M.; Amoresano, A.; Galano, E.; Ciajolo, A. Advantages and limitations of laser desorption/ionization mass spectrometric techniques in the chemical characterization of complex carbonaceous materials. International Journal of Mass

Spectrometry, 2010, 295, 98-102.

107. Hortal, A. R.; Martínez-Haya, B.; Lobato, M. D.; Pedrosa, J. M.; Lago, S. On the determination of molecular weight distributions of asphaltenes and their aggregates in laser desorption ionization experiments. Journal of Mass Spectrometry, 2006, 41, 960- 968.

108. Pereira, T. M.C.; Vanini, G.; Tose, L. V.; Cardoso, F. M. R.; Fleming, F. P.; Rosa, P. T. V.; Thompson, C. J.; Castro, E. V. R.; Vaz, B. G.; Romão, W. FT-ICR MS analysis of asphaltenes: Asphaltenes go in, fullerenes come out. Fuel, 2014, 131, 49-58.

109. Conley, N. R.; Lagowski, J. J. On an improved pyrolytic synthesis of [60]- and [70]- fullerene. Carbon, 2002, 40, 949-953.

110. Purcell, J. M.; Juyal, P.; Kim, D-G.; Rodgers, R. P.; Hendrickson, C. L.; Marshall, A. G. Sulfur speciation in petroleum: Atmospheric pressure photoionization or chemical derivatization and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy & Fuels, 2007, 21, 2869-2874.

111. Arnaud, C. H. Digging into asphaltenes. Chemical & Engineering News, 2009, 87(38), 12-17.

112. Pereira, T. M.C.; Vanini, G.; Oliveira, E. C.S.; Cardoso, F. M.R.; Fleming, F. P.; Neto, A. C.; Lacerda, V.; Castro, E. V.R.; Vaz, B. G.; Romão, W. An evaluation of the aromaticity of asphaltenes using atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry - APPI(±)FT-ICR MS. Fuel, 2014, 118, 348-357.

113. van Krevelen, D. W. Organic geochemistry - old and new. Organic Geochemistry,

Documentos relacionados