• Nenhum resultado encontrado

Tendo em vista os resultados aqui apresentados, pretende-se, primeiramente, publicar em revistas científicas os resultados apresentados nos Capítulos 4 e 6, os quais, respec- tivamente, dizem respeitos ao método da dupla projeção e do código de orientação a objetos para simulações multifísicas. No caso do método da dupla projeção, pretende- se expandir suas aplicações ao caso bidimensional e comparar os resultados com as outras técnicas do método de Petrov-Galerkin via simetrização. Pretende-se também aplicar os conhecimentos obtidos com a resolução do problema de injeção de traçador em meios porosos para casos mais complexos, tais como problemas com geologia fractal e problemas em escoamento multifásico em meios porosos rígidos e deformáveis.

Outros tópicos como perspectivas de trabalhos futuros são:

• Estudar, no sentido da simulação multifísica, o novo método de elementos finitos conhecido como método multiescala híbrido misto (MHM) [90].

• Como em simulações multifísicas várias equações diferenciais parciais são acopla- das, pretende-se estudar quais técnicas de resolução de sistema são mais apropri- adas de acordo com a natureza do problema.

• Estudo de técnicas que possam melhorar a performance da resolução de problemas via simulação multifísica, tais como, hp-adaptatividade e programação de alto desempenho.

Referências Bibliográficas

[1] MORTON, K. W., Numerical Solution of convection-diffusion problems, volume 12 of Applied Mathematics and Mathematical Computation, Chapman & Hall, Lon- don, 1996

[2] BARRETT, J. W. and MORTON, K. W., “Appoximate symmetrization and Petrov-Galerkin methods for convection problems,” Comput Meth Appl Mech En- grg, volume 45, pp. 79–122, 1984

[3] MORTON, K. W., MURDOCH, T., and SÜLI, E., “Optimal error estimation for Petrov-Galerkin methods in two dimensions,” Numerische Mathematik, volume 61, pp. 359–372, 1992

[4] BOTTASSO, C. L., MICHELETTI, S., and SACCO, R., “The discontinuous Petrov-Galerkin method for elliptic problems,” Comput Methods Appl Mech Engrg, volume 191, pp. 3391–3409, 2002

[5] BOTTASSO, C. L., MICHELETTI, S., and SACCO, R., “A multiscale formulation of the Discontinuous Petrov-Galerkin method for advective-diffusive problems.” Comput Methods Appl Mech Engrg, volume 194, pp. 2819–2838, 2005

[6] CAUSIN, P. and SACCO, R., “A Discontinuous Petrov-Galerkin method with La- grangian Multipliers for second order elliptic problems,” SIAM J Numer Anal, volume 43, no. 1, pp. 280–302, 2005

[7] DEMKOWICZ, L. and GOPALAKRISHNAN, J., “A class of discontinuous Petrov- Galerkin methods. Part I: The transport equation,” Comput Methods Appl Mech Engrg, volume 199, pp. 1558–1572, 2010

[8] DEMKOWICZ, L. and GOPALAKRISHNAN, J., “A Class of Discontinuous Petrov-Galerkin Methods. Part II: Optimal Test Functions.” Numerical Methods for Partial Differential Equations, volume 27, 2010

[9] DEMKOWICZ, L. and GOPALAKRISHNAN, J., “Analysis of the DPG method for the Poisson equation,” Technical Report 10-37, ICES, The Institute for Compu- tational Engineering and Sciences, The University of Texas at Austin, September 2010

[10] DEMKOWICZ, L., GOPALAKRISHNAN, J., and NIEMI, A., “A Class of Discon- tinuous Petrov-Galerkin Methods. Part III: Adaptivity.” Technical report, ICES, The Institute for Computational Engineering and Sciences, The University of Texas at Austin, 2010

[11] ZITELLI, J., MUGA, I., DEMKOWICZ, L., GOPALAKRISHNAN, J., PARDO, D., and CALO, V. M., “A class of discontinuous Petrov-Galerkin methods. Part IV: The optimal test norm and time-harmonic wave propagation in 1D,” Journal of Computational Physics, 2011

[12] CHAN, J, DEMKOWICZ, L., MOSER, R., and ROBERTS, N., “A New Discon- tinuous Petrov-Galerkin Method with Optimal Test Functions. Part V: Solution of 1d Burgers and Navier-Stokes Equations,” Ices report 10-25, The Institute for Computational Engineering and Sciences, The University of Texas at Austin, June 2010

[13] NIEMI, A. H., BRAMWELL, J. A., and DEMKOWICZ, L. F., “Discontinuous Petrov-Galerkin method with optimal test functions for thin-body problems in solid mechanics,” Comput Methods Appl Mech Engrg, volume 200, pp. 1291–1300, 2011

[14] NIEMI, A. H., COLLIER, N. O., and CALO, V. M., “Discontinuous Petrov- Galerkin method based on the optimal test space norm for one-dimensional transport problems.” International Conference on Computational Science Proce- dia Computer Science, volume 4, pp. 1862–1869, 2011

[15] DEVLOO, P. R. B., FARIAS, A. M., GOMES, S. M., and GONÇALVES, J. L., “Semelhança entre o método da dupla projeção Bubnov-Galerkin e o método

de Petrov-Galerkin,” XXXII Iberian Latin American Congress on Computational Methods in Engineering, volume 1, Novembro 2011

[16] FORTI, T. L. D., Aplicações dos métodos de elementos finitos contínuo e Galer- kin descontínuo combinados, Ph.D. thesis, Universidade Estadual de Campinas, Faculdade de Engenharia Civil, Arquitetura e Urbanismo, 2010

[17] DEVLOO, P. R. B., FORTI, T., and GOMES, S. M., “A combined continuous- discontinuous finite element method for convection-diffusion problems,” Latin American Journal of Solids and Structures, volume 4, pp. 229–246, 2007

[18] DAWSON, C. and PROFT, J., “Coupling of continuous and discontinuous Galer- kin methods for transport problems,” Comput Meth Appl Mech Eng, volume 191, pp. 3213–3231, 2002

[19] DAWSON, C. and PROFT, J., “Coupled discontinuous and continuous Galerkin finite element methods for the depth-integrated shallow water equations,” Comput Meth Appl Mech Engrg, volume 193, pp. 289–318, 2004

[20] GIRKMANN, K, Flächentragwerke, Springer-Verlag, 1956

[21] TIMOSHENKO, S. and WOINOWSKI-KRIEGER, S., Theory of plates and shells, 4 edition, McGraw-Hill Book Company Inc, 1959

[22] SZABÓ, B., BABUSKA, I., PITKÄRANTA, J., and NERVI, S., “The problem of verification with reference to the Girkmann problem,” Eng Comput, volume 26, pp. 171–183, 2010

[23] NIEMI, H. A., BABUSKA, I., PITKÄRANTA, J., and DEMKOWICZ, L., “Finite element analysis of the Girkmann problem using the modern hp-version and the classical h-version,” Eng Comput, volume 28, pp. 123–134, 2012

[24] DEVLOO, P. R. B., FARIAS, A. M., and GOMES, S. M., “Application of a combi- ned continuous-discontinuous Galerkin finite element method for the solution of the Girkmann problem,” Computers and Mathematics with Applications, volume 65, pp. 1786–1794, 2013

[25] KEYES, D. E. et al, “Multiphysics simulations: challenges and opportunities,” Technical report, Argonne National Laboratory, ANL/MCS-TM-321, October 2012

[26] BENGZON, F., JOHANSSON, A., LARSON, M. G., and SÖDERLUND, R., “Si- mulation of multiphysics problems using adaptive finite elements,” Springer Berlin Heidelberg, volume 4699, pp. 733–743, 2007

[27] DEMKOWICZ, L., KURTZ, J., and QIU, F., “hp-Adaptive finite elements for cou- pled multiphysics wave propagation problems,” Computer Methods in Mechanics, pp. 19–42, 2010

[28] JIAO, X., ZHENG, G., ALEXANDER, P. A., CAMPBELL, M. T., LAWLOR, O. S., NORRIS, J., and HASELBACHER, A., “A system integration framwork for coupled multiphysics simulations,” Engineering with computers, volume 22, pp. 293–309, 2006

[29] VIERA, M. A., FALCON, D. L, BERTHIER, A. M., and TAPIA, A. O., “COMSOL Implementation of a multiphase fluid flow model in porous media,” Excerpt from the Proceedings of the COMSOL Conference, 2008

[30] XUE, G., Numerica methods for multiphysics, multiphase and multicomponent mo- dels for fuel cells, Ph.D. thesis, The Pennsylvania State University - Department of Mathematics, August 2008

[31] HEIL, M. and HAZEL, A. L., “oomph-lib – An object-oriented multi-physics finite- element library,” Fluid-Structure Interaction, volume 53, pp. 19-49, Springer - Lec- ture Notes in Computational Science and Engineering, 2006

[32] NETTIS, L. and CATALANO, L. A., “Development of multiphysics tools for object-oriented platforms,” Annual Report 2o Academic Year, Politecnico di Bari,

Scuola di Dottorato DRIMA, 2010

[33] BRAVO, C. M. A. A., Um sistema de refinamento hp adaptativo utilizando elemen- tos finitos hierárquicos multidimensionais, Ph.D. thesis, Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica, 2000

[34] DEVLOO, P. R. B. and LONGHIN, G. C., “Object oriented design philosophy for scientific computing,” Mathematical Modelling and Numerical Analysis, volume 36, no. 5, pp. 793–807, 2002

[35] SIQUEIRA, D., Construção de espaços de elementos finitos do tipo hdiv, Ph.D. thesis, Instituto de Matemática, Estatística e Computação Científica, Unicamp,

[36] FARIAS, A. M., DEVLOO, P. R. B., and GOMES, S. M, “Simulação multifísica para problemas de acoplamento fluido-estrutura,” XXXIV Iberian Latin American Congress on Computational Methods in Engineering, volume 1, Pirenópolis-GO, November 10-13 2013

[37] FARIAS, A. M., DEVLOO, P. R. B., and GOMES, S. M., “Simulação numérica do problema do traçador passivo em contexto multifísica,” XXXV Iberian Latin Ame- rican Congress on Computational Methods in Engineering, volume 1, Fortaleza, November 23-26 2014

[38] MOURA, C. A., Análise funcional para aplicações-posologia, Rio de janeiro, 2002 [39] ODEN, J. T. and DEMKOWICZ, F. L., Applied Functional Analysis, second edi-

tion, Chapman & Hall/CRC Press. Second edition. Boca Raton, 2010

[40] KREYSZIG, E., AIntroductiory functional analysis with aplications, John Wiley, 1989

[41] JOHNSON, C., Numerical solution of partial differential equation by the finite element method, Cambridge, USA, 1990

[42] CAREY, G. F., BERCKER, E. B., and ODEN, J. T., Finite element: an intro- duction, volume I, Prentice-Hall, 1981

[43] SOLIN, P., Partial diferential equation an the finite element method, John Wiley and Sons, Inc., 2005

[44] CIARLET, P. G., The finite element method for elliptic problems, North-Holland Publishing Company, 1978

[45] GIRAULT, V. and RAVIART, P. A., Finite elements methods for Navier-Stokes equations: theory and algorithms, Sringer-Verlag, 1986

[46] BREZZI, F. and FORTIN, M., Mixed and hybrid finite element methods, Springer- Verlag, 1991

[47] XU, J. and ZIKATANOV, L., “Some observations on babuska and brezzi theories,” Numer Math, volume 94, pp. 195–202, 2003

[48] DEMKOWICZ, L., “Babuska ⇔ Brezzi,” Technical report, ICES, The University of Texas at Austin, 2006

[49] BREZZI, F., “On the existence, uniqueness and approximation of saddle–point pro- blems arising from Lagrange multipliers,” RAIRO Analyse Numerique, volume 8, no. 2, pp. 129–151, 1974

[50] PRUDHOMME, S., PASCAL, F., ODEN, J. T., and ROMKES, A., “Review of a priori error estimation for discontinuous Galerkin methods,” Technical Report 27, TICAM, University of Texas at Austin, 2000

[51] HOUSTON, P., SCHWAB, C., and SÜLI, E., “Discontinuous hp-finite element methods for advection-diffusion problems.” Technical Report 00/15, Oxford Uni- versity Computing Laboratory, 2000

[52] DELVES, L. M. and HALL, C. A., “An implicit matching principle for global element calculations,” J Inst Math Appl, volume 2, pp. 223–234, 1979

[53] BAUMANN, C. E., An hp-adaptive discontinuous finite element method for com- putational fluid dynamics, Ph.D. thesis, University of Texas at Austin, 1997 [54] ARNOLD, D., “An interior penalty finite element method with discontinuos ele-

ments,” SIAM J Numer Anal, volume 19, no. 4, pp. 742–760, 1982

[55] HARRIMAN, K., HOUSTON, P., SENIOR, B., and SÜLI, E., “hp-Version discon- tinuous Galerkin methods with interior penalty for partial differential equations with nonnegative characteristic form,” Contemp Math, volume 330, pp. 89–119, 2003

[56] DEVLOO, P. R. B., “PZ: An object oriented environment for scientific program- ming,” Comput Methods Appl Mech Engrg, volume 150, pp. 133–153, 1997

[57] DEVLOO, P. R. B., BRAVO, C. M. A. A., and RYLO, E. C., “Systematic and generic construction of shape functions for p-adaptive meshes of multidimensional finite elements,” Comput Methods Appl Mech Engrg, volume 198, pp. 1716–1725, 2009

[58] RAVIART, A. P. and THOMAS, J. M., “A mixed finite element method for 2nd order elliptic problems,” Lecture Notes in Mathematics, volume 606, pp. 292–315, 1977

[60] SIQUEIRA, D., DEVLOO, P. R. B., and GOMES, S. M., “A new procedure for the construction of hierarchical high order Hdiv and Hcurl finite element spaces,” Journal of Computational and Applied Mathematics, volume 240, pp. 204–214, 2013

[61] CAREY, G. F. and ODEN, J. T., Finite element: mathematical aspects, volume IV, Prentice-Hall, 1983

[62] NECAS, J., Direct methods in the theory of elliptic equations, Springer monographs in mathematics, Springer, 2012

[63] BABUSKA, I. and RHEINBOLDT, W. C., “A posteriori error estimates for the finite elements method,” International Journal for Numerical Methods in Engine- ering, volume 12, pp. 1597–1615, 1978

[64] AINSWORTH, M. and ODEN, J. T., A posteriori error estimation in finite element analysis, A Wiley-interscience publication, 2000

[65] HUGHES, T. J. R. and BROOKS, A., “A multidimensional upwind scheme with no crosswind diffusion, in Finite element methods for convection dominated flows,” volume 34, pp. 19–35, 1979

[66] DEVLOO, P. R. B., “On the similarity betweem a double projection Bubnov- Galerkin method and the Petrov-Galerkin,” XXVIII Seminario Brasileiro de Ana- lise Rio de Janeiro, pp. 243–254, 1988

[67] HEMKER, P. W., “A numerical study of stiff two-point boundary problems. Ph. D. Thesis,” , 1977

[68] PITIKÄRANTA, J., BABUSKA, I., and SZABÓ, B., “The dome and the ring: Verification of an old mathematical model for the design of a stiffened shell roof,” Comput Math Appl, volume 64, pp. 48–72, 2012

[69] FARIAS, A. M., DEVLOO, P. R., and LUCCI, P. C. A., “Solução numérica do problema de Girkmnn usando o método dos elementos finitos contínuo e descontí- nuo,” XXXI Iberian Latin American Congress on Computational Methods in En- gineering, Novembro 2010, Buenos Aires, Argentina

[70] GORDON, W. J. and HALL, C. A., “Transfinite element methods: blending function interpolation over arbitrary curved element domains,” Numer Math, vo- lume 21, no. 2, pp. 109–129, 1973

[71] LUCCI, P. C. A., Descrição matemática de geometrias curvas por interpolação transfinita, Master’s thesis, Universidade Estadual de Campinas, FEC-Unicamp, 2009

[72] RYLO, E. C., Adaptatividade hp em paralelo, Ph.D. thesis, Universidade Estadual de Campinas, Faculdade de Engenharia Civil, Arquitetura e Urbanismo, 2007 [73] SZABÓ, B. and BABUSKA, I., Finite element analysis, John Wiley and Sons,

Inc., 1991

[74] BIOT, M., “Theory of elasticity and consolidation for a porous anisotropic solid,” Journal of Applied Physics, volume 26, pp. 182–185, 1955

[75] PHILLIPS, P. J., Finite element methods in linear poroelasticity: Theoretical and computational results, Ph.D. thesis, The University of Texas at Austin, 2005 [76] TERZAGHI, K., “Principle of soil mechanics,” Eng News Record, 1925

[77] BIO, M., “General theory of three-dimensional consolidation,” Journal of Applied Physics, volume 2, pp. 155–164, 1941

[78] LI, C. and BORJA, R. I., “Finite element formulation of poro-elasticity suitable for large deformation dynamic analysis,” Technical Report 147, Department of Civil and Environmental Engineering Stanford University, 2005

[79] MURAD, M. A. and LOULA, A. F. D., “On stability and convergence of finite element approximations of Biot’s consolidation problem,” International Journal for Numerical Methods in Engineering, volume 37, pp. 645–667, 1994

[80] BORGES, M. R., FURTADO, F., PEREIRA, F., and SOUTO, H. P. A., “Scaling analysis for the tracer flow problem in self-similar permeability fields,” Multiscale Modeling and Simulation, volume 7, no. 3, pp. 1130–1147, 2008

[81] DOUGLAS, J., FURTADO, F., and PEREIRA, F., “On the numerical simulation of waterflooding of heterogeneous petroleum reservoirs,” Computational Geosciences,

[82] DOUGLAS, J and YIRANG, Y., “Numerical simulation of immiscible flow in po- rous media based on combining the method of characteristics with mixed finite element procedures,” Numerical Simulation in Oil Recovery The IMA Volumes in Mathematics and its Applications, volume 11, pp. 119–131, 1988

[83] BARTH, T.J. and JESPERSEN, D.C., “The design and application of upwind schemes on unstructured meshes,” AIAA paper 89 0366, January 1989

[84] VENKATAKRISHMAN, V., “On the accuracy of limiters and convergence to steady-state solutions,” AIAA paper 93 0880, January 1993

[85] COCKBURN, B. and SHU, C. W., “Review article: Runge-Kurra discontinuous Galerkin methods for convection-dominated problems,” Journal of Scientific Com- puting, volume 16, no. 3, September 2001

[86] LEVEQUE, R. J., Finite-volume methods for hyperbolic problems, Cambridge Uni- versity Press, 2004

[87] BARTH, T. and OHLBERGER, M., “Finite volume methods: foundation and analysis,” Encyclopedia of Computational Mechanics, edited by John Wiley and Sons Ltd., volume 1, 2004

[88] DUTYKH, D., PONCET, R., and DIAS, F., “The VOLNA code for the numerical modeling of tsunami waves: Generation, propagation and inundation,” European Journal of Mechanics BFluids, volume 30, pp. 598–615, 2011

[89] MICHALAK, C. and GOOCH, C. O., “Accuracy preserving limiter for the high- order accurate solution of the Euler equations,” Journal of Computational Physics, volume 228, pp. 8693–8711, 2009

[90] ARAYA, R., HARDER, C., PAREDES, D., and VALENTIN, F., “Multiscale hybrid-mixed method,” SIAM J Numer Anal, volume 51, no. 6, pp. 3505–3531, 2013

Documentos relacionados