• Nenhum resultado encontrado

Adomian Decomposition Method On Nonlinear Singular Cauchy Problem of Euler-Poisson- Darbuox equation

N/A
N/A
Protected

Academic year: 2017

Share "Adomian Decomposition Method On Nonlinear Singular Cauchy Problem of Euler-Poisson- Darbuox equation"

Copied!
8
0
0

Texto

(1)

Iranian Journal of Optimization 3(2010) 469-476

Optimization

Adomian Decomposition Method On Nonlinear

Singular Cauchy Problem of

Euler-Poisson-Darbuox equation

Iyaya C. C. Wanjala

*

School of Physical and Applied Science, Kenyatta University P.O BOX 43844-0010, Nairobi, Kenya

Abstract

In this paper, we apply Picard’s Iteration Method followed by Adomian Decomposition Method to solve a nonlinear Singular Cauchy Problem of Euler-Poisson- Darboux Equation. The solution of the problem is much simplified and shorter to arriving at the solution as compared to the technique applied by Carroll and Showalter (1976)in the solution of Singular Cauchy Problem.

Keywords:Adomian decomposition method, Singular Cauchy problem.

*

(2)

1. Introduction:

The Singular Cauchy Problem

 

 

   

2

2

;

, 0

, 0

;

, 0

0

0

m

m t

u

k u

u in

x

t

t

t

u x

f x

u x

on

t

 

  

(1)

has been studied since the time of Euler(1770).

Some classical results obtained are summarized as follows: (i). If k m 1, the solution as given by Arsgeirsson(1936) is

 

2

1

1

1

,

m

i

m

u x t

f x

t d



(2)

where

2 1 2

2 ;

2

m

m m

m

  

    

 is the surface area of the

m

dimensional unit sphere.

(ii). If k m 1, the solution obtained by Weinstein (1952) is

 

2

 

1

1 2 2

1

1 1

,

m

1

i

k m

k m

k

u x t

f x

t

d

   

 



(3)

where

d

d

 

1

d

2



d

m

©2010 Kenyatta University

(3)

 

1 2 1  2 

 

, t k n k n ,

u x t t t u x t

t

     

  

  

(4)

where

n

is a positive integer chosen such that k2n m 1 and

u

k2n is given by (2) or (3) with f replaced by

f

k

1



k

  

2

 

k

2

n

1

.

The solution of the singular Cauchy problem is unique for k 0 whereas for 0

k it is not unique as indicated in the work of Weinstein (1952).

Carroll and Showalter (1976) dealt primarily with the Cauchy problem for singular and degenerate equation of the form

 

tt

 

t

 

A t u

B t u

C t u

g

(5)

where

u

 

is a function of

t

, taking values in a separated locally convex space E, while

A t

   

,

B t

,

and

C t

 

are families of linear or nonlinear differential type operators acting in E, some of which become zero or infinite at t0. They considered appropriate initial data

u

 

0

and

u

t

 

0

at t0, and ga suitable E -valued function.

2. The Adomian Decomposition Method to Singular Cauchy Problem

The purpose of this paper is to apply Adomian Decomposition method to solve the problem (6).

 

 

   

2

2

;

, 0

, 0

;

, 0

0

0

p n

n t

u

k u

u

u

in

x

t

t

t

u x

f x

u x

on

t

  

  

(6)

where p0,ka parameter and

f x

 

is smooth with compact support.

(4)

  

2

2

2

;

, 0

, 0

;

, 0

0

0

p n

n t

d u

k du

u

in

dt

t dt

u

f

u

on

t

  

(7)

Then t1 t d tk du 2u up

dt dt

   

 

 

or

2 1

;

p t d k d

Lu u u L t t

dt dt

  

  

  (8)

Then 1

 

2 1

 

1 1

 

0 0

;

t t

p k k

u

L

u

L

u

L

 

t

t

dtdt

(9)

Solving the homogeneous part of (8) by Picards iteration method with

u

0

f

 

;

2 1 1 0 0

t t

k k

n n

u

 

t

t

u

dtdt

So that we get



2 3

2 4 6

1 . ; 2 . ; 3 . ;

2! 1 3! 1 2

t t t

u f u f u f

k k k k k k

      

  

Therefore

 

2

4

2



6

2

    

2

, 1 . . 1 .

1 2! 1 2 3! 1 1 !

n n

n

t t t t

u t f

k k k k k k k k k n n

  

        

      

 

 

On takingk 2m1, we get

 

,

 

2

1

 

 

m m

m

(5)

  

  

2

0

1 1

1

! 2 1

n n

n

t

f m

n m n

 

  

  

 

(10)

The nonlinear part is done by the Adomian Decomposition Method, Adomian(1994), where

0 0

1

;

0,1,

!

n

i

n n i

i

d

A

N

u

n

n d



(11)

are Adomian polynomials with

a parameter introduced by convenience. Then Adomian suggests the inductive scheme:

0 , 1 0, , n n 1

uf uA  uA (12)

Thus from (9), we have

 

   

 

1 0 0

,

1

,

,

,

0,1, 2,

t

n n n

u

t

A u

s u s



u

s

ds n



(13) So we have



0 0 1 1 0 1

2 2 1

2 0 1 0 2

3 3 2 1

2 0 1 0 1 2 0 3

1

1

2!

1

1

2

1

3!

p

p

p p

p p p

A

u

A

pu

u

A

p p

u

u

pu

u

A

p p

p

u

u

p p

u

u u

pu

u

 

  



(6)

 

 

 

 

 

 

 

 

 

 

 

 

0 1

2 2 1 2

3 3 1 2 3 2

3

4

2 4 3 2 4 1

4

2!

1

3!

2 1 1

4! ...

p

p

p

p p

p p

u t f

u t f t

t u t pf

t

u t p p f p f

t

u t p p f p p f

 

 

 

 

 

 

 

  

Thus for nonlinear part, we have

 

 

 

2 1

 

2

3 1

 

2 3 2

 

3

1

2!

3!

p p p

t

p p

t

u t

f

f

 

t

pf

 

p p

f

p f

+

 

 

4

2 4 3 2 4 1

2

1

1

...

4!

p p

t

p

p

f

p

p

f

 

(14)

Using the equations (10) and (14); we write

 

,

l

 

,

n

 

,

u

t

u

t

u

t

(15)

Therefore

 

,

l

 

,

n

 

,

u x t

 

f

u

t

 

f

u

t

(16)

where

u

l

 

,

t

and

u

n

 

,

t

are given in equations (10) and (14) respectively.

(7)

 

 

 

2 5

1 1

1

2

1

6

7

2

2!

3!

4!

1

1

1

p

t

t

t

u t

t

p

p

p

p

p

p

O t

p

t

    

  

  

(17) Then

 

1 1

1 1

1

,

1

1

1

1

1

n

n p p

u

t

d

p

t

p

t

 

The first term in (15) then will be

 

  

 

 

2

2 0

1 1

, 1 2 1

! 2 1

n n m l m n t

u t m m t J t

n m n

                

and

 

,

 

1

2

n m i x l m

t

u x t

e

J

t d

m



0 1

cos sin 1

2

n

m

i x t

e

t

 

d d

m

                

(18)

Now (18) is not easy to calculate directly since

u

l

 

,

t

is not an

1

L

function. Here we shall consider the use of a cutoff function

e

 2 2 2

;

0

(Folland1976) so that we have

` ul

 

e 2 2 2u

 

l.

(8)

l

u. Moreover, ul

 

L1

 

n , so we can calculate its inverse Fourier transform as an ordinary integral.

3. Conclusion

On comparison of solution of homogeneous part the equation (2)-(3) with that used by Carroll (1951), this is far much simpler for we do not involve transformations which are not easy to identify. Thus Adomian decomposition method offers quite a simpler means of solving nonlinear differential equations.

References

[1] Adomian G.,” Solving Frontier Problems on physics, the decomposition method”.Kluwer Academic Publisher, Boston, 1994.

[2] Carroll R.,” Some Singular Cauchy Problems”, Ann.Mat.Pura Appl., 56, 1-31, 1951.

[3] Carroll R., and Showalter R.,” Singular and Degenerate Cauchy Problems”. Academic Press, New York, Vol.127-p 333, 1976.

[4] Euler L., ”Institiones Calculi Integralis ,III”. Petroli, 1770.

[5] Weinstein A., ”Sur le Proble’me de Cauchy pour1’ e’quation de poisson et 1’equationdes ondes.” Critical review, Paris, 234,2584-2585, 1952.

Referências

Documentos relacionados

Tem estudantes que manejam redes sociais, controlam blogs, mas quando são questionados sobre conceitos ou sobre como usar os elementos do blog, das redes, de forma mais efetiva,

Konuralp, “The use of variational iteration method, differential transform method and Adomian decomposition method for solving different types of nonlinear partial

We investigated in a Portuguese population of the peacock blenny, Salaria pavo (Risso), where sex-role reversal occurs, if the time previously spent by females close to males

Assim, o presente estudo teve como intuito contribuir para melhorar a qualidade de serviço prestada pelos operadores de telecomunicações contribuindo assim para

Nonlinear Vibration; Nonlinear Response; Analytical Meth- ods ;Parameter Perturbation Method (PPM) ; Variational Iteration Method(VIM);Homotopy Perturbation Method (HPM);

In this paper, the Homotopy Analysis Method (HAM) with two auxiliary parameters and Differential Transform Method (DTM) are employed to solve the geometric nonlinear vibration

he Adomian Decomposition Method (ADM) (Adomian 1994) is a recursive methodology which has been used in several scientiic areas to solve linear and non-linear ordinary and

In this paper, we obtained order optimal error estimates by spectral regularization methods and a revised Tikhonov regularization method for a Cauchy problem for the