• Nenhum resultado encontrado

Solitary waves in the geometrically nonlinear Cosserat medium

N/A
N/A
Protected

Academic year: 2017

Share "Solitary waves in the geometrically nonlinear Cosserat medium"

Copied!
5
0
0

Texto

(1)

Ա Ա Ա Ի Ի ՈՒԹ ՈՒ ԻԱ Ա Ի Ա Ա ԻԱ Ի Ղ Ա Ի

ա ա 65, №4, 2012

539.3

Ё Ы Ы Ч

А

и Ю. ., . .

ч : , ,

Key words: Cosserat medium, solitary waves, periodic waves

ա ա . ., ֆ .Ի.

Ա ա ա ա ա ա ա ա ա ա ա

ա ա ա ա ա ա ա ա ա ա ա ա ա ա

ա ա ա :

Vinogradova Yu.V., Erofeyev V.I.

Solitary waves in the geometrically nonlinear Cosserat medium

In this article we analyze the possibility of formation of nonlinear stationary solitary waves in the Cosserat medium

ё

.

,

u

G

ϕ

JG

, :

,

,

,

i ji j i

i ijk jk ji j i

u

x

J

y

ρ = σ +

⎨ ϕ =∈ σ +μ +

(1)

i

u

– ;

ϕ

i

; σi j– ;

μ

i j– ;

x

i

;

y

i – ;

ρ

– ; J

;

i j k– - , . . .

ё

ji

σ

μ

ji,

:

(

)

(

)

(

)

(

)

(

)

(

)

j i j i i j k k i j

j i j i i j k k i j

⎧σ = μ + α γ + μ − α γ + λγ − νθ δ

μ = γ + ε κ + γ − ε κ + βκ − χθ δ

⎪⎩

, (2)

,

μ λ

– ,

ν χ

,

– , ,

;

α γ β ε

, , ,

– ,

; :

(

)

(

)

0,

0,

3

2

0.

α ≥

γ + ε ≥

β + γ ≥

, ё

(2)

j i

γ

-

κ

j i.

- ё ,

( . . ё ).

, , ,

, , ,

j i i j i j i j k j i k

j i i j i j i j

u

u

u

γ =

+

−∈ ϕ

⎧⎪

⎨κ = ϕ +ϕ ⋅ϕ

⎪⎩

(3)

[1].

, 0

0

1

1

div

j j

u

T

θ

θ − θ = η

+

κ

, (4)

θ

θ = −

T

T

0;

T

0

;

η

00

T

0

k

ν

η =

;

κ

k

c

ε

κ =

, (

k

,

c

ε – ).

[2] , ,

(1) – (4) ,

- ,

– ,

z.

[3] , ,

. ,

. ,

ё .

,

z:

(

)

(

)

3 3,11 3,1 2,1

2

2 2,11 2,1 3,1 3,1 2

1 2

2

1 2

2

2

4

u

u

u

J

u

u

ρ =

μ + α

+

+ αϕ

ϕ = ϕ

γ + ε

+ ϕ

− α

− α

− αϕ

(5)

, .

(5) ё «

», ξ = −x Vt.

V

.

, ,

c

τ

=

μ

ρ

,

c

2

J

γ + ε

=

– ,

, ,

3

c

=

α

ρ

,

c

t

μ + α

=

ρ

.

(3)

(5)

.

.

(5)

ξ

, du3 U ,

dξ = ё :

( )

( )

( )

( )

( )

( )

(

)

2 2

1 2 2 2

2

8 1

2 2

,

V V

U

V

ρ − μ + α ρ − μ + α α μ + α

= ± − ϕ

μ + α μ + α ρ − μ + α

« »,

, ё

« », ,

α < μ

.

(

)

(

)

(

2

)

2 2 8

1

V

α μ + α

− ϕ

ρ − μ + α

( )

2

O x ,

:

2

2 2

2 2

2

0

d

a

b

d

ϕ

+ ϕ + ϕ =

ξ

(6)

(

)

(

)

[

]

2 2

2 2 2 2

2

4 t

V c

a

J

V c V c

τ

α −

=

− −

[

] [

]

4 3 2

2 2 2 2

2

8 t

c b

J V c V c

α =

− −

. ,

a

<

0

b

>

0

a

<

0

b

<

0

.

3

const du

dξ = ,

3

const

u

=

⋅ξ

. ,

,

, ,

( , ), .

.

a

b

.

1.

a

<

0

, b

>

0

. ,

: 2

,

t

,

v

>

c

v

<

c

v

>

c

τ. [4],

( ) 2 3

2 2

a b

f U = U + U

f

min

=

0

U

=

0

3

max 2

6

a

f

b

=

U

a

b

= −

.

( )

0 0

,

(

U ,U

ξ

)

" ", a,0 b

– " ".

(4)

( )

E

f U

E

. . 1 )

.

.1

[5]

, ё ( ),

, " ",

.

, .

(5) :

( )

(

)

(

(

)

)

(

)

(

)

(

)

(

(

)

)

2 2

2

2 2

2 2

3 1

4

ch

V V

V

J V V

ρ − μ ρ − μ + α

ξ = −

α α ρ − μ

ξ −

ρ − μ + α ρ − γ + ε

ϕ

(

)

(

)

(

)

(

)

(

(

)

)

2 2

3 2 2

3

th const

2

V V

u

J V V

ρ − μ α ρ − μ

= − ξ − +

α ρ − μ + α ρ − γ + ε

(7)

,

ё ё

, ( ).

A

– ё ,

A

ё ,

Δ

– ё .

:

(

2 2

)(

2 2

)

4 3

3 3

2 4

t

v c v c

a A

b c

τ

− −

= − = −

,

(

)

(

2 2

)

4 3

2

2 2

3

3 4 t

v c

c

A A

c

v c

τ

= = −

(

)(

)

(

)

2 2 2 2

2

2 2

t

J v c v c

v cτ

− −

Δ = −

(5)

ё , : 0< A <10−4.

ё :

2 2 2 2 4

3

4

10

3

c

τ

<

v

<

c

τ

+

c

− (8)

,

2

2

c

v

τ ё

:

2 2 2

2 2 2 2

2 2 2 2 2

4 4 4

3 3 3

3

1

1

3

3

4

4

4

t t

t

c

c

c

v

v

v v

v

v

v

v c

A

c

c

c

τ

⎞ ⎛

⎟ ⎜

⎠ ⎝

= −

≈ −

(

)

2 2

2 2 2 2

2 2 2

3 3 3

3

1

3

3

4

4

4

c

v

v

c

v

v

A

c

c

c

τ τ

= −

= −

≈ −

, 2

v

,

v

2.

ё (8) .

2.

a

<

0

, b

<

0

. ,

.

( №12-08-00888, №12-08-90032- )

1. . . .: , 1975. 872 .

2. . ., . .

. // . . . . 2009.

№ 6 (1). .159-162

3. . .

. //

- « ». :

-, 2011. .31-32

4. . ., . ., . . . .

. .: , 2002. 208 .

и :

и Ю и

, . . . ,

- . .: +7-960-185-96-32. E-mail: yuvinog@gmail.com

и и ич – .- . , , .

. . . .: +7(831)-432-05-76. E-mail: erf04@sinn.ru

Referências

Documentos relacionados

: Rebars start to yield : Concrete starts to crush : Catenary effects take place : Rebars fail. P   S 1 S 5

[13] proposed a method for modeling the large deflection beam response involving multiple vibration modes, while Ribeiro [14] analyzed the geometrically nonlinear vibrations of

In the bottom layer the fluid moves in the opposite direction of the internal wave propagation, but under the influence of the reverse flow, when the bulk of the velocity field of

Analysis of the geometrically nonlinear vibrations of the shallow shells with variable thickness and complex shape has been carried out using the R-functions theory and

Dynamic pull-in instability of geometrically nonlinear actuated micro-beams based on the modified couple stress theory.. 1

through porous solid saturated with non-viscous fluid results in the three reflected waves and the four waves refracted to porous medium saturated with two immiscible viscous

Geometrically nonlinear static and dynamic behaviour of laminate composite shells are analyzed in this work using the Finite Element Method (FEM).. Triangular elements with

In a previous work [1] we have studied the formation and propagation of Korteweg - de Vries (KdV) solitons in nuclear matter.. We found that these solitary waves can indeed exist in