• Nenhum resultado encontrado

Characterization of the infective properties of a new genetic group of Trypanosoma cruzi associated with bats

N/A
N/A
Protected

Academic year: 2017

Share "Characterization of the infective properties of a new genetic group of Trypanosoma cruzi associated with bats"

Copied!
7
0
0

Texto

(1)

ContentslistsavailableatSciVerseScienceDirect

Acta

Tropica

j o u r n al hom ep age : w w w . e l s e v i e r . c o m / l o c a t e / a c t a t r o p i c a

Characterization

of

the

infective

properties

of

a

new

genetic

group

of

Trypanosoma

cruzi

associated

with

bats

Fernando

Yukio

Maeda,

Renan

Melatto

Alves,

Cristian

Cortez,

Fabio

Mitsuo

Lima,

Nobuko

Yoshida

DepartamentodeMicrobiologia,ImunologiaeParasitologia,UniversidadeFederaldeSãoPaulo,SãoPaulo,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received19July2011

Receivedinrevisedform23August2011 Accepted1September2011

Available online 7 September 2011

Keywords: Trypanosomacruzi Newgenotype Metacyclicforms Cellinvasion,Bats

a

b

s

t

r

a

c

t

AnewgenotypeofTrypanosomacruzi,associatedwithbatsfromanthropicareas,wasrecentlydescribed. HerewecharacterizedaT.cruzistrainfromthisnewgeneticgroup,whichcouldbeapotentialsource ofinfectiontohumans.Metacyclictrypomastigotes(MT)ofthisstrain,hereindesignatedBAT,were comparedtoMTofwellcharacterizedCLandGstrains,asregardsthesurfaceprofileandinfectivity towardhumanepithelialHeLacells.BATstrainMTexpressedgp82,thesurfacemoleculerecognizedby monoclonalantibody3F6andknowntopromoteCLstraininvasionbyinducinglysosomalexocytosis, aswellasmucin-likemolecules,butlackedgp90,whichfunctionsasanegativeregulatorofinvasionin Gstrain.AsetofexperimentsindicatedthatBATstraininternalizationisgp82-mediated,andrequires theactivationofhostcellphosphatidylinositol3-kinase,proteinkinaseCandthemammaliantargetof rapamycin.MTofBATstrainwereabletomigratethroughagastricmucinlayer,apropertyassociated withp82andrelevantfororalinfection.Gp82wasfoundtobeahighlyconservedmolecule.Analysis oftheBATstraingp82domain,containingthecellbinding-andgastricmucin-bindingsites,showed91 and93%sequenceidentitywithGandCLstrains,respectively.HelacellinvasionbyBATstrainMTwas inhibitedbypurifiedmucin-likemolecules,whichwereshowntoaffectlysosomeexocytosisrequired forMTinternalization.AlthoughMTofBATstraininfectedhostcellsinvitro,theywerelesseffectivethan GorCLstrainsininfectingmiceeitherorallyorintraperitoneally.

© 2011 Elsevier B.V.

1. Introduction

Trypanosomacruzi,theprotozoanparasitethatcausesChagas’ disease,isconstitutedofgenotypicallyheterogeneouspopulations thatmaydifferconsiderablyintheirphenotypiccharacteristics.In 2009,byreviewingtheavailableknowledge,anexpertcommittee reachedanewconsensusforT.cruziintraspecificnomenclature: theknownT. cruziisolates andstrainsshouldbereferredtoby sixdiscretetypingunits,TcI-TcVI(Zingalesetal.,2009).Recently, phylogeneticanalysesusingSSUrDNA,cytochromebandhistone H2Bgenes,andgenotypingmethodtargetingITS1rDNA,revealed anewgenotypeofT.cruzi,which isassociatedwithbatsandis notclusteredwithinanyofthepreviouslydefinedlineages(Marcili etal.,2009).Thisnewgroupisformedexclusivelybyhighly homo-geneousbatisolatesfromanthropicareasthatwereendemicfor Chagas’disease,indicatingthatbatsmaybeimportantreservoirs andpotentialsourceofT.cruziinfectiontohumans(Marcilietal., 2009).Itisthereforerelevanttoinvestigatetheinfectiveproperties oftheparasiteisolatedfrombat.

∗Correspondingauthor.

E-mailaddress:nyoshida@unifesp.br(N.Yoshida).

Metacyclic trypomastigotes (MT) of T. cruzi from bats were foundtoinvadeculturedcells,followedbyintracellular develop-mentofparasites (Marciliet al.,2009).Howdotheyenter host cells,whichMTmoleculesareinvolvedintheprocess,what sig-nalingpathwaysaretriggeredduringMT-targetcellinteraction,to whatextentdoesthisnewgeneticgroupdifferfromotherT.cruzi lineages?Thesearequestionsthatremaintobeelucidated. Differ-entT.cruzistrainsmayvarygreatlyintheirinfectivityinvitroand invivo,andthesedifferencesareassociatedwiththedifferential engagementofsurfacemoleculesandtriggeringofdistinct signal-ingpathwaysinbothcells(Neiraetal.,2002;Ferreiraetal.,2006; Cortezetal.,2006a;Covarrubiasetal.,2007).Forinstance,strains G(TcI)andCL(TcVI),belongingtohighlydivergentgeneticgroups andassociatedwithmarsupialandhumaninfection,respectively (Brionesetal.,1999),arecharacterizedbytheirdifferential infec-tivitytowardculturedmammaliancellsaswellasinmice(Yoshida, 2006).MTofpoorlyinfectiveGstrainapparentlyusethemucin-like glycoproteinstoenterhumanepithelialcellswhereasMTofhighly invasiveCLstrainrelyonthesurfacemoleculegp82(Ruizetal., 1998),whichinducesaCa2+-dependentdisruptionofthehostcell actincytoskeleton(Cortezetal.,2006b)thatfacilitateslysosomal exocytosisandparasiteinternalization(Martinsetal.,2011).There arealsoevidencesthatsuccessfulestablishmentofCLstraininmice bytheoralroute,whichisthemainmodeofT.cruzitransmissionin

0001-706X© 2011 Elsevier B.V. doi:10.1016/j.actatropica.2011.09.001

Open access under the Elsevier OA license.

(2)

someregions(Coura,2006),iscriticallydependentongp82(Neira etal.,2003;Cortezetal.,2003).Inthisstudyweaimedat charac-terizingaT.cruzistrainfrombat,hereindesignatedBAT,focusing ontheexpressionofsurfacemoleculesimplicatedinparasite–host cellinteractionandonthemechanismsofcellinvasion.

2. Materialsandmethods

2.1. Parasites,mammaliancellcultureandinvasionassays

AstrainofanewlineageofT.cruzi(Marcilietal.,2009),isolated fromMyotislevisinSãoPaulo,waskindlyprovidedbyDr.Marta M.G.TeixeirafromUniversidadedeSãoPaulo,Brazil.Inaddition tothisstrain,designatedBAT,weusedT.cruzistrainsG,isolated fromanopossumin theBrazilianAmazon(Yoshida,1983), and CL,isolatedfromthedomiciliaryinsectvectorTriatomainfestans inthesouthern stateofRio Grandedo Sul,Brazil,in adwelling wherepeoplewereinfected(BrenerandChiari,1963).Theparasites weremaintainedcyclicallyinmiceandinliverinfusiontryptose mediumcontaining5%fetalbovineserum.Fordifferentiationof epimastigotesintoMT, Grace’s medium(Invitrogen)and TC100 medium(Vitrocell,Brazil)werealsoused.MTfromculturesatthe stationarygrowthphasewerepurifiedbypassagethrough DEAE-cellulosecolumn,asdescribed(TeixeiraandYoshida,1986).HeLa cells,thehumancarcinoma-derivedepithelialcells,weregrown at37◦CinDulbecco’sMinimumEssentialMedium(DMEM)

sup-plementedwith10%fetal calfserum, streptomycin(100␮g/ml) andpenicillin(100U/ml)inahumidified5%CO2atmosphere.Cell invasionassayswerecarriedoutasdetailedelsewhere(Yoshida etal.,1989), byseedingtheparasitesontoeachwellof24-well platescontaining13mmdiameterroundglasscoverslipscoated with1.5×105HeLacells.Themultiplicityofinfection(MOI)was 10:1forCLstrainand20:1forGandBATstrains.After1h incuba-tionwithMT,theduplicatecoverslipswerewashedinPBS,fixedin Bouinsolution,stainedwithGiemsa,andsequentiallydehydrated inacetone,agradedseriesofacetone:xylolandxylol.Thenumber ofintracellularparasiteswascountedin250stainedcells.

2.2. IsolationofacDNAclonecontainingtheC-terminaldomain ofBATstraingp82

ComplementaryDNA(cDNA)fromBATstrainMT(1×108)was obtainedusingtheAccessQuickTM RT-PCRSystem(Promega)on totalRNAextractedbyTRIzol(Invitrogen).FollowingcDNA synthe-sis,thestrategyfortheamplificationofC-terminaldomainofBAT straingp82wasbasedonitspresumedsimilaritywithCL/Gstrain gp82.Theforwardprimer5′

-GGATCCATGTTCGTCAGCAGCCTGCTG-3′ corresponded to a sequence that precedes the epitope for

mAb3F6and containedATG plusan artificialBamHI site;the reverseprimer5′-GAATTCGTTCAGTGGGCGGTTGTACAAGAAGA-3

corresponded to a sequence that follows the highly con-servedVTVKNVFLYNRmotifcharacteristicofallmembersofthe gp85/trans-sialidadesuperfamilyandcontainedastopcodonplus anartificialEcoRIsite.Atotalof40cyclesofdenaturing, anneal-ingandelongationat 94◦C for20s,55Cfor 30sand72C for

1min,respectively,wereperformed.Afterpurification,using Pure-Linkkit(Iinvitrogen)thePCRproductwasclonedintheplasmid vectorpGEM-TEasy(Promega).Followingligationtothevector, theproductwastransformedinEscherichiacolistrainDH5␣,and thecolonies growninLBbroth.Clonescontainingtheexpected 771bpfragmentafterrestrictionanalysiswithEcoRIandBamHI weresequencedusingABI3130XLGeneticAnalyzerandBigDye Terminatorv3.1(AppliedBiosystems).

2.3. Southernblotanalysisandpulsedfieldgelelectrophoresis

ForSouthernblotanalysis,T.cruziDNAwasdigestedwith dif-ferentrestrictionenzymes,separatedbyelectrophoresison0.8% agarosegelandblottedontonylonmembranes.Hybridizationwith theprobe,whichconsistedofaDNAfragmentcorrespondingtoORF ofgp82gene(wholeinsertofgp82cDNAclone)labeledwith[32P], andwashingswereperformedasdetailed(Arayaetal.,1994).For pulsedfieldgelelectrophoresis,agaroseblockscontaininggenomic DNAwereprepared,incubatedat50◦Cfor16hinlysissolution

containing10mM Tris–HCl,pH8.0, 500mM EDTA,1%sarkosyl, 1mg/mlproteinaseK,equilibratedin TE,washed andstored in 0.5MEDTAat4◦C.Smallportions(equivalent to107 parasites) wereelectrophoresed(1.2%agarosegelin0.5×TBE)at80Vfor 132hinGeneNavigatoreSystem(Pharmacia),frompulsetimes varyingfrom90to800s.DNAfromHansenulawingeiwasusedas reference.Aftertransfertonylonmembranes,chromosomalDNA bandswerehybridizedwiththe[32P]-labeledinsertofgp82cDNA cloneandrevealedbyexposuretoX-rayfilm(Hyperfilm-MP, Amer-sham).

2.4. ProductionandpurificationofJ18andGST

TherecombinantproteinJ18,containingthefull-lengthT.cruzi gp82sequence(GenBankTMdatabase,accessionnumberL14824) inframewithglutathioneS-transferase (GST),wasproduced in E.coliDH5-␣bytransformingthebacteriawithapGEX-3construct comprisingthegp82gene.Detailsoftheconstructionandthe purifi-cationofJ18,aswellasofGST,aredescribedelsewhere(Cortezet al.,2006b).

2.5. Purificationofmucin-likemoleculesfromT.cruzi

WefollowedtheproceduredescribedbyAcosta-Serranoetal. (2001).Cultures(totalof5×1010parasitesforeachpreparation) were centrifuged, and the pellet was freeze-dried and placed in a sonicating water bath for 10min with 10ml of chloro-form/methanol/water(1:2:0.8,byvolume).Aftercentrifugationat 2000×gfor5min,andtwomoreextractionofthepellet,the insol-ublematerialservedasasourceofdelipidatedparasiteswhereas thepooledfractions(30ml)wereplacedinaround-bottomflask and dried by rotatory evaporation. The residue was extracted with20mlofbutan-1-ol/water(2:1,byvolume)Thebutan-1-ol phasecontainedthelipidfraction(F1)andtheaqueousphase(F2) containedepimastigotemucins.F2waswashedtwicewith water-saturatedbutan-1-olandconcentrated.Thedelipidatedparasites wereextracted(threetimes)bysonicationwith10mlof9%butanol inwater,andthepooledsolublematerialcontainingmucins(F3) wasconcentrated.Themucinswereresuspendedin2mlofbuffer A(0.1Mammoniumacetatein5%ppropan-1-ol(v/v))and fraction-atedonanoctyl-Sepharosecolumn(10×0.5cm),pre-equilibrated inbufferA.AfterwashingthecolumnwithbufferA,andelution withalineargradientover100mlataflowrateof12ml/h, start-ingwith15mlofbufferAandendingwith60%(v/v)propan-1-olin water,fractions(2ml)wereanalyzedbysilverstainingofSDS-PAGE gels,aswellasbyimmunoblottingusingtheavailablemonoclonal antibodies.

2.6. Parasitemigrationthroughthegastricmucinlayer

(3)

transwellfilterswereplacedontoparasite-containingwells,and 100␮lPBS wereadded tothefilterchamber. Atdifferent time pointsofincubationat37◦C,10lwerecollectedfromthefilter

chamberfordeterminationofparasitenumberandthevolumein thischamberwascorrectedbyadding10␮lPBS.

2.7. Exocytosisassay

ConfluentmonolayersofHeLacells,grownin24-wellplatesin DMEMwerewashedtwiceinPBSandincubatedin300␮lDMEM withoutphenolred.After1h,thesupernatantswerecollectedand thecellswerelysedinDMEMorPBS++containing1%NP-40,and 30␮lof1MsodiumacetatepH4.0wasaddedtodecreasepH. Sam-pleswerecentrifugedfor5minat13,000×gandthesupernatants werecollected,20␮laliquotsweredilutedwith60␮lcitratebuffer and160␮lof100mM4-nitrophenylN-acetyl-␤-d-glucosaminide (Sigma) wereadded. After1h incubationat 37◦C, thereaction

wasstoppedbyadding720␮lof200mMsodiumboratepH9.8 andabsorbance wasmeasuredat405nmin aLabsystems Mul-tiskanMS plate reader. Exocytosis wasexpressedas % of total

␤-hexosaminidaseactivity(supernatant+cellextract).

2.8. Indirectimmunofluorescenceassays

Tovisualizeparasitesco-localizedwithlyososomemarker,MT wereincubatedwithadherentHeLacellsfor1hat37◦C.After

fix-ationwith4%p-formaldehydein PBSfor30min,thecellswere incubatedwith50mMNH4ClinPBSfor30min,washed3times andpermeabilizedby30mintreatmentwith1%saponininPGN (PBS containing 0.15% gelatin and 0.1% sodium azide). Follow-ing1hincubationatroomtemperaturewithmouseanti-human Lamp-2(H4B4monoclonalantibody),diluted1:5inPGN,and3 washesinPBS,thecellswereincubatedfor1hinPGNwithAlexa Fluor568-conjugatedanti-mouseIgG(Invitrogen),diluted1:200, and10␮g/ml DAPI(4′,61-diamino-2-phenylindole

dihydrochlo-ride)forvisualizationofnucleus.ImageswereacquiredinOlympus BX51,equippedwithanOlympusDP71CCDcamera,usingImage ProPlus6.2software(MediaCyberneticInc.).

2.9. OralinfectionofmicewithBATstrainMT

ToexaminetheinfectivityofBATstrainMTinvivo,fourtofive week-oldfemaleBalb/cmice,bredintheanimalfacilityat Uni-versidade Federal deSão Paulo,were used. Allprocedures and experimentsconformed withtheregulation of theinstitutional EthicalCommitteeforanimalexperimentation,andthestudywas approvedbytheCommittee(#CEP0117/11).Micewereinfected withmetacyclicformsbytheoralroute(106parasitespermouse), using a plastic tubeadapted to a 1ml syringe.Starting on day 10post-inoculation,parasitemiawasmonitoredtwiceaweekby examining5␮lbloodsamplescollectedfromthetail,atthephase contrastmicroscope.

2.10. Statistics

TodeterminesignificanceofdataStudent’sttest,theprogram GraphPadInStatwasused.

3. Results

3.1. Surfaceprofileandinfectivityofmetacyclictrypomastigotes (MT)ofBATstrain

TocomparetheMTsurfaceprofileofBATstrainwiththatof GandCLstrains,weusedmonoclonalantibodies(mAbs)directed eithertogp90,gp82ormucin-likemolecules,whichareexpressed

onthe parasitesurface and areimplicated in interactions with host cells. Gp90, which acts as a negative modulator of cell invasion (Málaga and Yoshida, 2001), wasundetectable in BAT strainwhereastheinvasion-promotingandmAb3F6-reactivegp82 (Ramirezet al.,1993)wasexpressedat levelscomparable toG andCLstrains(Fig.1A).Mucin-likeglycoproteinswererevealed inBATstrainbymAb2B10butnotbymAb10D8(Fig.1A), indi-catingthattheylackgalactofuranoseresiduesthatarepartofthe epitopeformAb10D8(Yoshida,2006),anantibodythatinhibits Gstraininfectivity(Yoshidaetal.,1989).Overall,thesurface pro-fileofBATstraindisplayedhighersimilaritytoCLstrainthantoG strain.TodeterminetheinfectivityofBATstrain,ascomparedto GandCLstrains,MTwereincubatedwithHeLacellsfor1hand thenumber ofintracellularparasiteswascountedafterfixation, stainingwithGiemsaand serial dehydration.The rateof inter-nalizationofBATstrain(MOI=20)wassignificantlyhigherthan thatofGstrain(MOI-20)andcomparabletothatofCLstrainat MOI=10(Fig.1B).Next,weexaminedwhethergp82was impli-cated.Inonesetofexperiments,MTwerepre-incubatedfor15min withmAb3F6andthenaddedtoHelacells.After1hincubation,the cellswereprocessedforparasitecounting.MAb3F6significantly inhibitedparasiteinternalization(Fig.1C).Tofurtherassessthe involvementofgp82,Helacellswerepre-incubatedfor15minin absenceorinthepresenceofJ18,therecombinantprotein contain-ingthefulllengthgp82sequencefusedtoGST,orGSTascontrol, at40␮g/ml,andMTofBATstrainwereadded.After1hincubation, inthepresenceofJ18orGST,thecellswereprocessedasabove. ParasiteinvasionwasinhibitedbyJ18,butnotbyGST(Fig.1D). Theseresultsindicatethat,similartoCLstrain(Ramirezetal.,1993), BATstrainreliesongp82moleculetoenterhostcells.Inanother setofexperiments,wetestedtheeffectofdrugsthataffectcell signalingandwerepreviouslyshowntoinhibitCLstrainMT inva-sion(Martinsetal.,2011).HeLacellsweretreatedfor30minwith 100nMofwortmannin,aninhibitoroflipidkinasephosphoinositol 3kinase(PI3K),phorbolmyristateacetate(PMA),adrugthatcan downregulateproteinkinaseC(PKC),orrapamycin,whichinhibits mammaliantargetofrapamycin(mTOR).Afterremovalofthedrug, theparasiteswereadded.Following1hincubation,alongwiththe untreatedcontrols,thecellswereprocessedforcountingof inter-nalizedparasites.AllthreedrugsdiminishedinvasionofBATstrain (Fig.1E).Asthegp82-mediatedinvasionofCLstrainMTisinhibited bythereferreddrugs,andisassociatedwithlysosomalexocytosis thatcontributesforparasitophorousvacuoleformation(Martins etal.,2011),wecheckedwhetherBATstrainMTco-localizedwith lysosomemarkerduringinvasion.HeLacellswereincubatedwith MTfor1handwerethenprocessedforimmunofluorescenceusing anti-Lamp-2antibody.Parasitesco-localizedwithLamp-2couldbe visualized(Fig.1F).

3.2. Highidentityofgp82sequencesdeducedfromcDNAclones ofBAT,GandCLstrains

(4)

Fig.1.Surfaceprofileandinfectivityofmetacyclictrypomastigotes(MT)ofT.cruziBATstrain.(A)MTofBATstrainandreferencestrainsGandCLwereprocessedfor Westernblotanalysis,usingtheindicatedmonoclonalantibodiesdirectedtosurfacemoleculesgp90,gp82andmucin-likegp35/50.(B)Cellinvasionassayswereperformed byincubatingHeLacellswithBATstrain(MO=20),Gstrain(MOI=20)orCLstrain(MOI=10)for1h.AfterfixationandGiemsastaining,thenumberofintracellularparasites wascountedinatotalof250cells.Thevaluesarethemeans±SDoffourindependentexperimentsperformedinduplicate.(C)BATstrainMT,untreatedorpretreatedwith mAb3F6,wereincubatedfor1hwithHeLacells,whichwerethenprocessedasin(B)forparasitecounting.(D)HeLacells,untreatedorpretreatedwiththerecombinant proteinJ18orGST,at40␮g/ml,wereincubatedwithBATstrainMTandprocessedforparasitecounting.(E)HeLacellsweretreatedwiththeindicateddrug,at50nM.After washingoutthedrugs,thecellswereincubatedfor1hwiththeparasites,fixedandstainedwithGiemsa.Valuesin(B–E)arethemeans±SDofthreeindependentassays performedinduplicate.Inallcases,MTinvasionwassignificantlyinhibited(*p<0.05)bytheindicatedtreatment.(F)HeLacellswereincubatedwithBATstrainMTfor1h andthenprocessedforimmunofluorescenceusinganti-Lamp-2antibodyandDAPI.ParasiteassociatedwithLamp-2areindicatedbywhitearrow.Scalebar=10␮m.

p3,afewaminoacidchangeswasdetectedinBATascomparedto GandCLstrains(Fig.2B).Theobservedsubstitutionspresumably donotresultinsubstantialchangesinthepropertiesofBATstrain gp82,asjudgedbytheability ofmAb3F6andtherecombinant proteinJ18ininhibitingBATstrainentryintohostcells(Fig.1C andD).Itshouldbenotedthatthepairofcontiguousglutamicacid residuesandofasparticacidsinp4andp8sequences,previously showntoberequiredforcellbindingofgp82(Manqueetal.,2000), wasconserved inthe3strains(Fig.2B).Thegenomic organiza-tionofBATstraingp82genefamilywasalsoexamined.Southern blotofgenomicDNAdigestedwithrestrictionenzymeBamHI,Eco RI,HindIIIorXhoI,washybridizedwiththeinsertofcDNAclone J18.TheprofileofBATstrain differedconsiderablyfromthat of GandCLstrains(Fig.3A).Chromosomalmappingofgp82genes,

performedbyhybridizingthesameprobewithchromosomalsize fragmentsseparatedbypulsedfieldgelelectrophoresis,revealed markeddifferencesofBATstrainascomparedtoGandCLstrains (Fig.3B).

3.3. MigrationofBATstrainMTthroughgastricmucinand invasionofhostcells

(5)

Fig.2. Sequencesofgp82carboxy-terminaldomainofdifferentT.cruzistrains.(A)ShownaretheaminoacidsequencesdeducedfromcDNAclonesF11(BATstrain),J18(G strain)andR31(CLstrain).Overall,BATstrainsequencewas91%and93%identicaltoGandCLsequences.(B)Thesequencesrepresentedbypeptidesp4andp8,identified asthehostcellbindingsiteofgp82,aswellasthesequencesp3andp7,identifiedastheepitopeformAb3F6andthegastricmucin-bindingsite,areshown,withasterisks indicatingtheaminoacidresiduesofBATstraingp82thatdifferfromGandCLstrains.

thefilterchamberwerecollectedatdifferenttimepointsandthe numberofparasitescounted.Alongthetime,increasingnumberof MTwasrecoveredfromthetranswellchamber(Fig.4A).Next,cell invasionassaysinthepresenceofgastricmucinwereperformed. Ithasbeenshownthatgp82-expressingCLstrainmetacyclicforms efficientlyinvadeHeLacellsregardlesswhethergastricmucinis presentornot,incontrasttogp82-deficientT.cruzistrainswhose internalizationisimpairedbygastricmucin(Cortezetal.(2003). AlsoshownwasthatCLstrainmetacyclicforms,aswellasgp82, aredevoidofsubmaxillarymucin-bindingproperty,andparasite invasionisreducedinthepresenceofthismucin(Staquicinietal., 2010).InassaysinwhichBATstrainMTwereincubatedwithHeLa cellsinthepresenceof2mg/mlofgastricorsubmaxillarymucin,a markeddecreaseinparasiteinvasionwasobservedinthepresence ofsubmaxillarybutnotofgastricmucin(Fig.4B).

Fig.3.Genomicorganizationofgp82genesinT.cruzistrains.(A)Southernblot ofgenomicDNAdigestedwiththeindicatedrestrictionenzymeswashybridized withthewholeinsertofgp82cDNAclone(J18)labeledwith[32P].(B)Chromosomal bandsofparasiteswereseparatedbypulsedfieldgelelectrophoresis,transferredto nylonmembraneandhybridizedwiththe[32P]-labeledprobeasabove.Numbers correspondtomolecularsizes.NotethedifferencesbetweenBATstrainandthe othertwostrains.

3.4. InhibitionofMTinvasionofhostcellsbyT.cruzimucin moleculesthatexhibitlysosomalexocytosis-inhibitingproperties

Mucin-likemoleculesexpressedonthesurfaceofmetacyclic forms have been implicated in target cell invasion of Gstrain (Yoshidaetal.,1989).Asmucinsareexpressedathighlevelsin BATstrain(Fig.1A),weinvestigatedwhethertheyplayedarole in invasion. HeLa cells were incubated withMT in absence or inthepresenceofmucinspurifiedfromBAT,aswellasfromG andCLstrains.InternalizationofBATstrainMTwasinhibitedby mucinsfromallthreestrains,thehomologousmucinsexhibiting thehighesteffect(Fig.5A).Next,thelysosomalexocytosis-inducing activityofmucinmoleculeswasexamined.HeLacellswere incu-batedwithmucin,at20␮g/ml,and1hlaterthelysosomalenzyme

␤-hexosaminidasewasmeasuredinthesupernatantaswellasin thecellextract.ExocytosiswassignificantlyreducedbyBATstrain mucin(Fig.5B).AlthoughGandCLstrainmucinsalsodiminished

(6)

Fig.5. EffectofT.cruzimucinsonhostcellexocytosisandinvasionbyBATstrainMT. (A)TheindicatedT.cruzimucinswereaddedtoHeLacells15minbeforeparasites. After1hincubation,thecellswerefixedandGiemsa-stainedforparasitecounting. Valuesaremeans±SDoffourindependentassaysperformedinduplicate.Invasion wassignificantlyinhibited(*p<0.01,**p<0.05)bymucinsofdifferentstrains.(B) Helacellswereincubatedfor1hwiththeindicatedT.cruzimucinsandthereleased lysosomalenzyme␤-hexosaminidasewasmeasured.Valuesaremeans±SDofthree independentassaysperformedinduplicate.Thedifferencebetweenexocytosisof HelacellstreatedwithBATstrainmucinandthecontrolwassignificant(*p<0.05).

lysosomalexocytosis,thedifferencefromthecontrolwasnot sta-tisticallysignificant.

3.5. InvivoinfectionbyBATstrainMT

TodeterminetheinfectivityofBATstrainMTbytheoralroute,a groupofmice(n=5)wasinfectedorally(106parasitespermouse) andthecourseofinfectionwasmonitored.Bloodsampleswere examinedforthepresenceofparasitesupto30daypostinfection. Parasitemiawasnotdetectable,whatis incontrasttoinfection byCLstrainMTthatconsistentlyresultedinpatentparasitemias (Cortezetal.,2003,2006a;Covarrubiasetal.,2007).Intraperitoneal injectionwasalsoquiteinefficient.Onaverage,from10infected micewecouldrecoverparasitesinhemoculturefromtwotothree mice,whereaspositivehemocultureisinvariablyobtainedfromall miceinfectedwithGorCLstrain.

4. Discussion

OurresultshaveindicatedthatBATstrainMTinvadehostcells inamannersimilartoCLstrainMT,i.e.,theyengagethesurface moleculegp82andtriggertheactivationofmTOR,PI3KandPKC topromotetheirinternalizationthroughlysosomeexocytosis.The involvementofgp82inBATstrainMTentryintohostcellswas impliedfromthefindingsthatparasiteinternalizationwas inhib-itedbymonoclonalantibodydirectedtogp82,aswellasbythe recombinantproteinbasedongp82.Asregardsthelysosome exo-cytosis,itsroleininvasionwasdeducedfromexperimentsshowing thatdownregulationofmTOR,PI3KandPKC,previouslyshownto affectmobilizationoflysosomesfromtheperinuclearregiontothe cellperiphery(Martinsetal.,2011),diminishedMTinternalization. OfinterestwasthefindingthatBATstraingp82shareshigh sequence identitywith gp82of genetically divergent Gand CL strains,isolatedfromdifferentsourcesinwidelydistant geograph-icalregions. Gstrainderived froma marsupial captured inthe BrazilianAmazonwhileCLstrain,associatedwithhuman infec-tion,wasisolatedinthefarsouthofthecountry.Theconservation of p82moleculemay beassociated withits crucial role in the establishmentofinfectionbytheoralroute,whichispossiblya modeoftransmissionprevalentamonginsectivorousmammalian hostssinceancienttimes.Insectstagemetacyclicformsarewell equippedtoefficientlyinfectbytheoralroute,selectivelyinvading thegastricmucosalepithelium(Hoft,1996;Hoftetal.,1996),and

gp82playsacentralroleinselectivelybindingtogastricmucin,a propertycriticalfortheparasitemigrationthroughthemucuslayer towardtheunderlyingtargetcells(Staquicinietal.,2010).Alsoof noteisthatgp82isresistanttodegradationbypepsin(Cortezetal., 2006a).

Inadditiontogp82,BATstrainMTexpressmucin-likemolecules athighlevels.Thesemoleculesmayalsoplayaroleinparasite inter-nalization.Hostcellinvasionwasreducedinthepresenceofmucins purified from BAT isolate. The finding that BAT strain mucins reducedthelevelsoflyosomalexocytosis,i.e.,theyhadan oppo-siteeffectofgp82,furtherreinforcestheroleplayedbyexocytosis in MTinvasion. We presumethat gp82-mediatedparasite–host cellinteractionprevailsoverthatmediatedbymucinsduringBAT straininvasion.Ifthesituationweretheotherwayaround,the impairmentoflysosomal exocytosis,which contributesto para-sitophorousvacuoleformation(Tardieuxetal.,1994;Rodríguez etal.,1999;Fernandesetal.,2011),wouldresultinlowinfection rate.GstrainMT,whichrelypredominantlyonmucinmolecules, arepoorlyinvasive(Yoshida,2006).Bycontrast,highlyinvasiveCL strainMTdependmostlyongp82andminimally,ifatall,onmucin molecules(Ramirezetal.,1993).BATandCLstrainmucinslack recognitionbymAb10D8,whichreactswithanepitopecontaining galactofuranoseresiduesinGstrainmucins(Yoshida,2006)and reducesparasiteinfectivity(Yoshidaetal.,1989).Itispossiblethat thisstructuraldifferencedeterminesthedifferentialinteractionof mucinsfromBAT,CLandGstrainswithhostcells.

Wehaveanalyzedhereonlyonestrainfromeachofthethree geneticgroups,thereforewecannotassertthatthesestrainsare representativesoftherespectivelineages.AsregardsTcI,the meta-cyclicformsof7strainsthatwehaveanalyzedsofar,including thoseisolatedfrommarsupialorfromwildtriatominein differ-entgeographicalregions,displayedsimilarsurfaceprofileandtheir ability toinfecthumanepithelialcells was associatedwiththe expressionofgp90onthesurface(Ruizetal.,1998;Yoshida,2006). Thus,Gstrainthat originatedfromamarsupial intheBrazilian AmazonmaybeabonafiderepresentativeofTcIassociatedwith thewildtransmissioncycle.However,asTcIthat predominates innorthernSouthAmericaisalsoassociatedwithhumandisease, chagasiccardiomyopathybeingcommonplaceincountriessuchas Venezuela(Milesetal.,2009),itwouldbeofinterestto investi-gatetheinfectivepropertiesofTcIstrainsisolatedfromChagasic patients.Wehavefoundinapreviousstudythatmetacyclicforms ofT.cruzistrains(presumablyTcII),isolatedfromacutecasesof Chagas’diseaseinBrazilandexpressinggp90athighlevels, exhib-ited reducedcapacity toenter hostcells in vitrobut efficiently infected mice by the oral route, provided that they expressed pepsin-susceptiblegp90isoform,whichwasdigesteduponcontact withgastricjuice(Cortezetal.,2006a;Covarrubiasetal.,2007). Theinter-lineagehybrids TcVandTcVIareapparentlythemain causesofsevereacuteandchronicChagasdiseaseinthegreater GranChacoregionandneighbouringcountrieswhereT.infestansis theprincipaldomesticvector(Milesetal.,2009).Metacyclicforms ofCLstrain(TcVI),isolatedfromT.infestans,wascharacterizedby expressinggp90atlow levelsandbyhighinfectivityinvitroas wellasinvivo(Yoshida,2006).IfthisisacommonfeatureofTcV andTcVI,itremainstobeinvestigated.BATstraindistinguished fromallT.cruzistrainsexaminedtodatebylackofreactionwith monoclonalantibodiesdirectedtogp90.Morestrainshavetobe analyzedtoassesswhetherthisisageneralcharacteristicwithin thisnewgeneticgroup.

(7)

lineagemaycausesevereclinicalmanifestations.IncentralBrazil, TcIwasidentifiedin12acutecasesofChagas’disease(Luquetti etal.,1986),andA ˜nezetal.(2004)havefoundthepredominance ofTcIhumanisolatesinVenezuelaalliedtothehigherprevalence ofseveresymptomsofthedisease.Anotherreportthatcontradicts theassumptionofinnocuousnessofTcIreferstoaBolivianpatient withChagasdiseasewithaccompanyingAIDS,andseverecentral nervoussysteminvolvement,whosecerebrospinalfluidshowed TcIparasitepopulation(Burgosetal.,2008).Aninterestingquestion iswhetherT.cruziinfectioninbatsisharmlesstothehostand whetherthis couldbeassociatedwiththeirancient association. Thefirstfossilevidenceoftriatomine-trypanosomatidassociation hasbeenreportedbyPoinar(2005),whosuggestedthatbatswere theoriginalvertebratehostsofT.cruzi-liketrypanosomes.Amatter ofdebateiswhetherT.cruziinfectionspreadfrombatstoother mammals,includinghumans.

5. Conclusions

MetacyclicformsofBATstrain,belongingtoanewgenotypeof T.cruziassociatedwithbatsfromanthropicareas,havethe abil-itytoinvadeculturedhumanepithelialcellsthroughamechanism dependentonthesurfacemoleculegp82.Inthesamemanneras thehighlyinfectiveT.cruziCLstrain,whichalsoreliesongp82for internalization,BATstraintriggersinthetargetcellsthesignaling cascadesinvolvingphosphatidylinositol 3-kinase,proteinkinase Candthemammaliantargetofrapamycin.Thisleadsto lysoso-malexocytosis,aneventrequiredforparasiteinternalization.BAT strainwasnotveryeffectiveininfectingmice,butthepotentialof transmissiontohumansofthenewT.cruzigenotypeharboredby batshasstilltobeevaluated.

Acknowledgements

ThisworkwassupportedbyFundac¸ãodeAmparoàPesquisa do Estadode SãoPaulo (FAPESP#2006/61450-0) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq #301409/2007-2and#470726/2007-5),Brazil.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.actatropica.2011.09.001.

References

Acosta-Serrano,A.,Almeida,I.C.,Freitas-Junior,L.H.,Yoshida,N.,Schenkman,S., 2001.Themucin-likeglycoproteinsuper-familyofTrypanosomacruzi:structure andbiologicalroles.Mol.Biochem.Parasitol.114,143–150.

A ˜nez,N.,Crisante,G.,daSilva,F.M.,Rojas,A.,Carrasco,H.,Umezawa,E.S.,Stolf, A.M.,Ramírez,J.L.,Teixeira,M.M.,2004.PredominanceoflineageIamong Try-panosomacruziisolatesfromVenezuelanpatientswithdifferentclinicalprofiles ofacuteChagas’disease.Trop.Med.Int.Health9,1319–1326.

Araya,J.E.,Cano,M.I.,Yoshida,N.,FrancodaSilveira,J.,1994.Cloningand characteri-zationofageneforthestage-specific82-kilodaltonsurfaceantigenofmetacyclic trypomastigotesofTrypanosomacruzi.Mol.Biochem.Parasitol.65,161–169. Brener, Z., Chiari, E., 1963. Variac¸ões morfológicas observadas em diferentes

amostrasdeTrypanosomacruzi.Rev.Inst.Med.Trop.SãoPaulo5,220–224. Briones,M.R.S.,Souto,R.P.,Stolf,B.S.,Zingalez,B.,1999.Theevolutionoftwo

Try-panosomacruzisubgroupsinferredfromrRNAgenescanbecorrelatedwiththe interchangeofAmericanmammalianfaunaintheCenozoicandhasimplications topathogenicityandhostspecificity.Mol.Biochem.Parastiol.104,219–232. Burgos,J.M.,Begher,S.,Silva,H.M.,Bisio,M.,Duffy,T.,Levin,M.J.,Macedo,A.M.,

Schijman,A.G.,2008.MolecularidentificationofTrypanosomacruziItropism forcentralnervoussysteminChagasreactivationduetoAIDS.Am.J.Trop.Med. Hyg.78,294–297.

Cortez,M.,Neira,I.,Ferreira,D.,Luquetti,A.O.,Rassi,A.,Atayde,V.D.,Yoshida,N., 2003.InfectionbyTrypanosomacruzimetacyclicformsdeficientingp82but expressingarelatedsurfacemoleculegp30.Infect.Immun.71,6184–6191. Cortez,M.,Silva,M.R.,Neira,I.,Ferreira,D.,Sasso,G.R.S.,Luquetti,A.O.,Rassi,A.,

Yoshida,N.,2006a.Trypanosomacruzisurfacemoleculegp90downregulates

invasionofgastricmucosalepitheliuminorallyinfectedmice.MicrobesInfect. 8,36–44.

Cortez, M., Atayde, V., Yoshida, N., 2006b. Host cell invasion mediated by Trypanosoma cruzisurfacemoleculegp82is associatedwith F-actin disas-semblyandisinhibitedbyenteroinvasiveEscherichiacoli.MicrobesInfect.8, 1502–1512.

Coura,J.R.,2006.Transmissionofchagasicinfectionbyoralrouteinthenatural historyofChagas’disease.Rev.Soc.Bras.Med.Trop.39(Suppl.3),113–117. Covarrubias,C.,Cortez,M.,Ferreira,D.,Yoshida,N.,2007.Interactionwithhost

fac-torsexacerbateTrypanosomacruzicellinvasioncapacityuponoralinfection.Int. J.Parasitol.37,1609–1616.

Fernandes,M.C.,Cortez,M.,Flannery,A.R.,Tam,C.,Mortara,R.A.,Andrews,N.W., 2011. Trypanosoma cruzi subverts the sphingomyelinase-mediated plasma membranerepairpathwayforcellinvasion.J.Exp.Med.208,909–921. Ferreira,D.,Cortez,M.,Atayde,V.D.,Yoshida,N.,2006.Actincytoskeleton-dependent

and– independenthostcellinvasionbyTrypanosomacruziismediatedby dis-tinctparasitesurfacemolecules.Infect.Immun.74,5522–5528.

Hoft,D.F., 1996.Differentialmucosalinfectivityofdifferentlife stagesof Try-panosomacruzi.Am.J.Trop.Med.Hyg.55,360–364.

Hoft,D.F.,Farrar,P.L.,Kratz-Owens,K.,Shaffer,D.,1996.Gastricinvasionby Try-panosomacruziandinductionofprotectivemucosalimmuneresponses.Infect. Immun.64,3800–3810.

Luquetti,A.O.,Miles,M.A.,Rassi,A.,deRezende,J.M.,deSouza,A.A.,Póvoa,M.M., Rodrigues,I.,1986.Trypanosomacruzi:zymodemesassociatedwithacuteand chronicChagas’diseaseincentralBrazil.Trans.R.Soc.Trop.Med.Hyg.80, 462–470.

Málaga,S.,Yoshida,N.,2001.TargetedreductioninexpressionofTrypanosoma cruzisurfaceglycoproteingp90increasesparasiteinfectivity.Infect.Immun.69, 353–359.

Manque,P.M.,Eichinger,D.,Juliano,M.A.,Juliano,L.,Araya,J.,Yoshida,N.,2000. CharacterizationofthecelladhesionsiteofTrypanosomacruzimetacyclicstage surfaceglycoproteingp82.Infect.Immun.68,478–484.

Marcili,A.,Lima,L.,CavazzanaJr.,M.,Junqueira,A.C.V.,Velduo,H.H.,Silva,F.M., Campaner,M.,Paiva,R.,Nunes,V.L.B.,Teixeira,M.M.G.,2009.Anewgenotype ofTrypanosomacruziassociatedwithbatsevidencedbyphylogeneticanalyses usingSSUrDNA,cytochromebandhistoneH2Bgenesandgenotypingbaseson ITS1rDNA.Parasitology136,641–655.

Martins,R.M.,Alves,R.M.,Macedo,S.,Yoshida,N.,2011.Starvationandrapamycin differentially regulatehost celllysosome exocytosisand invasionby Try-panosomacruzimetacyclicforms.Cell.Microbiol.13,943–954.

Miles,M.A.,Llewellyn,M.S.,Lewis,M.D.,Yeo,M.,Baleela,R.,Fitzpatrick,S.,Gaunt, M.W.,Mauricio,I.L.,2009.Themolecularepidemiologyandphylogeographyof TrypanosomacruziandparallelresearchonLeishmania:lookingbackandtothe future.Parasitology136,1509–1528.

Neira,I.,Ferreira,A.T.,Yoshida,N.,2002.Activationofdistinctsignaltransduction pathwaysinTrypanosomacruziisolateswithdifferentialcapacitytoinvadehost cells.Int.J.Parasitol.32,405–414.

Neira,I.,Silva,F.A.,Cortez,M.,Yoshida,N.,2003.InvolvementofTrypanosomacruzi metacyclictrypomastigotesurfacemoleculegp82inadhesiontogastricmucin andinvasionofepithelialcells.Infect.Immun.71,557–561.

PoinarJr.,G.,2005.Triatomadominicanasp.n(Hemiptera:Reduviidae:Triatominae), andTrypanosomaantiquussp.n.(Stercoraria:Trypanosomatidae),thefirst fos-silevidenceofatriatomine-trypanosomatidvectorassociation.VectorBorne ZoonoticDis.5,72–81.

Ramirez,M.I.,Ruiz,R.C.,Araya,J.E.,FrancodaSilveira,J.,Yoshida,N.,1993. Involve-mentofthestage-specific82-kilodaltonadhesionmoleculeofTrypanosomacruzi metacyclictrypomastigotesinhostcellinvasion.Infect.Immun.61,3636–3641. Rodríguez,A.,Martinez,I.,Chung,A.,Berlot,C.H.,Andrews,N.W.,1999.cAMP reg-ulatesCa2+-dependentexocytosisoflysosomesandlysosome-mediatedcell invasionbytrypanosomes.J.Biol.Chem.274,16754–16759.

Ruiz,R.C.,FavoretoJr.,S.,Dorta,M.L.,Oshiro,M.E.M.,Ferreira,A.T.,Manque,P.M., Yoshida,N.,1998.InfectivityofTrypanosomacruzistrainsisassociatedwith differentialexpressionofsurfaceglycoproteinswithdifferentialCa2+signaling activity.Biochem.J.330,505–511.

Staquicini,D.I.,Martins,R.M.M.,Macedo,S.,Sasso,G.R.S.,Atayde,V.D.,Juliano,M.A., Yoshida,N.,2010.Roleofgp82intheselectivebindingtogastricmucinduring infectionwithTrypanosomacruzi.PLoSNegl.Trop.Dis.4(3),613.

Tardieux,I.,Nathanson,N.H.,Andrews,N.W.,1994.Roleinhostcellinvasionof Trypanosomacruzi-inducedcytosolicfreeCa2+transients.J.Exp.Med.179, 1017–1022.

Teixeira,M.M.G.,Yoshida,N.,1986.Stage-specificsurfaceantigensofmetacyclic trypomastigotesofTrypanosomacruziidentifiedbymonoclonalantibodies.Mol. Biochem.Parasitol.18,271–282.

Yoshida,N.,1983.SurfaceantigensofmetacyclictrypomastigotesofTrypanosoma cruzi.Infect.Immun.40,836–839.

Yoshida,N.,Mortara,R.A.,Araguth,M.F.,Gonzalez,J.C.,Russo,M.,1989.Metacyclic neutralizingeffectofmonoclonalantibody10D8directedtothe35and 50-kilodaltonsurfaceglycoconjugatesofTrypanosomacruzi.Infect.Immun.57, 1663–1667.

Yoshida,N.,2006.MolecularbasisofmammaliancellinvasionofTrypanosomacruzi. An.Acad.Bras.Ciênc.78,87–111.

Referências

Documentos relacionados

CSJ-3 were investigated in batch fermentation, and the maximum yield of acetic acid reached up to 0.49 % during 30 h cultivation under the optimum growth condition,

Mu- cin-like glycoproteins linked to the membrane by glycosyl-phosphatidylinositol anchor are the major acceptors of sialic acid in a reaction catalysed by trans-sialidase in

Because of the increas- ing the speed of the decomposition of the anhydrite, together with the growth of the temperature of casting the bronze to the plaster mould, the gases

Power demand of the mixer’s drive reveals the mixer’s operating characteristics and reliable monitoring of the mixing processes involving the evaluation of power consumption

The two points considered at the alternate sides, of the tangents through the diameter of the circle, and then the line joining these points divides the circle

SE provides information about tissue stiffness and allows real-time visualization of the image; however, SE cannot completely replace gray-scale, color, or power

Basing on the results of MANOVA test it has been observed that the strongest significant effect on an increase of the tensile strength R m exerted the addition of Mg, followed by

social assistance. The protection of jobs within some enterprises, cooperatives, forms of economical associations, constitute an efficient social policy, totally different from