• Nenhum resultado encontrado

DESIGN OF STRUCTURAL ELEMENTS IN THE EVENT OF THE PRE-SET RELIABILITY, REGULAR LOAD AND BEARING CAPACITY DISTRIBUTION

N/A
N/A
Protected

Academic year: 2017

Share "DESIGN OF STRUCTURAL ELEMENTS IN THE EVENT OF THE PRE-SET RELIABILITY, REGULAR LOAD AND BEARING CAPACITY DISTRIBUTION"

Copied!
7
0
0

Texto

(1)

624.042.1

Ⱥ

.

Ƚ

.

Ɍɚɦɪɚɡɹɧ

ɎȽȻɈɍ

ȼɉɈ

«

ɆȽɋɍ

»

ɊȺɋɑȿɌ

ɗɅȿɆȿɇɌɈȼ

ɄɈɇɋɌɊɍɄɐɂɃ

ɉɊɂ

ɁȺȾȺɇɇɈɃ

ɇȺȾȿɀɇɈɋɌɂ

ɂ

ɇɈɊɆȺɅɖɇɈɆ

ɊȺɋɉɊȿȾȿɅȿɇɂɂ

ɇȺȽɊɍɁɄɂ

ɂ

ɇȿɋɍɓȿɃ

ɋɉɈɋɈȻɇɈɋɌɂ

Ɍɨɱɧɨɟɢɚɞɟɤɜɚɬɧɨɟɨɩɢɫɚɧɢɟɜɧɟɲɧɢɯɜɨɡɞɟɣɫɬɜɢɣɢɧɟɫɭɳɟɣɫɩɨɫɨɛɧɨɫɬɢɦɚɬɟɪɢɚɥɚ ɤɨɧɫɬɪɭɤɰɢɢɬɪɟɛɭɟɬɩɪɢɜɥɟɱɟɧɢɹɦɟɬɨɞɨɜɬɟɨɪɢɢɜɟɪɨɹɬɧɨɫɬɟɣɢɬɚɤɨɣɯɚɪɚɤɬɟɪɢɫɬɢɤɢɤɨɧ

-ɫɬɪɭɤɰɢɢ, ɤɚɤɧɚɞɟɠɧɨɫɬɶ, ɦɟɪɨɣɤɨɬɨɪɨɣɹɜɥɹɟɬɫɹɜɟɪɨɹɬɧɨɫɬɶɛɟɡɨɬɤɚɡɧɨɣɪɚɛɨɬɵ.

Ⱥɧɚɥɢɡɪɚɫɱɟɬɚɤɨɧɫɬɪɭɤɰɢɣɩɨɡɚɞɚɧɧɨɣɧɚɞɟɠɧɨɫɬɢɩɨɤɚɡɵɜɚɟɬ, ɱɬɨɢɡɦɟɧɱɢɜɨɫɬɶɧɟ

-ɫɭɳɟɣɫɩɨɫɨɛɧɨɫɬɢ ɜɥɢɹɟɬɧɚ ɨɬɧɨɫɢɬɟɥɶɧɵɟɪɚɡɦɟɪɵɩɨɩɟɪɟɱɧɨɝɨɫɟɱɟɧɢɹɫɢɥɶɧɟɟ, ɱɟɦ

ɢɡɦɟɧɱɢɜɨɫɬɶɧɚɝɪɭɡɨɤ.

Ʉɥɸɱɟɜɵɟɫɥɨɜɚ: ɡɚɞɚɧɧɚɹɧɚɞɟɠɧɨɫɬɶ, ɧɨɪɦɚɥɶɧɨɟɪɚɫɩɪɟɞɟɥɟɧɢɟ, ɧɚɝɪɭɡɤɚ, ɧɟɫɭ

-ɳɚɹɫɩɨɫɨɛɧɨɫɬɶ, ɤɨɷɮɮɢɰɢɟɧɬɵɜɚɪɢɚɰɢɢ, ɠɟɥɟɡɨɛɟɬɨɧɧɚɹɩɥɢɬɚ,ɫɪɨɤɫɥɭɠɛɵ, ɩɨɩɟɪɟɱ

-ɧɵɟɪɚɡɦɟɪɵ.

,

-.

,

S

:

,

S

=

Kq

(1)

K

.

q

,

- 

2

f

q

.

,

f

2

 

R

[1].

.

,

-,

,

[2], . .

H

P R

S

, (2

)

Н

;

P

;

R

;

S

.

,

,

[3],

,

f

1

 

S

:

 

1 3

1

.

S

f

S

f

K

R

 

 

 

(3)

 

 

2 1

H

f

R

f

S dS dR

 

 

(4)

 

 

1 2

H

f

S

f

R dR dS

 

 

(2)

 

1

f

S

,

f

2

 

R

(4)

(5),

-зад

H

=

H

,

К

:

, ,

...

,

,

К

= φ

(

а а

1 2

a

n

H

зад

)

1

, ,

2 3

а а а

-.

Ʉ

,

.

,

,

ȿ

,

,

.

ȿ

f

5

 

E

.

ȿ

ȿ

*

,

 

1

:

f

( )

( )

1 3 5

1

.

E

f

f

f

E dE

К

К

∞ ∗

∗ ∗

∗ ∗

−∞

ω

ω =

H

=

H

зад

,

*

К

.

f

4

 

h

.

,

(4),

h

расч

расч ном

,

h

=

h

− ∆

(6)

ном

h

;

,

f

4

 

h

H

h

.

ном расч

.

h

=

h

+ ∆

(7)

 

4

f

h

,

(

)

ном расч

1

h

,

h

=

h

− γ

A

(8)

H

h

;

А

h

-.

Н

зад

Н

зад

Н

h

.

,

[4].

 

2

3 2

1

exp

;

2

2

q

q q

q

m

f

q



(9)

 

2

2 2

1

exp

.

2

2

R

R R

R m

f

R



(10)

[5]

 

2

2 2 2

1

exp

2

2

S

S S

S

m

f

S

K

K

 

(11)

,

.

S q q

m

Km

  

K

(3)

,

R S R q

m

m

 

K

2 2 2 2

.

R SR

K

q

  

(

)

( )

2

0

0

R S

,

R S

m

Н

P

R

S

f Z dZ

Ф

=

∞ =

= 

σ

p

p

(12)

( )

1

22

Ф

2

t dt

е

γ

−∞

γ =

π

.

H

-.

2 2 2 2

.

R q

R S

R S R q

m

K

m

K

 

 

 

 

(13)

K

,

2

4

,

2

K

    

(14)

2 2 2

,

2 2 2

,

2

.

q q R R R q

m

m

m m

 

    

  

 

K

,

.

(14)

2 2

2 2 2 2 2

1

,

1

R R

q R q R q

m

A

K

m

A

A

A A

 

 

 

(15)

, .

q

R

R q

R q

A

A

m

m

,

R

A

A

q

.

,

A

R

1

-,

-.

,

-F -F

R

A

A

q

,

. 1 2.

F

,

-,

.

,

A

R

F F

,

.

q

A

A

R

.

.

,

±2

0, 9

,

У

R R

A

=

A



A

УR

=

0, 54

A

R

.

-R

A

A

q

,

,

2

,

.

c. 1.

:1AR = Aq= 0,1;

(4)

2 2

.

1

R

q R q

m

K

m

A

A

 

(16)

. 2.

 

R

A a , A бq( ) Aq AR

-( ) :в

γ 1F F f A( q)

A

R = 0,1; 2F F f A( R)

0,1

q

A

-.

,

S

-,

q

. .

(1).

,

,

.

0

P

,

T

(

):

0

0 0

exp

( , ( ))

.

T

Н

P

Sf R S t dSdt

=

=

∫ ∫

&

&

&

(17)

(17)

(1),

K

.

K

,

.

( )

S t

,

V R T

R

T

:

2

2 2

2 2

exp

2

.

2

R S

S

S R

S R

m

m

T

V R T

  

   

(18)

:

2

2 2

2 2

exp

exp

,

2

2

R S

S

S R

S R

m

m

T

H

  

   

(19)

2

S

;

2R

;

m

S

-;

m

R

-;

T

.

[6]

 

2

cos

sin

.

a

q q

a

K

  

e

 

 

 

(20)

α

,

K

q

 

(5)

 

2

2 2 2 2 2 2 2 2

2

0

0

.

S S S S q

d

K

K

a

K

a

d

 

 

 

  

 

(

21

)

2

2 2

2 2 2

2 2 2

exp

exp

,

2

2

R q

q R

q R

m

K

T a

H

K

K

 

 

  

  

(22)

.

K

0

R

 

( . .

,

,

-)

(22)

K

:

,

2

R

q q

m

K

m

A

 

(23)

2 2

2

ln

ln

H

.

A

T a

 

 

 

(24)

-5, 5 6, 0 м,

×

,

q

 

a

1

.

q q

K

  

e

 

 

a

h

,

H

0, 99.

:

3

1 10 КПа;

q

m

= ⋅

σ = ⋅

q

1 10 КПа;

2

m

R

= ⋅

5 10 КПа;

5

 

R

0;

6

50 лет

1578 10 с;

T

=

=

a

0, 707

c

1

;

μ

=

0, 3,

a

,

K

q

 

.

,

S

K

q

a

  

,

6

2

ln

2

ln 0, 99

ln

ln

23, 59.

1578 10

0, 707

H

A

Ta

 

 

 

 

5

3 2

5 10

296, 4.

2

10

10

2 23, 59

R

q q

m

K

m

A

 

2

2

,

c a

K

h

c

0, 3665

,

.

2 2

2

0, 3665 6, 0

21, 0 10 м,

296, 4

c a

h

К

=

=

=

. .

h

=

21 см

.

Ȼɢɛɥɢɨɝɪɚɮɢɱɟɫɤɢɣɫɩɢɫɨɤ

1. Ʌɵɱɟɜ Ⱥ.ɋ.

// . .- . . , 1997. . 33—37.

(6)

3. ȺɪɚɫɥɚɧɨɜȺ.ɋ. -. -., 1986-. 268 -.

4. Ɍɚɦɪɚɡɹɧ Ⱥ.Ƚ.

— // .

2009. № 1. . 160—171.

5. JSO/TK 98 ST 2394 General Principles on Reliability for Structural, 1994, S. 50.

6. Ɋɚɣɡɟɪȼ.Ⱦ. : . . :

-, 1998. 304 .

ɉɨɫɬɭɩɢɥɚɜɪɟɞɚɤɰɢɸɜɚɜɝɭɫɬɟ 2012 ɝ.

: ɌɚɦɪɚɡɹɧȺɲɨɬȽɟɨɪɝɢɟɜɢɱ — ,

, ɎȽȻɈɍ ȼɉɈ «Ɇɨɫɤɨɜɫɤɢɣ ɝɨɫɭɞɚɪɫɬɜɟɧɧɵɣ

ɫɬɪɨɢɬɟɥɶɧɵɣɭɧɢɜɟɪɫɢɬɟɬ» (ɎȽȻɈɍȼɉɈ «ɆȽɋɍ»), . , 129337, ,

. 26, tamrazian@mail.ru.

:ɌɚɦɪɚɡɹɧȺ.Ƚ.

// . 2012. № 10.

. 109—115.

A.G. Tamrazyan

DESIGN OF STRUCTURAL ELEMENTS IN THE EVENT

OF THE PRE-SET RELIABILITY, REGULAR LOAD AND BEARING CAPACITY DISTRIBUTION

Accurate and adequate description of external infl uences and of the bearing capacity of the structural material requires the employment of the probability theory methods. In this regard, the characteristic that describes the probability of failure-free operation is required. The characteristic of reliability means that the maximum stress caused by the action of the load will not exceed the bearing capacity.

In this paper, the author presents a solution to the problem of calculation of structures, namely, the identifi cation of reliability of pre-set design parameters, in particular, cross-sectional dimensions. If the load distribution pattern is available, employment of the regularities of distrib-uted functions make it possible to fi nd the pattern of distribution of maximum stresses over the structure.

Similarly, we can proceed to the design of structures of pre-set rigidity, reliability and stability in the case of regular load distribution. We consider the element of design (a monolithic concrete slab), maximum stress S which depends linearly on load q. Within a pre-set period of time, the probability will not exceed the values according to the Poisson law.

The analysis demonstrates that the variability of the bearing capacity produces a stronger effect on relative sizes of cross sections of a slab than the variability of loads. It is therefore par-ticularly important to reduce the coeffi cient of variation of the load capacity. One of the methods contemplates the truncation of the bearing capacity distribution by pre-culling the construction material.

Key words: pre-set reliability, normal distribution, load, bearing capacity, coeffi cient of varia-tion, concrete slab, life cycle, cross section.

References

1. Lychev A.S. Sposoby vychisleniya veroyatnosti otkaza v kompozitsii raspredeleniy prochnosti i nagruzki [Methods of Calculation of the Probability of Failure within the Framework of the Distribution of Strength and Load]. Trudy mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Collected works of the international scientifi c and technical conference]. Samara, 1997, pp. 33—37.

2. Tichy M. In the Reliability Measure. Struct. Safety. 1988, vol. 5, pp. 227—232.

3. Araslanov A.S. Raschet elementov konstruktsiy zadannoy nadezhnosti pri sluchaynykh vzaimodeystviyakh [Calculation of Structural Elements with the Pre-set Reliability If Exposed to Random Interactions]. Moscow, 1986, 268 p.

(7)

Vestnik TsNIISK [Bulletin of Central Research and Development Institute of Building Structures]. 2009, no. 1, pp. 160—171.

5. JSO/TK 98 ST 2394. General Principles on Reliability for Structures. 1994, pp. 50.

6. Rayzer V.D. Teoriya nadezhnosti v stroitel’nom proektirovanii [Theory of Reliability in Structural Design]. Moscow, ASV Publ., 1998, 304 p.

A b o u t t h e a u t h o r: Tamrazyan Ashot Georgievich — Doctor of Technical Sciences, Professor, Department of Reinforced Concrete and Masonry Structures, Moscow State University of Civil Engi-neering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; tamrazian@mail.ru.

Referências

Documentos relacionados

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

A "questão social" contemporânea, chamada erroneamente de "nova questão social", advém dessas profundas modificações nos padrões de produção, de

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

33 Relativamente a sugestões para estudos futuros, parece-nos interessante estudar o efeito do conflito na criatividade das equipas, tendo em conta a influência das emoções

The fourth generation of sinkholes is connected with the older Đulin ponor-Medvedica cave system and collects the water which appears deeper in the cave as permanent

The irregular pisoids from Perlova cave have rough outer surface, no nuclei, subtle and irregular lamination and no corrosional surfaces in their internal structure (Figure