• Nenhum resultado encontrado

Using Geostatistical Methods for Characterization of Variations in the Agrochemical Properties (Based on the Study of Arable Lands in Northern Kazakhstan)

N/A
N/A
Protected

Academic year: 2017

Share "Using Geostatistical Methods for Characterization of Variations in the Agrochemical Properties (Based on the Study of Arable Lands in Northern Kazakhstan)"

Copied!
18
0
0

Texto

(1)

2016, . 158, . 2 ISSN 1815-6169 (Print)

. 259–276 ISSN 2500-218X (Online)

259

К 631.4

Ь

Х

Х

Ь

Х

Х

(

)

. . и и

и

1

,

С.С.

а

2

,

. . ри р

2

,

. . а ир

3

,

. .

а ир

1

,

.

а а

а

1

,

. . а и и а

1

1 а а и (При и

) е ера и ер и е , . а а , 420008, и

2 и р е ии и е р а и

а е ии а е и и а ар а , . а а , 420087, и 3 « а е е р », . е а

, 020000, е и а а а а

( , ,

я, я )

щ 1468 1378 ,

К . я ,

я

я .

, я я

-. , я я

я , щ .

: К , ,

я ,

Е

я

я

я

щ

-,

я

-. В

я

.

я

я

я

я

,

-.

я

, я

я

я

я

,

,

я

,

(2)

К. . . 260

я

,

я

я

.

я

я

,

Д1–

3].

я

я

-.

щ

Д3]

я

К

-я 100

200–

400

.

я

щ

я я

я.

(

,

)

я

-

,

я

я

я

я

Д4, 5]

,

я

я

я.

-,

я

я

,

я

я

я

.

ящ

К

я

«М

»

-

.

1.

я я я

я

я

«М

»,

я-щ

А «А

А

»,

я

(

К

). я

я

-,

(

20

)

щ

я

.

М

1 (1468 )

-

я

,

я

:

28 (428 ), №

27-

1 (429 ), №

26 (611 ). М

2 (1378 )

-

я

,

я (№

7 (366 ), №

9 (277 ), №

10 (331 ), №

11 (407 )

)

.

я

я

я

я

я

MapInfo

(3)

20

я

.

щ GPS

-

30

,

я

.

щ

.

щ

72

. я

73 .

я

.

В

я

щ

А (

С

) Д6],

щ

К

(N

щ

) Д7],

(P

2

O

5

)

я (К

2

O )

М

А Д8]

(ЩH )

)

я

,

:

,

1 : 5 [9].

я

.

STATISTICA 8.0.

щ

GSTAT

я

R

я

Е.

Д10].

2.

В

.

1

я

.

К

,

я

я я

я

я

я

,

я

я

я

1.

я

(

я

-я -я

я

я

Д1])

я

. М

-.

я

я

-я.

я

я я

-

щ

-,

pH.

Д11]

,

,

1

:

5,

0

.

6

/ . М

я

я 0

.2

/ ,

я

.

щ

я

.

я

(6–

8-

Д1]).

я

я

я

.

В

(4)

. 1

А

С , % Nщ, /100 P2O5 , /100 К2O , /100 pH, . Е , /

М М М М М М

№ 1 № 2 № 1 № 2 № 1 № 2 № 1 № 2 № 1 № 2 № 1 № 2

72 73 72 73 72 73 72 73 72 73 72 73

4.7 4.9 8.7 8.4 14.0 9.8 46.6 46.7 8.1 7.9 0.1 0.1

М 3.7 4.1 5.6 5.0 5.7 3.7 18.8 25.4 7.7 7.6 0.1 0.1

М 5.9 5.8 10.6 11.2 26.7 24.0 60.4 58.6 8.4 8.3 0.2 0.2

я 2.3 1.7 5.0 6.2 20.9 20.3 41.6 33.2 0.7 0.7 0.2 0.1

К , % 10.3 8.2 14.9 14.2 37.5 38.3 14.9 13.1 1.6 1.6 29.8 21.0

4.3 4.6 7.8 7.6 10.9 7.4 43.7 42.7 7.9 7.9 0.1 0.1

М 4.6 4.9 8.9 8.4 12.7 9.1 46.8 47.4 8.1 7.9 0.1 0.1

В 5.0 5.2 9.5 9.0 18.1 11.7 51.2 51.9 8.2 8.0 0.2 0.1

К К –

d(р)

0.09 (0.16)

0.06 (0.62)

0.14 (0.00)

0.10 (0.05)

0.13 (0.00)

0.10 (0.04)

0.10 (0.07)

0.08 (0.27)

0.06 (0.69)

0.06 (0.80)

0.15 (< 0.00)

0.15 (< 0.00)

*При еча ие: , я щ я я.

К

..

.

(5)

я

,

-

,

я

я.

я

-я щ ,

щ

-,

. .

К

Д12].

. .

К

Д13]

,

щ

я

:

1)

я

я

Д14]

2)

я

я

-я Д15, 16].

я

-я (

h

)

я

я

я,

я

я

,

щ

. В

я я

я

я

(

-)

я

(

)

я

. . . К

я

Д17].

В

ящ

я

я я

я

Д18–23]. В

(

)

я

,

щ

я

я

я

-Z

(

x

)

Z

(

x

+

h

),

h

,

Д24].

В

я

-,

γ(

h

)

h

=

|

h

е,

я

,

,

γ(

h

)

h

,

я Д18].

,

я я

я

-я,

я я я

,

я

Д12].

Е

я

,

я

(

«

-

»

,

«

»).

я

я

я

,

ящ

,

я

.

я

,

я я щ

я

я я

,

ящ

-я (

).

я

(

е

h

|

2

),

я яя

Д24].

я

я

,

я γ(

h

)

я (

С

+

С

0

),

я

(

R

). К

я

(

h

)

я

,

γ(

h

)

я

,

«

-

»

(6)

К. . . 264

,

С

0

/(

С

+

С

0

).

я

С

0

/(

С

+

С

0

)

25%

,

я 25%

75%

,

я

75%

Д25].

я

.

я

-,

я

100

Д26]

50–100

я

я Д27].

я

я

-,

щ

щ

-.

щ

.

В

я

я

я

Д20, 21, 28, 29]. я

щ

я

-.

я

я

,

. В

Д4,

18, 29

–31]

я

(

).

я

-.

,

я я

,

я

,

Д24]. В

Д4, 18, 32],

(

-)

.

я

Д32]

.

я

я

(

)

щ

Д32–34].

-я -я

я

.

А

,

я

я

я я Д33].

,

я

-,

Д4].

я

[14].

я

я

я

,

(7)

щ

я

-.

щ

,

щ

,

-.

,

я

,

я

щ

Д3, 35].

щ

я

-. В

Д4]

я

,

.

-,

,

я

я

я

-я. В

,

,

-.

,

-,

я

-,

я я

,

я я

-.

я

щ

я

.

я

я

: 337.5° 67.5° я

1 0° 270° я

2

±20°.

я

я

,

я

-.

-

.

. 2.

(

.

1),

я

,

щ

(

)

,

,

я

-я.

я

я

я

я щ ,

я

1

я я

я я

я

R

2.8

, я

2

R

1.

2 (

. 1

,

а

). я

1

я

-щ я

(

R

1.1

)

я

я

(

Е

)

,

я

(

.

1, ,

е

). я

2,

,

я

,

я ,

(8)

. 2

М SSErr C0 C1 C0 +C 1 Range С0/(С0 +С1)·100% я

С № 1№ 2 Sph 1.42E-07 0.13 0.11 0.24 2819 54.0 яя

Sph 1.25E-08 0.13 0.05 0.18 1230 74.0 яя

Nщ № 1№ 2 Sph 6.08E-06 0.87 0.82 1.69 970 51.7 яя

Sph 1.66E-05 1.46 0.04 1.50 1628 97.5 я

P2O5

№ 1 Nug – 29.00 0.00 29.00 – 100.0

№ 2 Sph 8.33E-05 10.97 3.89 14.86 1853 73.8 яя

К2O

№ 1 Lin 0.01998271 43.563 0.0042 43.57 – 100.0

№ 2 Sph 0.00535874 19.79 27.77 47.56 3219 41.6 яя

pH № 1 Sph 1.16E-09 0.01 0.01 0.02 1056 42.5 яя

№2 Sph 1.87E-09 0.01 0.01 0.02 3991 47.0 яя

Е № 1 Sph 7.79E-13 0.001 0.001 0.002 1168 64.1 яя

№ 2 Nug – 0.001 0.000 0.001 – 100.0

*При еча ие: Sph – я , NuР– , Lin – я .

К

..

.

(9)

я

я. я

1

я

я я

я

я

,

-

,

(

,

я я

).

я

2

я

я

,

я

я

я щ ,

я я щ

я

я

(1

.8 3.2

).

-,

я

,

щ

-.

я

я

-. я

я

2

я,

1 щ

,

я

я

,

я

. В

я ,

(

-

)

,

(

Radial Basis Function

RBF).

RBF

я

,

я

щ

Д36]. В

TPS (TСТЧ

Plate Spline)

я.

щ

я я

Д37].

. 2.

-я.

я

я

щ

я

щ

(

. 3).

я

я

я

-я. я

я я

(

)

я

щ

,

,

я

. Е

я

щ

я

я

я

,

я

я

,

я

я

Д20, 38].

я

я

-

я,

я

1

8

×

18

. В

я

,

(10)

К. . . 268

а) )

)

)

)

е)

. 1. .

1, –

; – 2, –

я

я

я.

-,

я . В

,

(11)

М № 1 М № 2

. 2.

я , я

я

я

,

-.

я

щ

. я

1

(<

10

/100

)

я 100%.

я

2

я

я 58.7%

,

я –

я 41.3%.

я

я

я

.

-,

,

я

(12)

К. . . 270

. 3

щ я

щ щ (

)

я, /100

М № 1 М № 2

щ , В щ щ , % щ , В щ щ , %

-5–6 0 0 19.2 1.4

6–7 0 0 89.7 6.5

7–8 193.6 12.7 341.3 24.8

8–9 911.0 59.9 567.9 41.2

9–10 415.3 27.3 286.9 20.8

10–11 0.0 0.0 67.5 4.9

11–12 0.0 0.0 5.6 0.4

5–6 13.9 0.9 0.0 0.0

6–10 273.6 18.0 809.1 58.7

10–15 694.8 45.7 568.9 41.3

15–20 383.0 25.2 0 0.0

20–30 154.6 10.2 0 0.0

15–20 1.0 0.1 0 0.0

20–25 6.4 0.4 0 0.0

25–30 13.8 0.9 0 0.0

30–35 31.7 2.1 0 0.0

35–40 78.8 5.2 7.0 0.5

40–45 403.4 26.5 468.3 34.0

45–50 586.9 38.6 610.7 44.3

50–55 313.0 20.6 292.0 21.2

55–60 85.0 5.6 0 0.0

я

я,

щ

(> 6

/100

) я

1

я 99.1%, я

2

98.6%,

я

-.

1

щ

я

(20–

30

/100

)

я 1.3%,

(30–40 /100

) –

6.3%,

(40–60 /100 ) –

91.3% (

я

50 60 /100 –

26.1%). В

2

щ

-я –

0,5 %,

99,5% (

-я 50 60 /100 –

21,2%). К

,

я

. я

я

я

,

я

я

я

я

-.

я

,

(13)

я

.

я

-я щ , -я -я

,

,

я

я

,

щ

-.

я

я

,

я

я

я

я

.

, я

я

я

-,

я

я

,

я

.

.

«

“М

”»

.

1. М я

-я я . – М.: .- . .,

, 1994. –96 .

2. М я я

я я / . .М. , . .

-. –М.: « », 2003. –240 .

3. 28168-89. . . –М.: , 2008. –6 .

4. Gebbers R., de Bruin S. Application of geostatistical simulation in precision // Geostatis-tical Applications for Precision Agriculture / Ed. by M.A. Oliver. – Springer Sci-ence+Business Media B.V., 2010. – P. 269–304.

5. е . .

-: А . . … - М.- . . – ., 2013. –50 .

6. 26213-91. . М я щ . –М.:

-, 1992. –9 .

7. М я щ

К . –М.: М , 1985. –9 .

8. 26205-91. . я

М А . –М.: - , 1992. –9 .

9. 26423-85. . М я

-, ЩH я . –М.: - , 1985. –7 .

10. Pebesma E. Multivariable geostatistics in S: the gstat package // Comput. Geosci. – 2004. – V. 30, No 7. – P. 683–691. – doi: 10.1016/j.cageo.2004.03.012.

11. и е . . я я . – М.: ,

1991. – 249 .

12. а е е . ., е а и а . ., раче . .

(14)

К. . . 272

13. и Ф. . я я . – М.: Е ,

2003. –536 .

14. и рие . . М я . –М.: - М . - ,

1972. – 292 .

15. а ер . . –М.: М , 1968. –408 .

16. и рие . .

: А . .… - . . –М., 1985. –51 .

17. и Ф. . я //

я. –М.: , 1970. – . 42–59.

18. а и а . ., ир е . . я

// . – 1988. –№ 5. – . 113–120.

19. Webster R., Oliver M.A. Spatial dependence in statistical methods in soil and land re-source survey. – Oxford: Oxford Univ. Press, 1990. – 307 p.

20. Са а .П., е а и а . ., и рие . .

- //

. – 1999. –№ 11. – . 1359–1366.

21. Са а .П. я :

- . –М.: - К , 2008. – 156 .

22. а .Ф., а е . ., . .

//

-. – 2001. –№ 11.– . 1365–1376.

23. я / O . . .В. К . –М.: , 2007. –

175 .

24. Са е е . ., ара а С.С., Пи и . ., и и а . .

( R). –К

-: К . - , 2012. –120 .

25. Cambardella C.A., Moorman T.B., Novak J.M., Parkin T.B., Karlen D.L., Turco R.F., Konopka A.E. Field-scale variability of soil properties in central Iowa soils // Soil Sci. Soc. Am. J. – 1994. – V. 58, No 5. – P. 1501–1511.

26. Webster R., Oliver M.A. Sample adequately to estimate variograms of soil properties // J. Soil Sci. – 1992. – V. 43, No 1. – P. 177–192. – doi: 10.1111/j.1365-2389.1992.tb00128.x. 27. Kerry R., Oliver V.A., Frogbrook Z.L. Sampling in Precision Agriculture // Geostatistical Applications for Precision Agriculture / Ed. by M.A. Oliver. – Springer Science+Business Media B.V., 2010. – P. 35–64.

28. Goovaerts P., Kerry R. Using Ancillary Data to Improve Prediction of Soil and Crop

At-tributes in Precision Agriculture // Geostatistical Applications for Precision Agriculture / Ed. by M.A. Oliver. – Springer Science+Business Media B.V., 2010. – P. 167–194. 29. Brus D.J., Heuvelink G.B.M. Optimization of sample patterns for universal kriging of

environmental variables // Geoderma. – 2007. – V. 138, No 1–2. – P. 86–95. – doi: 10.1016/j.geoderma.2006.10.016.

30. Laslett G.M., McBratney A.B., Pahl P.J., Hutchinson M.F. Comparison of several spatial

prediction methods for soil pH // J. Soil Sci. – 1987. – V. 38, No 2. – P. 325–341. – doi: 10.1111/j.1365-2389.1987.tb02148.x.

(15)

32. Brus D.J., SpтtjОЧs L.E.E.M., de Gruijter J.J. A sampling scheme for estimating the mean extractable phosphorus concentration of fields for environmental regulation // Geoderma. – 1999. – V. 89, No 1–2. – P. 129–148. – doi: 10.1016/S0016-7061(98)00123-2.

33. Brus D.J., de Gruijter J.J. Random sampling or geostatistical modelling? Choosing between design-based and model-based sampling strategies for soil (with discussion) // Geoderma. – 1997. – V. 80, No 1–2. – P. 1–44. – doi: 10.1016/S0016-7061(97)00072-4.

34. Walvoort D.J.J., Brus D.J., de Gruijter J.J. An R package for spatial coverage sampling and random sampling from compact geographical strata by k-means // Comput. Geosci. – 2010. – V. 36, No 10. – P. 1261–1267. – doi: 10.1016/j.cageo.2010.04.005.

35. VОЫШЫНЧuЧР üЛОЫ НТО AЧаОЧНuЧР ЯШЧ DüЧРОЦТЭЭОХЧ, BШНОЧСТХПЬЬЭШППОЧ, KuХЭuЫЬuЛЬЭЫКЭОЧ

uЧН PПХКЧгОЧСТХПЬЦТЭЭОХЧ ЧКМС НОЧ GЫuЧНЬтЭгОЧ НОЫ РuЭОЧ ПКМСХТМСОЧ PЫКбТЬ ЛОТЦ Düngen (DüЧРОЯОЫШЫНЧuЧР –DüV) // BuЧНОЬРОЬОЭгЛХКЭЭ. – 2007. – T. I, Nr. 7. – S. 221.

36. Johnston K., Ver Hoef J.M., Krivoruchko K., Lucas N. Using ArcGISTM Geostatistical Analyst. – Redlands, CA: ESRI Press, 2001. – 306 p.

37. Li J., Heap A. A review of spatial interpolation methods for environmental scientists. Record 2008/023. – Canberra: Geoscience Australia, 2008. – 154 p.

38. Van Meirvenne M. Is the soil variability within the small fields of Flanders structured enough to allow precision agriculture? // Precision Agriculture. – 2003. – V. 4, No 2. – P. 193–201. – doi: 10.1023/A:1024561406780.

10.02.16

, ,

К ( )

. К я, . 18, . К , 420008, я

E-mail: ginijatullin@mail.ru

, я

К ( )

. К я, . 18, . К , 420008, я

E-mail: erydit@yandex.ru

, , , щ

я А

. я, . 28, . К , 420087, я

E-mail: bobgrig2@yandex.ru

, - я

-А «-А А »

. К , 020000, К

E-mail: ilnar-vakipov@mail.ru

,

К ( )

. К я, . 18, . К , 420008, я E-mail: r-shakirzyanov@mail.ru

,

К ( )

. К я, . 18, . К , 420008, я

(16)

К. . . 274

,

К ( )

. К я, . 18, . К , 420008, я

E-mail: azilya555@mail.ru

ISSN 1815-6169 (Print)

ISSN 2500-218X (Online)

UCHENYE ZAPISKI KAZANSKOGO UNIVERSITETA. SERIYA ESTESTVENNYE NAUKI

(Proceedings of Kazan University. Natural Sciences Series)

2016, vol. 158, no. 2, pp. 259–276

Using Geostatistical Methods for Characterization of Variations in the Agrochemical Properties (Based on the Study of Arable Lands in Northern Kazakhstan)

K.G. Giniyatullina*, S.S. Ryazanova,B.R. GrТРШr’вКЧb, I.V. Shakirzyanovc, R.V. Shakirzyanova, E.S. Vaganovaa, A.G. Galiullinaa

a

Kazan Federal University, Kazan, 420008 Russia

b

Institute for Problems of Ecology and Mineral Wealth Use, Tatarstan Academy of Sciences, Kazan, 420087 Russia

AO “AtКmОkОЧ AРrШ”, Kokshetau, 020000 Republic of Kazakhstan E-mail:*ginijatullin@mail.ru

Received February 10, 2016

Abstract

The agrochemical properties (humus content; available forms of nitrogen, phosphorus, and potassium; pH; and specific electrical conductivity of water extract) of two tracts (1468 and 1378 ha) of the arable land from Petropavlovsk region of Northern Kazakhstan have been studied. The research shows that these tracts can be considered as belonging to the same type according to the average values and varia-bility of their agrochemical properties. However, the analysis of experimental variograms indicates that the fields are significantly different from each other by spatial variability of the agrochemical properties. It has been demonstrated that interpolated cartograms of availability of the chemical elements in the fields require differential selection of methods for data interpolation that correspond to the results of vario-gram approximation.

Keywords: arable soils of Northern Kazakhstan, agrochemical properties, spatial variability, geosta-tistical analysis

Acknowledgments. This study was performed as part of the Russian-KКгКФС SR ЩЫШУОМЭ “EЬЭТЦК

t-ТЧР ЯКЫТКЛТХТЭв ШП ЭСО ЦКТЧ КРЫШМСОЦТМКХ ЩЫШЩОЫЭТОЬ ШП КЫКЛХО ХКЧНЬ ТЧ ЭСО TOO MТМСuЫТЧЬФТТ”.

Figure captions

Fig. 1. Experimental variograms of the soil properties and adjusted models. Dots designate experimental variograms of tract no. 1, dashed line shows its model; triangles are experimental variograms of tract no. 2, line is adjusted model.

Fig. 2. Interpolated cartograms showing the availability of nitrogen, phosphorus, and potassium com-pounds in the tracts of the studied arable land.

References

1. Methodical Instructions on Agrochemical Inspection of Soils of Agricultural Lands. Moscow, Tsentr Nauchno-Tekh. Inf., Propagandy, Relamy, 1994. 96 . (IЧ RuЬЬТКЧ)

2. Methodical Instructions on Complex Monitoring of Soil Fertility of Agricultural Lands. Derzhavin L.M.,

(17)

4. Gebbers R, de Bruin S.Application of geostatistical simulation in precision. Geostatistical Appli-cations for Precision Agriculture. Oliver M.A. (Ed.). Springer Science+Business Media B.V., 2010, pp. 269–304.

5. Yakushev V.V. Information-technological basis of precision crop production. Extended Abstract of Doctoral Agric. Sci. Diss. St. Petersburg, 2013. 50 p. (In Russian)

6. State Standard 26213-91. Soils. Methods for determination of organic matter. Moscow, Izd. Standartov, 1992. 9 p. (In Russian)

7. Methodical Instructions on Determination of Alkali-Hydrolyzed Nitrogen ТЧ SШТХ UЬТЧР CШЫЧПТОХН’Ь

MОЭСШН. МШЬМШа, МSKС SSSR, 1985. 9 Щ. (IЧ RuЬЬТКЧ)

8. State Standard 26205-91. Soils. Determination of mobile compounds of phosphorus and potassium by the Machigin method in the modification of the TIN. Moscow, Izd. Standartov, 1992. 9 p. (In Russian)

9. State Standard 26423-85 Soils. Methods for determination of specific electrical conductivity, pH, and solid residue of water extract. Moscow, Izd. Standardtov, 1985. 7 p. (In Russian)

10. Pebesma E. Multivariable geostatistics in S: the gstat package. Comput. Geosci., 2004, vol. 30, no. 7, pp. 683–691. doi: 10.1016/j.cageo.2004.03.012.

11. Zimovets B.A. Ecology and Reclamation of Soils in the Dry Steppe Zone. Moscow, GosNITI, 1991. 249 p. (In Russian)

12. Vasenev I.I., Meshalkina Yu.L., Grachev D.A. Geoinformation Systems in Soil Science and Ecology.

МШЬМШа, IгН. RGAU –МSKСA, 2010. 212 Щ. (IЧ RuЬЬТКЧ)

13. Kozlovskii F.I.Theory and Methods of Studying the Soil Cover. Moscow, GEOS, 2003. 536 p. (In Russian)

14. Dmitriev E.A. Mathematical Statistics in Soil Science. Moscow, Izd. Mosk. Univ., 1972. 292 p. (In Russian)

15. MКЭСОЫШЧ J. FuЧНКЦОЧЭКХЬ ШП AЩЩХТОН GОШЬЭКЭТЬЭТМЬ. МШЬМШа, MТЫ, 1968. 408 Щ. (IЧ RuЬЬТКЧ) 16. Dmitriev E.A. Patterns of spatial heterogeneity of the composition and properties of soils. Extended

Abstract of Doctoral Biol. Sci. Diss. Moscow, 1985. 51 p. (In Russian)

17. Kozlovskii F.I. Soil individual and methods for its identification. Zakonomernosti prostranstvennogo var'irovaniya svoistv pochv i informatsionno-statisticheskie metody ikh izucheniya [Patterns of Spatial Variation in the Soil Properties and Information-Statistical Methods of Their Investigation]. Moscow, Nauka, 1970. pp. 42–59. (In Russian)

18. Ivannikova L.A., Mironenko E.V. The theory of regionalized variables in the study of spatial variability of agrochemical properties of soils. Pochvovedenie, 1988, no. 5, pp. 113–120.

19. Webster R., Oliver M.A. Spatial Dependence in Statistical Methods in Soil and Land Resource Survey. Oxford, Oxford Univ. Press, 1990. 307 p.

20. Samsonova V.P.,Meshalkina Yu.L.,Dmitriev E.A. Spatial variability patterns of the main agro-chemical properties of plowed soddy-podzolic soils. Eurasian Soil Sci., 1999, vol. 32, no. 11, pp. 1214–1220.

21. Samsonova V.P. Spatial Variability of Soil Properties: The Example of Sod-Podzolic Soils.

МШЬМШа, IгН. LKI, 2008. 156 Щ. (IЧ RuЬЬТКЧ)

22. Kuzyakova I.F., Romanenkov V.A., Kuzyakov Y.V. Application of geostatistics in processing the results of soil and agrochemical studies. Pochvovedenie, 2001, no. 11, pp. 1365–1376. (In Russian) 23. GОШЬЭКЭТЬЭТМЬ КЧН SШТХ GОШРЫКЩСв. KЫКЬТХ’ЧТФШЯ P.V. (EН.). MШЬМШа, NКuФК, 2007. 175 Щ. (IЧ RuЬЬТКЧ) 24. SКЯОХ’ОЯ A.A. MuФСКЫКЦШЯК S.S., PТХвuРТЧ A.G., CСТгСТФШЯК N.A. GОШЬЭКЭТЬЭТМКl Data Analysis

in Ecology and Environmental Management (Using the R Package). Kazan, Kazan. Univ., 2012. 120 p. (In Russian)

25. Cambardella C.A., Moorman T.B., Novak J.M., Parkin T.B., Karlen D.L., Turco R.F., Konopka A.E. Field-scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. J., 1994, vol. 58, no. 5, pp. 1501–1511.

(18)

К. . . 276

27. Kerry R., Oliver V.A., Frogbrook Z.L. Sampling in precision agriculture. Geostatistical Applications for Precision Agriculture. Oliver M.A. (Ed.). Springer Science+Business Media B.V., 2010, pp. 35–64. 28. Goovaerts P., Kerry R. Using ancillary data to improve prediction of soil and crop attributes in precision agriculture. Geostatistical Applications for Precision Agriculture. Oliver M.A. (Ed.). Springer Science+Business Media B.V., 2010, pp. 167–194.

29. Brus D.J., Heuvelink G.B.M.Optimization of sample patterns for universal kriging of environmental variables. Geoderma, 2007, vol. 138, nos. 1–2, pp. 86–95. doi: 10.1016/j.geoderma.2006.10.016. 30. Laslett G.M., McBratney A.B., Pahl P.J., Hutchinson, M.F. Comparison of several spatial

predic-tion methods for soil pH. J. Soil Sci., 1987, vol. 38, no. 2, pp. 325–341. doi: 10.1111/j.1365-2389.1987.tb02148.x.

31. Goovaerts P. Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties. Biol. Fertil. Soils, 1998, vol. 27, no. 4, pp. 315–334. doi: 10.1007/s003740050439.

32. BЫuЬ D.J., SЩтЭУОЧЬ L.E.E.M., НО GЫuТУЭОЫ J.J. A sampling scheme for estimating the mean extractable phosphorus concentration of fields for environmental regulation. Geoderma, 1999, vol. 89, nos. 1–2, pp. 129–148. doi: 10.1016/S0016-7061(98)00123-2.

33. Brus D.J., de Gruijter J.J. Random sampling or geostatistical modelling? Choosing between design-based and model-design-based sampling strategies for soil (with discussion). Geoderma, 1997, vol. 80, nos. 1–2, pp. 1–44. doi: 10.1016/S0016-7061(97)00072-4.

34. Walvoort D.J.J., Brus D.J., de Gruijter J.J. An R package for spatial coverage sampling and random sampling from compact geographical strata by k-means. Comput. Geosci., 2010, vol. 36, no. 10, pp. 1261–1267. doi: 10.1016/j.cageo.2010.04.005.

35. VОЫШЫНЧuЧР üЛОЫ НТО AЧаОЧНuЧР ЯШЧ DüЧРОЦТЭЭОХЧ, BШНОЧСТХПЬЬЭШППОЧ, KuХЭuЫЬuЛЬЭЫКЭОЧ uЧН

PПХКЧгОЧСТХПЬЦТЭЭОХЧ ЧКМС НОЧ GЫuЧНЬтЭгОЧ НОЫ РuЭОЧ ПКМСХТМСОЧ PЫКбТЬ ЛОТЦ DüЧРОЧ (DüЧРОЯО r-ordnung –DüV). Bundesgesetzblatt, 2007, T. I, Nr. 7, S. 221. (In German)

36. Johnston K., Ver Hoef J.M., Krivoruchko K., Lucas N. Using ArcGISTM Geostatistical Analyst. Redlands, CA, ESRI Press, 2001. 306 p.

37. Li J., Heap A. A Review of Spatial Interpolation Methods for Environmental Scientists. Record 2008/023. Canberra, Geoscience Australia, 2008. 154 p.

38. Van Meirvenne M. Is the soil variability within the small fields of Flanders structured enough to allow precision agriculture? Precis. Agric., 2003, vol. 4, no. 2, pp. 193–201. doi: 10.1023/A:1024561406780.

Дляцитир ва ия: и и и . ., а С.С., ри р . ., а ир . .,

а ир . ., а а а .С., а и и а . .

я (

я К ) // . . К . - . .

Е . . – 2016. – . 158, .2. – . 259–276.

Referências

Documentos relacionados

Ao Dr Oliver Duenisch pelos contatos feitos e orientação de língua estrangeira Ao Dr Agenor Maccari pela ajuda na viabilização da área do experimento de campo Ao Dr Rudi Arno

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

country, The meeting took place at the National Tuberculosis Institute, on the occasion of the Annual Technical-Administrative, Seminar of the Tuberculosis Division of

Em relação a 2000, as perdas de popula- ção do meio rural para as cidades, embora de vulto, reduziram-se em consequência do cresci- mento vigoroso da agricultura, crescimento este

ish green, the flower buds chlorotic. Manganese e) Leaves yellowish green with green veins and many brown spots; the apical buds remain alive. Zinc £) Younger leaves become

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Os controlos à importação de géneros alimentícios de origem não animal abrangem vários aspetos da legislação em matéria de géneros alimentícios, nomeadamente