• Nenhum resultado encontrado

Rev. bras. ortop. vol.49 número5

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. ortop. vol.49 número5"

Copied!
7
0
0

Texto

(1)

w w w . r b o . o r g . b r

Original

Article

Description

of

an

evaluation

system

for

knee

kinematics

in

ligament

lesions,

by

means

of

optical

tracking

and

3D

tomography

,

夽夽

Tiago

Lazzaretti

Fernandes

a,∗

,

Douglas

Badillo

Ribeiro

a

,

Diogo

Cristo

da

Rocha

a

,

Cyro

Albuquerque

b

,

César

Augusto

Martins

Pereira

a

,

André

Pedrinelli

a

,

Arnaldo

José

Hernandez

a

aInstituteofOrthopedicsandTraumatology,HospitaldasClínicas,MedicalSchool,UniversidadedeSãoPaulo,SãoPaulo,SP,Brazil

bDepartmentofMechanicalEngineering,UniversityCenterofFundac¸ãoEducacionalInaciana(FEI),SãoBernardodoCampo,SãoPaulo,

SP,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received29August2013 Accepted3October2013 Availableonline28August2014

Keywords: Kneejoint

Anteriorcruciateligament X-raycomputedtomography

a

b

s

t

r

a

c

t

Objective:Todescribeanddemonstratetheviabilityofamethodforevaluatingknee kine-matics,bymeansofacontinuouspassivemotion(CPM)machine,beforeandafteranterior cruciateligament(ACL)injury.

Methods:Thisstudywasconductedonakneefromacadaver,inamechanicalpivot-shift simulator,withevaluationsusingopticaltracking,andalsousingcomputedtomography. Results:Thisstudydemonstratedtheviabilityofaprotocolformeasuringtherotationand translationoftheknee,usingreproducibleandobjectivetools(error<0.2mm).The mech-anizedprovocationsystemofthepivot-shifttestwasindependentoftheexaminerand alwaysallowedthesameangularvelocityandtractionof20Nthroughoutthemovement. Conclusion: Theclinicalrelevanceofthismethodliesinmakinginferencesabouttheinvivo behaviorofakneewithanACLinjuryandprovidinggreatermethodologicalqualityinfuture studiesformeasuringsurgicaltechniqueswithgraftsinrelativelyclosepositions.

©2014SociedadeBrasileiradeOrtopediaeTraumatologia.PublishedbyElsevierEditora Ltda.Allrightsreserved.

Descric¸ão

de

sistema

de

avaliac¸ão

da

cinemática

do

joelho

em

lesões

ligamentares

a

partir

de

rastreamento

óptico

e

tomografia

3D

Palavras-chave: Articulac¸ãodojoelho Ligamentocruzadoanterior

r

e

s

u

m

o

Objetivo:Descreveredemonstraraviabilidadedeummétododeavaliac¸ãodacinemáticado joelho,pormeiodeumaparelhodeCPM(continuouspassivemotion),anteseapósalesãodo ligamentocruzadoanterior(LCA).

Pleasecitethisarticleas:FernandesTL,RibeiroDB,daRochaDC,AlbuquerqueC,PereiraCAM,PedrinelliAetal.Descric¸ãode sis-temadeavaliac¸ãodacinemáticadojoelhoemlesõesligamentaresapartirderastreamentoópticoetomografia3D.RevBrasOrtop. 2014;49(5):513–19.

夽夽

WorkdevelopedattheInstituteofOrthopedicsandTraumatology,HospitaldasClínicas,MedicalSchool,UniversidadedeSãoPaulo, SãoPaulo,SP,Brazil.

Correspondingauthor.

E-mail:tiago.lazzaretti@usp.br(T.L.Fernandes). http://dx.doi.org/10.1016/j.rboe.2014.08.005

(2)

Introduction

Anteriorcruciateligament(ACL)reconstructionisoneofthe orthopedics’surgicalproceduresmostperformedtoday.Ithas beenestimatedthatapproximately200,000suchprocedures areperformedintheUSAeveryyear.1

Despite the large number of studies that have been conductedin relation to ACL reconstruction,2,3 the rate of excellentorgoodresultsrangesfrom69%to95%.4 Unsatisfac-toryresultsmayresultfrompersistentinstabilityoftheknee andconsequentdifficultyinreturningtothepreviouslevelof physicalactivity.5–9

ACLinsufficiencyisrepresentedbyanteriortranslationof thetibiaandbyrotationalinstabilityoftheknee.10Thepivot shifttestisusedtoevaluatetherotationalstabilityoftheknee afterACLinjury.11Someauthorshavedemonstratedthatthe presenceofapositivepivotshifttestispredictivefor develop-mentofosteoarthrosisandpoorfunctionalresults.12–15

Althoughthepivotshifttestisveryspecific(closeto100% under anesthesia),16–19 its resultis subjective because it is examiner-dependent.Therefore,itistooimpreciseforusein scientificstudies.10,15,18–21

Musahletal.20 demonstratedthatthemechanizedpivot shifttest,whichconsistsofusingacontinuouspassivemotion (CPM) machine to perform combined knee movements of internalrotation,valgusrotationandflexion,hasgreater accu-racythanthemanualtest.

Inconjunction with computer-assistedsurgerysystems, thepivotshiftsystemcanbemeasuredsatisfactorilyandbe usedtoanalyzekneestabilityafterdifferentACL reconstruc-tiontechniques.10,22

Thus,thepresentstudyhadtheobjectiveofdescribinga methodforkinematicevaluationofthekneebeforeandafter ACLinjury,bymeansoftechnologiesthatmakeitpossibleto objectivelyassesskneeligamentstability.23

For this, we present below the mechanized pivot shift apparatusandanopticaltrackingsysteminassociationwith computedtomography.

Materials

and

methods

Thisexperimentwasconductedonaknee fromacadaver, inconformitywithapprovalfromourinstitution’sResearch

EthicsCommittee.Thecadaver’sentirelowerlimbwasused, withpreservationofthehipandanklejoints.

Asinclusioncriteria,thekneeselecteddidnotpresentany previousACLinjuryorotherligamentinjuries,therewasno moderateorsevereosteoarthrosisandtherewasnoevidence offracturingordisplacedalignmentofthemechanicalaxisof thelimb.

Beforetheexperimentwasstarted,deinsertionandmuscle sectioningwereperformedinordertoenablefullkneerange ofmotion,asfollows:tenotomyoftheadductormassatits origininthepubis;sectioningofthequadricepsandhamstring musclesattheirorigin;andtenotomyofthecalcanealtendon.

Instrumentedpivotshiftandrotationalstabilityofthe knee

The mechanical pivot shift simulator was developed in the BiomechanicsLaboratory(LIM-41),startingfrom aCPM machine(Carci,Ortomed4060;ANVISA:10314290029)similar tothemodelusedandvalidatedbyBedietal.24

Thepelviswasstabilizedonthesurgicaltableandthehip andkneewereallowedtohavefullrangesofmotion.No sup-portusingbandsandthefemurortibialevelwasprovided.

TheCPMdevicewasdesignedtoallow15◦ofinternalankle

rotation,forboththeleftandfortherightlowerlimbs.Axial compressionoftheanklewasperformedatanangularvelocity of1.62◦/s,frommaximumextensionto50ofkneeflexion20

(Fig.1).

Themomentofinternalandvalgusrotationofthekneewas determinedbymeansofasystemofcablesandpulleys cou-pledtotheCPMdevice.Thepointoftractiononthetibiawas definedbymeansofatitaniumpinfixedperpendicularlyto thetuberosityoftibia,oflength10cm.Thetractionofthe tita-niumpinwasperpendiculartotheaxisofthetibiaandhadthe sameforcevectorof20N25throughouttheflexion–extension movement(0–50◦)20(Fig.2).

Measurementoftheanteriortranslationofthetibia

(3)

Fig.1–Mechanizedpivotshiftsystem.

Theverticalforce applied,inaccordance withthestudy by Bedietal.,26was68Nwiththekneeflexedat30.

Opticaltrackingsystem

Thetrackingsystem(MicronTracker 2,model H40) madeit possibletoobtainthespatialpositioningofthefemurandtibia throughidentifyingopticalmarkersanddeterminingtheknee translationandrotationmovements.

ThreeopticalmarkersweredistributedalongtwoL-shaped acrylicpiecesandwerefixedtothefemurandtibiausingtwo titaniumpins,inordertocreatearigidsystem(Fig.3).

Acomputerroutinewas developed(usingthe manufac-turer’slibrary,intheBasiclanguage)inordertorecognizeand savethethree-dimensionaldata(XYZ)thatwascapturedby thecamerasoftheopticaltrackingsysteminrealtime(15Hz, withmeasurementprecisionof0.2mm,accordingtothe man-ufacturer)(Fig.4).

Thecentralpointoftheknee,whichwasusedasa refer-encepointforcalculatingthekneerotationandtranslation,

Fig.2–Tractionsystemusingcablesandpulleys.

Fig.3–L-shapedopticalmarkersonthefemurandtibia.

wasdefinedfromcomputedtomographyontheentirelimb afterthetestshadbeenfinished(Fig.5).

For there to be correspondence between the optical trackingsystemandthecomputed tomography,radiodense filamentswereincludedinthecentralpositionsoftheoptical markers(Fig.6).

The knee movement was calculated from rotation and translationmatricesbetweenthecoordinatesystemsofthe camera and tomography and the coordinate systems pos-itionedonthebariummarkersandonthecenteroftheknee. Atthispoint,coordinatesystemswerecreatedforthetibia andfemur.Oneoftheaxescoincidedwiththerespectiveaxis ofeachbone:onehorizontalandtheothervertical.Thesetwo coordinatesystemsweredetermined,foreachtimeinstant, bythecoordinatesystemsofthemarkers.

Therotationaroundtheaxesandthetranslationofthe cen-tralpointofthekneewereobtainedbymeansoftherotation andtranslationmatrixbetweenthefemoralandtibial coordi-natesystems.ThisprocedurewasdevelopedusingtheGNU Octavecomputersoftware.

Protocol

The testswere carried out in twostages: before and after dissection,underdirectviewingoftheACLatitsoriginand insertion.

Ateachstage,threemeasurementsoftheanterior trans-lationofthetibiaweremadeusingamanualdynamometer (68N) and three measurements of knee flexion–extension were made using the mechanizedpivotshift, asdescribed earlier.

Results

The knee used was the right knee of a 45-year-old male cadaver.

(4)

Fig.4–Three-dimensionalidentificationoftheopticalmarkers.

Fig.5–Mechanicalaxisofthelowerlimb:three-dimensionalpointsatthecenterofthefemoralheadandankle. Radiodenseandopticalmarkersonthefemurandtibia.

Theincreaseinthedistancebetweenthepositionsofthe centerofthefemurandthecenterofthetibia,between maxi-mumextensionandmaximumflexionofthekneerepresents thepivotshiftphenomenon(Fig.8,redline).

Fig.9showstheanteriortranslationofthetibiawiththe kneeflexedat30◦inrelationtothefemur,beforeandafter68N

or15lb25oftractionthroughthetitaniumpin,perpendicularly tothetibia.

(5)

140 120 100 80 60 40 20 0

−20

90 95

100 105

110 115

120

760 750 740 730 720 710 700 690 680 670 660 650 125

y

x Tibia

Femur

z

Fig.7–Graphicalrepresentationofkneemovementinthespaceofthecentralpointsofthefemurandtibia.

Fig. 10 shows a polar graph representing the combined translationandrotationmovementsofthetibia,inrelation tothefemurduringkneeflexionandextension.

Discussion

The main contribution of this study is that it shows the viabilityofaprotocolformeasuringkneetranslationand rota-tion usingobjective and reproducibletools(error<0.2mm). Moreover, the technology that was developedfor correlat-ing betweenthe opticaland tomographic systemsand the computationalmethodologyfordescribingthemovementare Brazilianintellectualproperty.

Laneetal.10reportedthataclinicalgradingsystem describ-ingkneestabilityintermsofkneeglide,kneeclunkingand

grossstabilityisvaluableforexperiencedorthopedists. How-ever,thissystemissubjectiveandnotreproduciblebetween surgeonsand,forthisreason,shouldnotbeusedinscientific studies.27

Themechanizedchallenge systemofthepivotshifttest isindependentoftheexaminerandalwaysallowsthesame angularvelocityandtraction of20Nthroughoutthe move-ment. Because the test is mechanized, this also reduces the risk ofbiasand increases theinternal validityofsuch studies.28 Consequently,thequality andrepresentativeness ofthesestudiesarealsoincreased.

Anotherimportanttechnicalnoterelatingtothepresent methodology relates to the use of tomography for defin-ingthecenterofkneerotation.Thisselectioncanbemade after the end of the experiment and it is possible, for example, to define the translation of the tibia in relation

10

8

6

4

2

0

−2

0 20 40 60 80 100

Angle, ^o

120 140 160 180

Femur-tibia Tibia Femur

Time, s

(6)

−0.5

−1

0 1 2 3 4 5 6 7 8 9

Time, s

Intact Injured

Fig.9–Anteriortranslationofthetibiaaftertractionof68Nbymeansofametalpininthetibialtuberosity(after4s).Blue line–intactACL;redline–injuredACL.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderis referredtothewebversionofthisarticle.)

to the femur, in the lateral, medial or intercondylar com-partments. Three-dimensional computed tomography also enablesreconstructionoftheknee inanyplaneandallows kneealignmentandcorrectmeasurementofthepositionsof thefemoralandtibialtunnels.29,30

Thepivotshiftphenomenon presentedinFig. 8is con-cordant with what was shown by Bull et al.,31 in which subluxationofthe kneeoccurred atflexionofbetween25◦

and36◦.Otherstudieshavedemonstratedreductionofknee

subluxationatflexionofbetween40◦and44.10

Onemethodological limitation ofbiomechanicalstudies relatestocarryingout experimentsattimezero,i.e. imme-diatelyafterthesurgicalprocedureforACLreconstruction.In ourstudyspecifically,becausenoligamentreconstructionwas performed,therewerenochangestothemechanical proper-tiesofgraftsduringanyperiodofbiologicalintegrationthat couldhaveinfluencedtheanalysisontheresultspresented.

Furtherstudiesaredesirable,inordertobiomechanically analyzetheknee withtunnelsindifferentanatomical pos-itions.Crossetal.32arguedthattherewasnoconsensusin

Intact ACL Injured ACL

Extension Flexion

Translation [mm]

Axial rotation [

°]

5

4

3

2

1

0

0 2 4 6 8 10 12

Fig.10–Polarrepresentationofthecombinedtranslation androtationoftheknee.

theliteratureregardingwherewithintheoriginalfootprintthe ACLtunnelshouldbeconstructed.

Conclusion

Theclinical importanceofthepresent study relates tothe inferences thatcanbemade regardingthe invivobehavior ofknees withACL injuriesand the greater methodological qualitythatcanbeprovidedinfuturestudiesregarding mea-surements on surgical techniques with grafts in relatively closepositions.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

r

e

f

e

r

e

n

c

e

s

1.NationalInstitutesofHealth(NIH),NationalInstituteof ArthritisandMusculoskeletalandSkinDiseases(NIAMS), VanderbiltUniversity,UnitedStates.Prognosisandpredictors ofACLreconstruction–amulticentercohortstudy.Disponível em:http://clinicaltrials.gov/ct2/show/NCT00463099.

2.GirgisFG,MarshallJL,MonajemA.Thecruciateligamentsof thekneejoint.Anatomical,functional,andexperimental analysis.ClinOrthopRelatRes.1975;(106):216–31.

3.OdenstenM,GillquistJ.Functionalanatomyoftheanterior cruciateligamentandarationaleforreconstruction.JBone JointSurgAm.1985;67(2):257–62.

4.ArakiD,KurodaR,KuboS,FujitaN,TeiK,NishimotoK,etal. Aprospectiverandomisedstudyofanatomicalsingle-bundle versusdouble-bundleanteriorcruciateligament

(7)

5. GeorgoulisAD,RistanisS,ChouliarasV,MoraitiC,StergiouN. TibialrotationisnotrestoredafterACLreconstructionwitha hamstringgraft.ClinOrthopRelatRes.2007;(454):89–94. 6. KvistJ.Rehabilitationfollowinganteriorcruciateligament

injury:currentrecommendationsforsportsparticipation. SportsMed.2004;34(4):269–80.

7. LieDT,BullAM,AmisAA.Persistenceoftheminipivotshift afteranatomicallyplacedanteriorcruciateligament reconstruction.ClinOrthopRelatRes.2007;(457):203–9. 8. TashmanS,KolowichP,CollonD,AndersonK,AnderstW.

DynamicfunctionoftheACL-reconstructedkneeduring running.ClinOrthopRelatRes.2007;(454):66–73. 9. BediA,MusahlV,LaneC,CitakM,WarrenRF,PearleAD.

Lateralcompartmenttranslationpredictsthegradeofpivot shift:acadavericandclinicalanalysis.KneeSurgSports TraumatolArthrosc.2010;18(9):1269–76.

10.LaneCG,WarrenRF,StanfordFC,KendoffD,PearleAD.Invivo analysisofthepivotshiftphenomenonduringcomputer navigatedACLreconstruction.KneeSurgSportsTraumatol Arthrosc.2008;16(5):487–92.

11.GalwayHR,BeaupreA,MacIntoshDL.Pivotshift:aclinical signofsymptomaticanteriorcruciatedeficiency.JBoneJoint SurgBr.1972;54:763–4.

12.JonssonH,Riklund-AhlströmK,LindJ.Positivepivotshift afterACLreconstructionpredictslaterosteoarthrosis:63 patientsfollowed5–9yearsaftersurgery.ActaOrthopScand. 2004;75(5):594–9.

13.KaplanN,WickiewiczTL,WarrenRF.Primarysurgical treatmentofanteriorcruciateligamentruptures.Along-term follow-upstudy.AmJSportsMed.1990;18(4):354–8.

14.KocherMS,SteadmanJR,BriggsKK,SterettKK,HawkinsRJ. Relationshipsbetweenobjectiveassessmentofligament stabilityandsubjectiveassessmentofsymptomsand functionafteranteriorcruciateligamentreconstruction.AmJ SportsMed.2004;32(3):629–34.

15.LeitzeZ,LoseeRE,JoklP,JohnsonTR,FeaginJA.Implications ofthepivotshiftintheACL-deficientknee.ClinOrthopRelat Res.2005;(436):229–36.

16.KatzJW,FingerothRJ.Thediagnosticaccuracyofrupturesof theanteriorcruciateligamentcomparingtheLachmantest, theanteriordrawersign,andthepivotshifttestinacuteand chronickneeinjuries.AmJSportsMed.1986;14(1):88–91. 17.BenjaminseA,GokelerA,vanderSchansCP.Clinical

diagnosisofananteriorcruciateligamentrupture:a meta-analysis.JOrthopSportsPhysTher.2006;36(5):267–88. 18.BachBRJr,WarrenRF,WickiewiczTL.Thepivotshift

phenomenon:resultsanddescriptionofamodifiedclinical testforanteriorcruciateligamentinsufficiency.AmJSports Med.1988;16(6):571–6.

19.GalwayHR,MacIntoshDL.Thelateralpivotshift:asymptom andsignofanteriorcruciateligamentinsufficiency.Clin OrthopRelatRes.1980;(147):45–50.

20.MusahlV,VoosJ,O’LoughlinPF,StueberV,KendoffD,Pearle AD.Mechanizedpivotshifttestachievesgreateraccuracy thanmanualpivotshifttest.KneeSurgSportsTraumatol Arthrosc.2010;18(9):1208–13.

21.KocherMS,SteadmanJR,BriggsKK,SterettWI,HawkinsRJ. Relationshipsbetweenobjectiveassessmentofligament stabilityandsubjectiveassessmentofsymptomsand functionafteranteriorcruciateligamentreconstruction.AmJ SportsMed.2004;32(3):629–34.

22.PlaweskiS,CazalJ,RosellP,MerlozP.Anteriorcruciate ligamentreconstructionusingnavigation:acomparative studyon60patients.AmJSportsMed.2006;34(4):542–52. 23.SieboldR,DehlerC,EllertT.Prospectiverandomized

comparisonofdouble-bundleversussingle-bundleanterior cruciateligamentreconstruction.Arthroscopy.

2008;24(2):137–45.

24.BediA,MaakT,MusahlV,O’LoughlinP,ChoiD,CitakM,etal. Effectoftunnelpositionandgraftsizeinsingle-bundle anteriorcruciateligamentreconstruction:anevaluationof time-zerokneestability.Arthroscopy.2011;27(11):1543–51. 25.DriscollMD,IsabellJrGP,CondittMA,IsmailySK,JupiterDC,

NoblePC,etal.Comparisonof2femoraltunnellocationsin anatomicsingle-bundleanteriorcruciateligament

reconstruction:abiomechanicalstudy.Arthroscopy. 2012;28(10):1481–9.

26.BediA,MusahlV,O’LoughlinP,MaakT,CitakM,DixonP,etal. Acomparisonoftheeffectofcentralanatomical

single-bundleanteriorcruciateligamentreconstructionand double-bundleanteriorcruciateligamentreconstructionon pivot-shiftkinematics.AmJSportsMed.2010;38(9):1788–94. 27.BullAMJ,AmisAA.Thepivot-shiftphenomenon:aclinical

andbiomechanicalperspective.Knee.1998;5(3):141–58. 28.PearleAD,SolomonDJ,WanichT,Moreau-GaudryA,Granchi

CC,WickiewiczTL,etal.Reliabilityofnavigatedkneestability examination:acadavericevaluation.AmJSportsMed. 2007;35(8):1315–20.

29.KopfS,ForsytheB,WongAK,TashmanS,IrrgangJJ,FuFH. TranstibialACLreconstructiontechniquefailstopositiondrill tunnelsanatomicallyinvivo3DCTstudy.KneeSurgSports TraumatolArthrosc.2012;20(11):2200–7.

30.IwahashiT,ShinoK,NakataK,OtsuboH,SuzukiT,AmanoH, etal.Directanteriorcruciateligamentinsertiontothefemur assessedbyhistologyand3-dimensionalvolume-rendered computedtomography.Arthroscopy.2010;26Suppl.9:S13–20. 31.BullAM,EarnshawPH,SmithA,KatchburianMV,HassanAN, AmisAA.Intraoperativemeasurementofkneekinematicsin reconstructionoftheanteriorcruciateligament.JBoneJoint SurgBr.2002;84(7):1075–81.

Imagem

Fig. 3 – L-shaped optical markers on the femur and tibia.
Fig. 5 – Mechanical axis of the lower limb: three-dimensional points at the center of the femoral head and ankle.
Fig. 7 – Graphical representation of knee movement in the space of the central points of the femur and tibia.
Fig. 9 – Anterior translation of the tibia after traction of 68 N by means of a metal pin in the tibial tuberosity (after 4 s)

Referências

Documentos relacionados

Vimos sensibilizando e motivando os portugueses residentes no estran- geiro para o desempenho do papel que lhes cabe como importantes agentes culturais, quer em

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

não existe emissão esp Dntânea. De acordo com essa teoria, átomos excita- dos no vácuo não irradiam. Isso nos leva à idéia de que emissão espontânea está ligada à

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 205 215 225 235 245 255

Ao Dr Oliver Duenisch pelos contatos feitos e orientação de língua estrangeira Ao Dr Agenor Maccari pela ajuda na viabilização da área do experimento de campo Ao Dr Rudi Arno

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados