• Nenhum resultado encontrado

Coastal-flood risk management in central Algarve: vulnerability and flood risk indices (South Portugal)

N/A
N/A
Protected

Academic year: 2021

Share "Coastal-flood risk management in central Algarve: vulnerability and flood risk indices (South Portugal)"

Copied!
15
0
0

Texto

(1)

EcologicalIndicators71(2016)302–316

ContentslistsavailableatScienceDirect

Ecological

Indicators

j ou rn a l h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e /e c o l i n d

Coastal-flood

risk

management

in

central

Algarve:

Vulnerability

and

flood

risk

indices

(South

Portugal)

A.M.

Martínez-Gra ˜

na

a,∗

,

T.

Boski

b

,

J.L.

Goy

a

,

C.

Zazo

c

,

C.J.

Dabrio

d

aDepartmentofGeology,FacultyofSciences,SquareMerceds/n,37008Salamanca,UniversityofSalamanca,Spain

bCentreforMarineandEnvironmentalResearchCIMA,Edifício7,CampusUniversitáriodeGambelas,UniversidadeAlgarve,8005Faro,Portugal cNationalMuseumofNaturalSciences,SectionGeology,StreetJoséGutiérrezAbascaln2,28006Madrid,Spain

dDepartmentofStratigraphy,FacultyofGeology,ComplutenseUniversity,28040Madrid,Spain

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received3March2016

Receivedinrevisedform12July2016 Accepted14July2016

Availableonline22July2016 Keywords: AVIIndex FRIIndex Floodrisk Vulnerability Coastalmanagement GIS

a

b

s

t

r

a

c

t

Thispaperpresentsananalysisofthevulnerability(AVIIndex)andhazardoffloodingbysealevelrise (FRIIndex)inthecentralAlgarve(SouthPortugal),betweenthecitiesofPortimãoandTavira,which isanareaofintenseurbanimpactandfastgrowingtourism.Thevulnerabilityindexwascalculated usingthefollowingparametricthematicmaps:lithology,geomorphology,slopes,elevations,distances, bathymetry,variationsofthecoastline,waveheightandactivity,variationsofsealevelandtidalrange. TheAVIIndexwasvalidatedbytheresultsobtainedfromtheanalysisoftheriskoffloodingfromtheFHI Indexappliedtoseveraltimehorizons(X0-present,X1-100years,X2-500years,X3-1000year,X4-Storm

andX5-Tsunami).ApplicationofGISandremotesensingtechniques,viz.spatialanalysis,interpolation

processesandgeostatisticalanalysis,permittedaregionalforecastingmodelofchangeinthemeansea levelandtheensuingconsequencestobeestablished.Analysisoftheobtainedresultsshowsanincrease inpotentialfloodzonesinpopulouscoastaltouristareaswithahighriskofexposureandasignificant spatialextentof8.84km2onlyinFaromunicipality.Theassessmentanddelineationofotherendangered

sectorscouldcontributetodesigningappropriatelong-termmanagementpoliciesforthecoastalof CentralAlgarve.

©2016ElsevierLtd.Allrightsreserved.

1. Introduction

Theparadigmof“Globalchange”isasubjectthathasattracted theattentionofthescientificcommunityfordecadesandbecame atrulyhottopicafterthe1982RiodeJaneiroEarthSummit.Often climatechangeandglobalchangeareequated,andclimateand “globalwarming”arecommonlyusedasanallinoneexplanation forallsortsofchangesorprocessescurrentlytakingplaceatthe Earth’ssurface(Zazo,2015).

AccordingtothelatestreportbytheIntergovernmentalPanel onClimateChange(IPCC,2014),thewarmingoftheclimate sys-temisunequivocal.Since1950there havebeenunprecedented changesin theclimatesystems, whichcan beseenin boththe observationalhistoricalrecords,fromthelatenineteenthcentury, andwithpaleoclimaticrecordsspanningthelastmillennia.These

∗ Correspondingauthor.

E-mailaddresses:amgranna@usal.es(A.M.Martínez-Gra ˜na),tboski@ualg.pt

(T.Boski),joselgoy@usal.es(J.L.Goy),mcnzc65@mncn.csic.es(C.Zazo),

dabrio@ucm.es(C.J.Dabrio).

changesaremanifested,bythewarmingoftheatmosphereand oceans,decreaseinthemassofcryosphere,andbyanincreasein theconcentrationsofatmosphericgreenhousegases,amongother typesofprocesses.

Global studies of the current sea level indicate a sustained risethathasoccurredsincethelatenineteenthcentury,witha turnaroundandaccelerationinthesecondhalfofthetwentieth century.Thistrendcanbeseenintidegaugerecordssince1880, andhasbeenlargelyconfirmedbytheseasurfaceelevationdata recordedbyseveralaltimetricsatellitemissions:Topex-Poseidon, JasonI,andOSTM-JasonII(TooleyandJelgersma,1992;Churchand White,2011).Theavailablefiguresobtainedfromthetidegauges pointtoarateofincreasearoundof2.8±0.8mm/year,whereas valuesprovidedbysatellitemissionsamountto3.2±0.4mm/year (Churchetal.,2013).

Thephysicalphenomenabehindtheriseoftheglobalaverage sealevelareprimarilyoceanthermalexpansionandthemeltingof glaciers.Tectonicsandsalinityonlyhavealocalinfluence(Table1). Thereisawidevariabilityinprojectionsoffuturesealevelrise, whichhavebeenestimatedas:21–48cm(Meehl,2007),50–135cm (Bindoff etal.,2007;Rahmstorf,2007),60–115cm(Vellingaand http://dx.doi.org/10.1016/j.ecolind.2016.07.021

(2)

A.M.Martínez-Gra˜naetal./EcologicalIndicators71(2016)302–316 303

Table1

Contributionstothebalanceofsealevelsince1972(Churchetal.,2013).

Components 1972–2008(mm/year)1993–2008(mm/year) Tide-gauge(Total) 1.83±0.18 2.61±0.55 Tide-gaugeandaltimeter(Total) 2.10±0.16 3.22±0.41 1.Thermalexpansion 0.80±0.15 0.88±0.33 2.Glaciersandicesheets 0.67±0.03 0.99±0.04 3.IceofGreenland 0.12±0.17 0.31±0.17 4.Antarcticice 0.30±0.20 0.43±0.20 5.Terrestrialstorage −0.11±0.19 −0.08±0.19 Sumofcomponents(1+2+3+4+5) 1.78±0.36 2.54±0.46

Wood,2008),85–200cm(Pfefferetal.,2008),60–95cm(Koppetal., 2009), 80–190cm (Vermeer and Rahmstorf, 2009), 78–160cm (Grinstedetal.,2010),>100cm(KatsmanandOldenborgh,2011) fortheXXICenturyDuringtheperiod1901–2010,theglobalmean sealevelraisedanaverageof1.7[1.5–1.9]mm/year,aratehigher thanthatoftheprevioustwomillennia(Churchetal.,2013).

Theprojectionsofthechangeinsealevelataregionalscale, sug-gestthatitisverylikelythatintheXXIcenturyandlater,changing sealevelswillhaveapronouncedregionalpattern,with signifi-cantdeviationsfromtheglobalaverage.IntheFifthAssessment Report(Conde,2015;Churchetal.,2013;IPCC,2014), itis pos-tulatedthatduringdecadalperiods,theseregionalvariationrates resultingfromclimatevariability,maydifferbymorethan100% fromtheglobalaverage.

There is growing public awareness of the impacts that climaticallydrivenenvironmentalchangesmayhaveonthe socio-economic sphere. For instance, The European Union’s directive 2007/60/EC(DOUE60,2007)waspromulgatedduetotheincreased frequencyofcatastrophicevents—213majorfloodingeventswith 1126deathsandthelossof52billionEuros(JonkmanandKelman, 2005).Currently,thereisaneedfora renewedassessment pol-icyandflood riskcontrolmeasuresinallofthememberstates, bothincoastalandinlandSettings.Tomanagetheriskoffloods, adetailedanalysisofthevariablesaffectingthecurrentsealevel riseisrequiredinordertodevelopareliablesimulationmodel,and mapping(Kurtetal.,2004,2011;Kulkarnietal.,2014).Such map-pingis,averyeffectivetool,thatiswidelyusedinplanningand environmentally-orientedlandmanagement.

TheAlgarvecoastlineisvulnerabletosealevelrise,andin partic-ularalongbeaches,deltas,tidalflatsandcoastalwetlands.Human activity in these areas, especially tourism, brings about addi-tionalchallengesintermsofincreasingvulnerabilityanddegree ofexposuretothehazard.Thereforeastudyinvolvingshortand medium-termfloodriskismostneeded.Widespreadfloodingof AlbufeirainNovember2015,duringthetorrential precipitation associatedtoastormsurgewasreportedtohavecausedmaterial lossesinexcessof10Meuro,andisaclearexampleoftheneed forpreventionplants.Likewise,estimatingthepossibleriseinsea level,whateverthetimescale,maypreventor,atleast,induce pro-tectionandmitigationmeasures,bothinstructuralandlanduse planningterms,aimedtominimizethepresumablesocialimpacts involved.Itisestimatedthat,worldwide,some200millionpeople liveincoastalareas,afigureexpectedtoriseupto600millionin 2100(NichollsandMimura,1998).

Theobjectivesofthisstudyweretoassessthedegreeof vul-nerabilitytochanges insealevelandtherisk offloodinginthe coastalsectorbetweenPortimãoandFaroincentralAlgarve(South Portugal)(Fig.1).Thestudyarea,includestwoclearly differenti-atedsectors:totheeasttheRiaFormosatidalflatslayingbehind theprotectingsandyspitsandbarrierislandsthatmigratedunder aneastward-movinglongshoredrift(Andradeetal.,2004);andto thewest,themostlyruggedcoastlineextendingbetweenthecities ofPortimãoandAlbufeira,withbeachesandurbanareasprotected byrockyoutcrops.

Vulnerabilitywascalculatedusingempiricalmethodsthat com-binedaseriesofintegratedfactorsfromparametricmaps,fromthe Algarvevulnerabilityindex−AVI-createdbytheauthorsbasedon Ojedaetal.(2009)changingsomeparametersfortheAlgarvearea usingGIS(ArcGisv10.3).Forthepurposeofthefloodriskanalysis deterministicmethodswereusedbyassigningaprobabilityofsea levelrisebasedonavarietyofforeseeabletemporalscenarios(100 years,500years,1000years,stormsandtsunamis).

2. Materialandmethods

2.1. Vulnerabilityanalysisforcoastalflooding

ThevulnerabilitywasassessedbymeansoftheAlgarve vulnera-bilityindex—AVI-,similartothatusedbytheUSGeologicalSurvey (Hammar-KloseandThieler,2001)appliedtotheAmericanAtlantic coast,PacificandGulfofMexico,andalsovalidatedintheSpanish Andalusiancoastneartheareaofthepresentstudy(Ojedaetal., 2009).Thisindexwasadaptedandmodifiedaccordingtothe intrin-sicparametersofthestudyarea,consideringtenfactorsthatmade uptheindexAVIequation(Eq.(1))andareexplainedbelow: AVI =√Fl×Fg×Fs×Fh×Fd×Fb×Fc×Fw×Fsl×Ftr/10 (1)

2.1.1. Lithologicfactor(Fl)

Thisfactorcreatedaparameterwhichindicatedtheresistance ofrockunitsagainstmarineerosion.

Fromageologicalpointofview,twodifferentareas(Manuppella etal.,2007)arerecognizedalongtheAlgarvecoastalfringe:a north-ernareawithcarbonateMesozoicformationsandasouthernone, wherediverselyconsolidateddetritalsedimentsofCenozoicage predominate.Theseterrainsareeasilyandimmediately differen-tiatedbytheirtopographicrelief.Theoldestmaterialscorrespond totheLateTriassicevaporiticmarlsthatevolvedintosaltdiapirs under the cities of Faro and Loulé. During theJurassic period, fossiliferous carbonateformationswithabundantmarinefossils weredeposited, withan erosionaleventintheMiddle Jurassic. Cretaceouscarbonateslayunconformablyontop.N-Sfaults pro-motedtiltingofblocks.DuringtheMiocene,biocalcarenites(Pais et al.,2012)withabundantmarinefossils and sandstoneswith interbedded glauconiticsilts accumulated, heavilydeformedby theundergoingdiapirism.FivePlio-Pleistocene(MouraandBoski, 1999;Mouraetal.,2009)fluvialtomarineunitsaccumulatedon akarstifiedsurfaceofMioceneage(PereiraandCabral,2002).In ascendingstratigraphicorder,theseare:Falesiafeldspathicsands, Montenegro burrowed sands of Montenegro, Quarteira orange sands,Ludoyellowsands,andGambelaspebblysands.Thereare also gravel terraces and fluvial channel-fills of Pleistocene age coveringJurassiclimestones.FinallyduringtherecentHolocene, coastalsandsaccumulatedasbeachesanddunesystems,barrier islands,andsiltsastidalflatsandtidalmarshesofthesheltered channelsofRiaFormosa.Terrestrialdepositsaccumulatedin allu-vialriverchannel,floodplainsandlowterraces.

Fortheanalysisofthelithologicalfactor,thegeologicalmaterials aregroupedintofiveclassesaccordingtothe“hardness”againsta possiblearrivalofthesheetofwater.Then,themostrecent uncon-solidatedmaterials(grainsand,gravel,etc.)havelessresistance totheeffectofthewatersurfacemeaningsectorsmore vulnera-bletoanadvanceoftheseathanthemostconsolidatedlithologies: basalts(value1),limestonesandmarls(value2),aremoreresistant toascendingsealevelthanbiocalcarenitesandsandstones(value 3),conglomerates,clays andsilts(value4)and sandandgravel (value5)(Fig.2).

(3)

304 A.M.Martínez-Gra˜naetal./EcologicalIndicators71(2016)302–316

Fig1. LocationofthestudyareawithintheGulfofCadizandmainlocalities.

Fig.2. Lithologicalmap(basedonManuppellaetal.,2007)andvulnerabilitymapafterlithologicreclassification.

2.1.2. Geomorphicfactor(Fg)

Wedistinguishedthreemajorunits:mountainousterrain, liai-sonunitsandthoseresultingfromthegreaterorlesseractivityof coastaldynamics.Themountainousterrainincludethemountains andhillscarvedinPaleozoicandMesozoiccarbonates,grewacke, shaleandbasalttothenorthwhicharethemainsourceareasof sed-iment.Externalgeodynamicagentsareresponsiblefordismantling,

givingrisetovariousgeomorphologicalformations,suchas allu-vialfans,glacis,endorheicareas,whichconstitutetheliaisonunits betweenthemountainsand hillsandthecoastalenvironments. Thecoastalunitconsistsofspitbars,beaches,dunesystems, off-shoreshelf,cliffs,marshes,etc.Beachesanddunesystemsoccupy asignificantpartofthespitthatformsthebarrierislandwherethe buildingboomhasdestabilizedtheerosion/sedimentationbalance,

(4)

A.M.Martínez-Gra˜naetal./EcologicalIndicators71(2016)302–316 305

Fig.3.Geomorphologicalmappingandvulnerabilityreclassification.

causingalossofsandincoastalfronts(Mouraetal.,2006;Rodrigues etal.,2012).Thespatialdistributionofthegeomorphologicalunits andassociatedsurfaceformations,allowsestablishingdegreesof resistanceaccordingtofuture stagelocationunderthesea sur-face,showingthedegreeofdisaggregationofeachformation.We assignedvulnerabilityvaluesfrom1to5,where1meansverylow vulnerabilityand5meansveryhighvulnerability.Accordingtothis, weassignedavalue1tomountainsandhills,2toalluvialfans,3to glacis,4tofluvialandmarineterracesandendorheicareas,and5 toallcoastalsedimentaryenvironments:beaches,dunes,spitsand channels(Fig.3).

2.1.3. Slopefactor(Fs)

Theslopeofthegroundlargelyinfluencestheinundationduring ariseofsealeveleithersporadic(tsunamisandstorms)or per-manent.Inclinationalsocontrolsthevelocityofwithdrawalofsea waterfacedtoapotentialfloodingbyinlandwaters.Lowerslopes increasetherateofdisplacementoftheshorelinetowardsthesea (PilkeyandDavis,1987).

Toproduceparametricmapsofslopes,wegenerateda Digi-talTerrainModel—DTM-,inwhicheachpixelhasthevalueofthe height(DigitalElevationModel),joiningthelidarmodelofyear 2011(coastal strip150mfromthecoastlineinland)where spa-tialresolutionis2m,andthecontinentalDigitalTerrainModelof year2013,whereresolutionis25m.Thisproducesamapofslopes expressedinpercentages,interpolatingwithaspatialresolutionof 1m,byweightingthevulnerability,takingintoaccountthatlower slopesaremorevulnerablebecausepenetrationofseawateris eas-ier.Themapshows5intervals:0–1%(value5),1–2%(value4),2–4% (value3),4–6%(value2)and>6%(value1)(Fig.4).

2.1.4. Heightfactor(Fh)

Theheightfactorisoneofthemostimportantwhenassessing thecurrentrisksrelatedtoariseofsealevel.Weconsiderthelimit

at10m,aheightconsideredunattainableunderthecurrent estima-tionsofpotentialsealevelriseinthenext100years(IPCC,2014). Areaswithelevationabove10mareassignedlowlevelsof vulner-ability,incontrastwithareasclosetoelevation0m,particularlyif laterallyrelatedtotheshore,withmaximumlevelsof vulnerabil-ityassignedtothecoastalfrontsofbarrierislands,estuariesand beaches.Vulnerabilitydecreasesgraduallywhenmovinginland. Wehaveconsideredthe10mhightoanalyzetheentirecoastline includingmoredistantlandofthecoastline.Valuesof vulnerabil-itywerereclassifiedusingthevaluesofelevationintheDTM.The heightvaluesforeachpixelare:0–2m(value5),2–4m(value4), 4–6m(value3)6–10m(value2)and>10m(value1)(Fig.5). 2.1.5. Distancefactor(Fd)

Closelyrelatedtoheightandslopefactors,thedistancefactor considersthelineardistancebetweenthepresentcoastlineand ahypotheticalcoastlineplacedatelevation10m,whosecontour wasderivedfromdigitalprocessingoftheDTM.Thedistance fac-torestimatesthecapacityofrisingseawatertoadvanceinlandfrom thepresentAlgarvecoast,providedthatthereisspatialcontinuity withthesea.Thisparameterwascalculatedusinganextensionfor ArcGIScreatedbytheAmericanUSGS“DigitalShorelineAnalysis System”—DSAS-.Withthistool,wecalculatedthelineardistances betweenthe10mcontourwithrespecttothe2014coastline. Dis-tanceswerecheckedbymeansofnestedvectorbuffervalidating techniques, and a raster layer wasgenerated whose data have beenreclassifiedbasedonthestandarddeviation,withintervals 0–700m(value5),700–3000m(value4),3000–5000m(value3), 5000–9000m(value2)and>9000m(value1)(Fig.6).

2.1.6. Bathymetryfactor(Fb)

Knowledgeofthecontinentalshelfgivesinvaluableinformation forunderstandingtheactionofwaves.Aswavesapproachthecoast, theirshapechangesoncethewaterdepthissmallerthanhalfthe

(5)

306 A.M.Martínez-Gra˜naetal./EcologicalIndicators71(2016)302–316

Fig.4.Slopemap(in%)andreclassificationintermsofvulnerability.

Fig.5.Mapofelevations(inmeters)andreclassificationaccordingtovulnerability.

wavelengthofwavefronts.Then,frictionwiththebottom progres-sivelyreducesvelocitywhereaswavecrestscontinuepractically

unaffected.Eventuallywavescollapseandbreak(Barrera,2005)are changingtheirmorphologytoacriticalpointwherethedistanceto

(6)

A.M.Martínez-Gra˜naetal./EcologicalIndicators71(2016)302–316 307

Fig.6.Mapofdistancesinmeters.

thebottomisequaltohalfthewavelengthofthewavefrontsand brushwithbackgrounddestabilizeswaves(watervelocityinthe ridgeishigherthanthebottom)andbreak(Barrera,2005).

Thebathymetryfactordeterminestheeaseofagreaterorlesser marineingressioninthecoastalsector,sothatdeeper prograda-tionishigherthaninshallowwaterswithlessrunup,wherethe depthislessthanhalfthewavelengthcausingtheswashofthe waves.Sincewehavenodataregardingthewavefronts,thisfactor providesinformationontheeffectofwavesonthebeachandspits. Bathymetricmapstakeintoaccountpointsandbathymetriccurves suppliedbytheHydrographicServiceofthePortugueseNavyand theOceanographicInstituteofSpain,complementedwithdigital depthvaluesinthechannelsofRiaFormosa.Theresolutionofthe resultingbathymetrymapsis2mperpixel.

Theweightandreclassificationwasmadetakingintoaccount that vulnerability will be high in shallow depths because it enhancestheactionofbreakingwaves.Theintervalsare:depths less than 1.5m (value 5), 1.5–3m (value 4) 3–10m (value3), 10–20m(value2)and>20m(value1)(Fig.7).Waterdepthsinthe Algarvearerelativelyhigh,withvaluescloseto200minfrontof thebarrierislandsystemofFaro,whichisconsideredless vulner-able,whileshallowerwatersinPortimão-Albufeirayieldmedium tohighvaluesofvulnerability.

2.1.7. Coastalfactor/exchangerateforcoastalwaterfront(Fc) Thestudyoftheevolutionofthecoastlineanditsmorphological variationswascarriedoutusingoverlayandproximitytechniques implementedinGIS,byrestoringthesuccessivepositionsof coast-lineduringthelast59years(1956–2015).Thisanalysisisbased on thesuperposition of aerial photographyof 1956 (American Flight-USAirForcecoverage,greenlineinFig.8)ataresolutionof 1m,orthoimagesofthe2005PortugueseOrthophotographywith aresolutionof50×50cm(redlineinFig.8)andfinallythe geo-referencedaerialimagesArcGISOnlineViewer2015(yellowline

inFig.8).Thepositionofsuccessivecoastlineshavebeendigitized andanalyzedbymeansofUSGS—DSAS-extensionforArcGISv10.3, intermsofratesofretreatoraccretion(m/yr)duringthisperiod. Highvaluesofgrowth(progradation:coastlinemovestemporarily oncoastalzone)meanhighvaluesofvulnerability,whilenegative ratesindicatelow valuesofvulnerability (coastlinerecedesand seabackwardsinside),withthefollowingintervals:<−2m/year (value5),−2to−1(value4)−1to1(value3),1–2(value2)and>2 (value1).Overall,averagevaluesarepresented(between−1and 1m/year)forthecoastalretreatinalltheAlgarvecoast(Fig.8). 2.1.8. Swellfactor.Averagerateofsignificantwave(Fw)

Theswellfactorindicatesthemaximumvaluesofmean signif-icantwave(averagewaveheightsconsideringthehighestwaves in the geodatabase considered) that affect thecoastline of the Algarve.Thehistoricalaveragedatahavebeenobtainedfromthe websiteoftheStatePortsofSpain(http://www.puertos.es/es-es/ oceanografia/Paginas/portus.aspx)anddifferentauthorsdescribe theconditionsofmaritimeagitationandwavesofsomeports,such asFaroandSines(Costaetal.,2001).Weanalyzedvarioustypesof networks:REDCOS(networkofcoastalbuoyslessthan100mdeep andnearharbourfacilities),WANA(fromsimulatedtimeseriesof parametersofwindandswelldata),SIMAR44(simulateddatatime seriesofatmosphericandoceanographicparameters),andREDEXT (networkofdeepwaterbuoys,morethan200mwaterdepth).The studiedtimeseriesincludestheintervals1958–2015(52years), 1983–2012(29years),and1992–2015(23years).Dataforeach stationareorganizedinfileswiththeparameterstobeconsidered (Fig.9A–C).

SurfrateshavebeenintroducedintoGISinordertostatistically processinformationandmakeinterpolations.Therationalefor tak-ingtheaveragesignificantwaveinsteadtheextremewasthatit representsbetterthemoreprobablewavestatesanditgives impor-tancetorepresentativenessascomparedwiththetotalratherthan

(7)

308 A.M.Martínez-Gra˜naetal./EcologicalIndicators71(2016)302–316

Fig.7. Bathymetricmaps(inmeters)andreclassificationofvulnerability.

Fig.8.MapofcoastlinevariationanalyzedwithDSAS,forthe1956–2015interval,superpositionofaerialphotography(greenline1956;redline(2005andyellowline (2015).(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

(8)

A.M.Martínez-Gra˜naetal./EcologicalIndicators71(2016)302–316 309

Fig.9. Top:Historicdataofstationswithdatabuoys(reddots),simulatedbymodelsinpoints(greendots)andtidegauges(yellowdots).Bottom:examplesofbuoysfiles (A),SIMARnetwork(B)andREDEXTnetwork(C).(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

(9)

310 A.M.Martínez-Gra˜naetal./EcologicalIndicators71(2016)302–316

Fig.10.Waveheightfactormap(inmeters)forcentralAlgarve.

focusingonsporadicepisodes.Weselectedthehighestvaluesofthe meansignificantwavesbecauseourstudyisdirectedtotheriskof floodingthatwouldbestatisticallymoreprobable(likelytooccur), evenifislessfrequent.Wetookintoaccountthelongesttemporal seriesforeachmeasurementpoint(device).Vulnerabilityruns par-alleltowaveheight,sincehigherwavesmeanastrongereffecton thecoast,andassignedvaluesare:3.5–4m(value1),4–5m(value 2)5–6m(value3)6–7m(value4)and7–8m(value5).Accordingto theestablishedparametersofwaveheight,vulnerabilityvaluesfor centralAlgarvecoastwouldbehigh(between3.5and5m)(Fig.10). 2.1.9. Sealevelfactor(Fsl)

Thisfactorexaminestherelativesealevelchangeusing histor-icaldataofmeansealevel(Borregoetal.,1995;Boskietal.,2008; Delgadoetal.,2012;Sampathetal.,2014)collectedbytidegauges alongthenearbySpanishcoast:Huelva,CadizandTarifa(Fig.9), whichcontinuouslyevaluateandrecordtheaveragelevelseaand tidegaugedataofPortugal(LagosandCascais)recordsbetween 1908and1987and1882–1987(DíasandTaborda,1988;Antunes andTaborda,2009;Antunes,2011).Forthispurposewe georefer-encedandgeneratedwithArcGISthegeodatabaseoftheclosest tidegauges:gaugesofHuelva3.4and5from1996to2015data, tidegaugeBonanza2atthemouthoftheGuadalquivirriverwith datafrom1992to2015,andTarifaharbourtidegaugewithdata from2009to2015.ThenetworkofstationsisREDMAR(Fig.9C).

AnothersourceofdataisthePermanentServiceforMeanSea Level—PSMSL-,locatedinLiverpool,UK.Thisorganizationcollects, analyzes,interpretsandpublishesdatarelatedtothechangesinthe averageglobalsealevel,recordedbytidegauges.Inadditiontothe existingnetworkoftidegaugescurrentlyoperativeinvarious coun-triesthisServiceincorporatesdatafromtidegaugesthatworked inthepast,addinglongtemporalseriestothedatabase.Datafrom theREDMARnetworkareincorporatedperiodicallyininternational datacenters,oneofwhichisPSMSL.Asthereareseveral

representa-tiveseries,wemadealinearinterpolationusingArcGISv10.3from theinformationprovidedbythegaugesindicatedabove.Foreach timeseries,weobtainedanaveragevalueofsealeveloscillations whichsubsequentlywedividedbythenumberofyears.Thisyields arateforeachtidegauge.Theaveragerateofsealevelriseforthe studyarea,accordingtoinformationprovidedbylocaltidegauge (1992–2015)rangesbetween1.71and1.89mm/year.Interpolating andreclassifyingtheintervalinthecentralAlgarvecoastobtained valuesofthecoastwiththefollowingweightinterval:1.29–1.34 (value1),1.341–1.46(value2),1.461–1.58(value3),1.581–1.70 (value4)and1.701–1.89(value5)(Fig.11).

2.2. Extremetidalrangefactor(Ftr)

Thetidalrangeanalyzesthedifferenceinheightbetween suc-cessivehighandlowtides.Dependingonthegeographicallocation andlocalconditionsthetidalrangecanvaryfromafewcentimeters toseveralmeters.Coastswithtidalrangesbelow2mareconsidered microtidal(MasselinkandShort,1993).Weanalyzedthevaluesof theneareststationsoftheREDMARnetwork(Fig.9)toknow pre-ciselyfluctuationsinthetidalrange.Subsequently,weconducted alinearinterpolationtoobtainsuchdataandhazardmappingas ameasureforfuturepreventionappliedtocoastalmanagement. Becausetheultimategoalof thestudyistoknow the vulnera-bilityandtheriskofflooding,wehavetakenthemaximumtidal rangesrecordedfortimeseriesasrepresentinghighs,althoughin othercasesthemeantidalrangescouldbeconsideredas represen-tative.Thetidalrangeobtainedinthestudyareaisabout2–4m (Borregoetal.,2000),asexpectedinthismesotidalAtlanticcoast (Fig.12),withvalues between120cm(intheStraitofGibraltar sector)and420cm.Thereclassificationofvulnerabilityvaluesare: 120–180.1cm(value1),180.2–240.1(value2),240.2–300.1(value 3)300.2–360.1(value4)and360.2–420(value5).

(10)

A.M.Martínez-Gra˜naetal./EcologicalIndicators71(2016)302–316 311

Fig.11.Mapoftheaverageriseofsealevelfactor,expressedinmillimeters,inGulfofCadiz.

(11)

312 A.M.Martínez-Gra˜naetal./EcologicalIndicators71(2016)302–316

2.3. Analysisofcoastalfloodinghazard

Thisanalysisisbasedonthefloodhazardindex−FHI-, generat-inginthispaperanovelcontributionwithisnewindex,whichtakes intoconsiderationdifferentscenariosofriseandfallofsealevel fromestimates,assumingthattherestofquantitativevariablesin thearea(tidalrangeandwaves)remainconstant.

Recentstudies(Churchetal.,2013;Holgateetal.,2013;IPCC, 2014)based upon satellitealtimeterdata, calculatedan annual increasein sealevel riseof3mm/year betweenfrom1993and 2011.However,iftheseratesremain;theriseofsealevelwould reachvalueswellabovetheestimatedbyotherauthors,influenced bythermalexpansionandchangesinsalinity(MarcosandTsimplis, 2008;Marcosetal.,2011).Fromthewaves,tidalrangeandsealevel parametersofstudiedintheanalysisofvulnerability,weestimated thecoastalfloodhazard in differentscenarios,considering that thesearemeanvaluesforthepast25years(meanofthetimeseries oftheavailablestations).Theabsoluteriseinmetersiscalculated fromminimumandmaximumrise(mm/year)rates.

Thestudyareaispartofazoneofcollisionbetweenthe Euro-peanandAfricanplates,whichcangeneratetsunamis.Thisisan area, where thedepth of thebasin acts as anaggravating fac-tor(Larioetal.,2010,2011).Alsoinsurroundingareasthere is evidenceofrecordsinQuaternarysedimentaryseriesofextreme eventsoftsunamitype,similartothe1755event(Lisbon earth-quake)whensealevelroseupto8mabovethecurrentlevel.That wasthecaseoftheeventrecordedinConiltownintheprovinceof Cadiz,wherethesmallfishingvillageofConiletewascompletely destroyedandneverreconstructedagain(Luqueetal.,2002).Other geologicalandhistoricalrecordsoflesserenergeticstormevents causingsuddenrisesofsealevelarecommoninthearea.These records,whetherlandformsor deposits,proverises ofsealevel understormconditionsup to2minelevation.The chronologi-calsequenceofoccurrenceofevents,asexpected,doesnotshow cyclicitybuttheagesofthesecatastrophiceventshavebeendated: 365BC;1680;1804;1860and1875(Luqueetal.,2001).

TheFloodRiskIndex−FHI-(Eq.(2))considersthreeparameters thattakeintoaccounttheinteractionbetweensealevelriseandthe physiographicfeaturesofthecoastalstrip,fordifferentscenarios inourstudyarea.Theproposedscenariosare(Table2):

vFHI= Fw×Fsl×Ftr(Xn) (2)

X0scenario(present):Representsthehazardoffloodingbased ondatacollectedfromtidegaugesandbuoysinthevicinityofthe studyarea,basedondataofthepast25years.

X1scenario(100years):Representsthehazardoffloodingtaking intoaccountthedatacollectedonstageX0calculatedforthenext 100years.

X2scenario(500years):Estimationofcurrentsealevelrise sce-nariofor500yearsbyextrapolatingX1Astage.

X3scenario(1000years):Estimationofcurrentsealevelrise scenariofor1000yearsbasedonpredictionsX1Astage.

X4 scenarioExtreme events:Storms(X4)andtsunamis (X4): probabilitiesoflargeeventssuchasstormsortsunamisandtheir impactonthecoastareadded.

3. Results

3.1. CoastalvulnerabilityinthePortimão-Farosector

Fromthe“AVI”indexcalculatedthevulnerabilityofthecentral sectoroftheAlgarve,forascenarioX3,equivalenttosealevelrisein 1000years,fromthefactorsthatinfluencesealevelrise.Particular attentionwaspaidtothevarioussectorsofthecoastalstrip.The

higherthevalueoftheAVIindex,thehighervulnerabilitytorising sealevel(Fig.13).

ValuesofvulnerabilityareveryhighfortheFarosector,while intheareaofAlbufeiraandPortimãothevulnerability indexis medium-low.Thedistributionofareasofsealevelriseisconsistent withtheriskanalysisthatwillbeexplainedbelow,althoughthis islessintenseandmoreconservative.Highvulnerabilityalso con-centratesonsectorswithhightouristpopulation(Faro,Portimão, OlhosdeAgua-WQuarteira,Pera....).Notethehigh vulnerabil-ityoftheInternationalFaroairport,hotelsandsomenearbycities (Tavira,Olhão....)

3.2. RiskofcoastalfloodinginPortimão-Farosector

Wehaveprojectedseveralfuturescenariosofsealevelriseon amapbasedonthepresent(2015)orthophoto,wherethe differ-entdegreesofriskofcoastalfloodinginthecoastalstripcanbe observed(Fig.14)andthemostdenselypopulatedareasareshown. Themapofhazardsshowsthatthecoastalstrip ofthemore advancedwaterfront(barrierislandsofFaro)istheone experienc-ingthewiderandgreaterpenetrationofseawater,whereasthose areasunprotectedbybarrierislands(Albufeira)arelessaffected. Obviously,thetopographicallydepressedareas,asisthecaseof rivermouthsarethemostaffectedbyarisingsealevel,withmore inlandpenetrationofseawater(PortimãoandOlhosdeAgua).In someplaceswithvitalinfrastructures,suchasFaroInternational Airport,ortouristicconcentrations,suchasOlhosdeAguaand Por-timãohighfloodhazardisobserved.Alongtopographicallyhigh sectorssuchasAlbufeira,flood bandsarerestrictedto environ-mentsclosetothepresentseafront:beaches,dunesystems,for example(Fig.15).

Toassessthedegreeofriskexposure,severalparametersare analyzed: surface, number of inhabitants in each municipality, populationdensity,topographicalheightofthecitieanddistance fromthetownto thewaterfront.Fromthemap of landuseof theEuropeanprojectCorine(Fig.16,Table3),theanthropicareas (neighborhoods, industrial areas, infrastructure....) are deter-minedand,usinggeospatialtools,thepopulatedareasvisibleon thepresentaerialphotographyaredelimited,obtainingthesquare kilometersof urbanizedarea.Algebraof layersallowseasy cal-culationoftheexposedpopulation.Finally,linkingthedensityof populationofeveryzonetothefloodriskineachsector,theexposed populationforeveryscenarioiscalculated.Thisdirectmethodisthe mostusefulforauthoritiesinchargeofplanningtheriskofcoastal flooding,becausetheycanquicklyupdatethethematiclayers,as theprocessisa simplesuperposition.OtherGIStechniquesuse indirectmethodssuchasmultivariatemethodswithspatial ana-lystToolssuchasISOclusterunsupervisedclassification,oralso maximumlikelihoodclassification.Theseindirectmethodsmust firstestablishspectralsignaturesfromdigitalimagelevelssetby atechnicianusingabasicsupervisedclassificationmadeby unsu-pervisedclassificationextrapolatedtotherestoftheimage.Itsuse ismorecostlyandlessflexibleandslowerthanthedirectmethod proposedinthispaper.

The resultsof exposuretoof flooding hazard in thecentral Algarve for differentscenarios deducedfrom modeling of data obtainedandpotentialurbanizedareasaffected,indicatethatthe coastalsectorwithwiderurbanizedareaexposedtohighhazardof seafloodingis7.46km2insurface,betweenAlbufeiraandOlhosde Agua,whereapopulationdensityof612.9inhabitant/km2induces thehighestriskoffloodingforpopulationinthecentralAlgarve: 4572peoplemaybeaffected.Inaddition,Faroisthelargest sur-faceareaexposedtotherisk offloodingbysealevel rise,with 8.784km2andanexposedpopulationof2831people.Itisworth tonotethatsomesectorsofFaro,suchastheairportareaandparts

(12)

A.M.Martínez-Gra˜naetal./EcologicalIndicators71(2016)302–316 313

Table2

Stagesandparametricvaluesofabsoluteandtotalestimatedriseinsealevelasthepresentstudy.

ScenarioFactor Fw Fsl Ftr Total

Min Max Min Max Min Max Min Max

PresentScenario—X0 3.5 5 0.042 0.047 4.0 4.2 7.54 9.24 100yearsScenario—X1 3.5 5 0.12 0.14 4.0 4.2 7.62 9.34 500yearsScenario—X2 3.5 5 0.63 0.70 4.0 4.2 8.13 9.90 1000yearsScenario—X3 3.5 5 1.26 1.40 4.0 4.2 8.76 10.60 StormScenario—X4 3.5 5 2m 4.0 4.2 9.50 11.20 TsunamiScenario—X5 3.5 5 8m 4.0 4.2 15.50 17.20

Boldrepresentsthefinalvalues.

Fig.13.MapoftheCoastalVulnerabilitycentralAlgarveasthe—AVI-index.

Table3

Parametersforthecalculationofexposuretoriskofflooding.

MunicipalityFactor Area(Km2) Inha-bitants. Densityof

population (Inh/Km2)

Cityelevation abovesealevel(m)

Distanceto coastline(Km) Urbanizedarea exposed(Km2) Inha-bitants exposed Portimao 182.06 55614 305.47 2 3 5.52 1686 Pera 9.15 4867 531.9 7 0 2.42 1287 Albufeira-Olhosde Agua 140.91 38966 612.9 8 0–2 7.46 4572 Quarteira 37.78 16131 427 3 0 0.39 166 Faro 202.57 64560 318 12 0 8.84 2831 Olhao 130.90 42272 322.9 8 0 6.52 2105 Tavira 764.4 69824 91.34 28 0 3.88 354

oftheoldtownneartheharbour,wouldbefloodedinatemporally nearscenario(scenarioX1)

4. Conclusions

Theresultsprovidevaluableinformationonthedegreeof vul-nerability and the risk profileof the Algarve in the event of a potentialriseinsealevelwhetheritisgeneratedbyaprogressive riseorduringextremeevents.

ThevulnerabilityhasbeencalculatedfromtheAlgarve vulner-abilityindex−AVI.Themapsofvulnerabilityandriskhighlightthe highriskoffloodingposedbyanyrise,howeversmall,intheAlgarve coast.Theurbanizedareaaffectedbyfloodriskisabout35km2,but

thefigureishigherifcropandnotpopulatedareasareincorporated. ThepopulationsubjectedtofloodingriskincentralAlgarvecoastal areasamounttosome13,000people,withahigherexposureinthe sectorsofAlbufeira,OlhosdeAguaandFaro.

(13)

314 A.M.Martínez-Gra˜naetal./EcologicalIndicators71(2016)302–316

Fig.14.FloodHazardMapforthecentralAlgarvecoastlineunder—AVI-indexfor1000yearsScenario:X3.

Fig.15.DetailofthefloodhazardforsomelocalitiesonthecoastalstripofcentralAlgarvefor1000yearsScenario:X3.

Theshorttimeseriesavailablefromtidegaugesandbuoys, cou-pledwiththecontinuouschangeof estimatesof trendsforthe centurymakethesubjectofcurrentsealevelriseinamost

con-troversialone. Thebroadspectrumoffutureprospects, coupled withtheuncertaintyofthepast(theoldestmeasurementsfrom tidegaugesdatefrom1883)leavethesedimentaryrecordasoneof

(14)

A.M.Martínez-Gra˜naetal./EcologicalIndicators71(2016)302–316 315

Fig.16.Top:CORINEmap,showingthedifferentlandusesandassociatedgeodatabase.Bottom:exampleofcalculationatriskoffloodingfrombuilt-upareas(polygonswith blackstripe)onthefloodedareasfordifferentstages(maplegend15)intheareaofOlhosdeAgua.

thefewwitnessesofthechangeinsealevel,whichinturnisrather unprecisebothtemporallyandspatially.

The methodology used here is self-validating because the affectedareas calculatedby themethodof vulnerability(based on empirical methods of parameters of the study area) match withthoseobtainedbythemethodofrisk(basedondeterministic methods,usingtemporaltrendscenarios).Manyforecastsonthe quantificationofthecurrentsealevelrisegloballydonotconsider theswellfactorandtidalrange,thusinvalidatingtosomeextenta directtranspositionofthesevaluesoveraspecificarea.Forthis rea-son,localstudies,suchasthepresent,whichaddressandevaluate therisksoffloodingundertheworst-caserisingscenariosimulated, aremuchmorereliable.

Finallythismappingisapreventivemeasuretominimizethe riskinthiscoast,withlargedevelopmentsand resorts,and vis-itedbyherdsoftouristsfromallaroundtheworld.Usingthistool, managementactorscandelimitatethesectorsinneedofstructural

measuresaimedtominimizeshort-andlong-termimpactsofsea levelrisecausedbynaturaltendencyorbyextremeevents.The Algarvecoastisahighlyvulnerableareaowingtothe characteris-ticsofthephysicalenvironmentandahighriskoffloodingbecause ofitsgeographicalposition.

Acknowledgment

Ministry of Economy and Competitiveness: BTE, CGL2012-33430/BTEandCGL2012-37581/BTE.

References

Andrade,C.,Freitas,M.C.,Moreno,J.,Craveiro,S.C.,2004.Stratigraphicalevidence ofLateHolocenebarrierbreachingandextremestormsinlagoonalsediments ofRiaFormosaAlgarve,Portugal.Mar.Geol.210(1–4),339–362.

Antunes,C.,Taborda,R.,2009.SealevelatCascaisTideGauge:data,analysisand results.J.Coast.Res.56,218–222pp.

(15)

316 A.M.Martínez-Gra˜naetal./EcologicalIndicators71(2016)302–316 Antunes,C.,2011.MonitoringsealevelchangeatCascaistidegauge.J.Coast.Res.

64,870–874pp.

Barrera,N.,2005.Influenciadelrebasedeloleajeenplayassobrelagunascosteras. ElcasodelalagunadelaMagarola.UniversidadPolitécnicadeCatalu ˜na—UPC-. http://upcommons.upc.edu/pfc/bitstream/2099.1/3386/5/40860-5.pdf

(acceso:5/10/15).

Bindoff,N.L.,Willebrand,J.,Artale,V.,Cazenave,A.,Gregory,J.,Gulev,S.,Hanawa, K.,LeQuéré,C.,Levitus,S.,Nojiri,Y.,Shum,C.K.,Talley,L.D.,Unnikrishnan,A., 2007.Observations:oceanicclimatechangeandsealevel.In:Solomon,S.,Qin, D.,Manning,M.,Chen,Z.,Marquis,M.,Averyt,K.B.,Tignor,M.,Miller,H.L. (Eds.),ClimateChange2007:ThePhysicalScienceBasis.Contributionof WorkingGroupItotheFourthAssessmentReportoftheIntergovernmental PanelonClimateChange.CambridgeUniversityPressCambridge,United KingdomandNewYork,NY,USA.

Borrego,J.,Morales,J.A.,Pendón,J.G.,1995.Holoceneestuarinefaciesalongthe mesotidalcoastofHuelva,southwesternSpain.In:Fleming,B.W.,Bartholomä, A.(Eds.),TidalSignaturesinAncientandModernEnvironments,vol.24.Spec. Publs,Int.Assoc.Sediment,pp.151–170.

Borrego,J.,Morales,J.A.,Gil,N.,2000.Evoluciónsedimentariarecientedela desembocaduradelaríadeHuelva(SOEspa ˜na).Rev.Soc.Geol.Esp.13(3–4), 405–416.

Boski,T.,Camacho,S.,Moura,D.,Fletcher,W.,Wilamowski,A.,Veiga-Pires,C., Correia,V.,Loureiro,C.,Santana,P.,2008.Chronologyofpost-glacialsea-level riseintwoestuariesoftheAlgarvecoastS.Portugal.Estuar.Coast.ShelfSci.77, 230–244.

Church,J.A.,White,N.J.,2011.Sea-Levelrisefromthelate19thtotheearly21st century.Surv.Geophys.32,http://dx.doi.org/10.1007/s10712-011-9119-1, 585–602pp.

Church,J.A.,Clark,P.U.,Cazenave,A.,Gregory,J.M.,Jevrejeva,S.,Levermann,A., Merrifield,M.A.,Milne,G.A.,Nerem,R.S.,Nunn,P.D.,Payne,A.J.,Pfeffer,W.T., Stammer,D.,Unnikrishnan,A.S.,2013.Sealevelchange.In:Stocker,T.F.,Qin, D.,Plattner,G.-K.,Tignor,M.,Allen,S.K.,Boschung,J.,Nauels,A.,Xia,Y.,Bex,V., Midgley,P.M.(Eds.),ClimateChange2013:ThePhysicalScienceBasis. ContributionofWorkingGroupItotheFifthAssessmentReportofthe IntergovernmentalPanelonClimateChange.CambridgeUniversityPress Cambridge,UnitedKingdomandNewYork,NY,USA.

Conde,E.,2015.Theraceforthearctic:internationallawissuesconsidering climatechange.In:SimposioInternationalSymposium:ElÁrtico:

OportunidadesYRiesgosDerivadosDelCambioClimático,FundaciónRamón ArecesNov.12,FundaciónRamónAreces,Madrid,Ref.DER2012-36026.

Costa,M.,Silva,R.,Vitorino,J.,2001.Contribuc¸ãoparaoestudodoclimade agitac¸ãomarítimanacostaportuguesa.In:IIJornadasDeEngenhariaCosteira EPortuaria,Aveiro,20pp.

Días,J.M.A.,Taborda,R.P.M.,1988.Evoluc¸ãorecentédonívelmédiodomarem Portugal.An.Inst.Hidrogr.9,83–97pp.

DOUE60,2007.Assessmentandmanagementoffloodrisksenteredintoforceon 26November2007.(Directive2007/60/EC)http://ec.europa.eu/environment/ water/floodrisk/index.htm(access:15/11/15).

Delgado,J.,Boski,T.,Nieto,J.M.,Pereira,L.,Moura,D.,Gomes,A.,Sousa,C., García-Tenorio,R.,2012.Sea-levelriseandanthropogenicactivitiesrecorded inthelatePleistocene/HolocenesedimentaryinfilloftheGuadianaEstuary (SWIberia).Quat.Sci.Rev.33,121–141,http://dx.doi.org/10.1016/j.quascirev. 2011.12.002.

Grinsted,A.,Moore,J.C.,Jevrejeva,S.,2010.Reconstructingsealevelfrompaleo andprojectedtemperatures200–2100AD.Clim.Dyn.34,461–472.

Hammar-Klose,E.,Thieler,E.R.,2001.CoastalVulnerabilitytoSea-LevelRise:A PreliminaryDatabasefortheU.S.Atlantic.PacificandGulfofMexicoCoasts U.S.GeologicalSurveyDigitalDataSeries,pp.68,http://pubs.usgs.gov/dds/ dds68/(access:22/11/15).

Holgate,S.J.,Matthews,A.,Woodworth,P.L.,Rickards,L.J.,Tamisiea,M.E., Bradshaw,E.,Foden,P.R.,Gordon,K.M.,Jevrejeva,S.,Pugh,J.,2013.Newdata systemsandproductsatthepermanentserviceformeansealevel.J.Coast. Res.29(3),493–504,http://dx.doi.org/10.2112/JCOASTRES-D-12-00175.1. IPCC,2014.Climatechange2014.In:CoreWritingTeam,Pachauri,R.K.,Meyer,L.A.

(Eds.),SynthesisReport.ContributionofWorkingGroupsI,IIandIIItotheFifth AssessmentReportoftheIntergovernmentalPanelonClimateChange.IPCC, Geneva,Switzerland,151pp.

Jonkman,S.N.,Kelman,I.,2005.Deathsduringthe1953NorthSeastormsurge.

http://www.rigsystems.co.uk/members/content/documents/1cd05-6547a.pdf

(access:22/11/15).

Katsman,C.A.G.,Oldenborgh,J.V.,2011.Exploringhigh-endscenariosforlocalsea levelrisetodevelopfloodprotectionstrategiesforalow-lyingdelta—the Netherlandsasanexample.Clim.Dyn.109,617–645.

Kopp,R.E.,Simons,F.J.,Mitrovica,J.X.,Maloof,A.C.,Oppenheimer,M.,2009.

Probabilisticassessmentofsealevelduringthelastinterglacialstage.Nature 462,863–868.

Kulkarni,A.T.,Mohanty,J.,Rao,T.I.,Mohan,B.K.,2014.Awebbasedintegrated floodassessmentmodelingtoolforcoastalurbanwatersheds.Comput.Geosci. 64,7–14pp.

Kurt,L.,Antonioni,F.,Purcell,A.,Silenzi,S.,2004.SealevelchangealongtheItalian coastforthepast10,000yr.Quat.Sci.Rev.23,1567–1598pp.

Kurt,L.,Antonioli,F.,Anzidei,M.,Ferranti,L.,Leoni,G.,Scicchitano,G.,Silenzi,S., 2011.SealevelchangealongtheitaliancoastduringtheHoloceneand projectionsforthefuture.Quat.Int.232,250–257pp.

Lario,J.,Luque,L.,Zazo,C.,Goy,J.L.,Spencer,C.,Cabero,A.,Bardají,T.,Borja,F., Dabrio,C.J.,Civis,C.,González-Delgado,J.A.,Borja,C.,Alonso-Azcárate,J.,2010.

Tsunamivs.stormsurgedeposits:areviewofthesedimentologicaland geomorphologicalrecordofExtremeWavesEvents(EWE)duringtheHolocene intheGulfofCadiz,Spain.Z.Geomorphol.54(Suppl.3),231–235pp.

Lario,J.,Zazo,C.,Goy,J.L.,Silva,P.G.,Bardají,T.,Cabero,A.,Dabrio,C.J.,2011.

HolocenepaleotsunamicatalogueofSWiberia.RevistaCuaternario Internacional242,196–200.

Luque,L.,Lario,J.,Zazo,C.,Goy,J.L.,Dabrio,C.J.,Silva,P.G.,2001.Tsunamideposits aspaleoseismicindicators:examplesfromtheSpanishcoast.ActaGeol.Hisp. 36(3–4),197–211.

Luque,L.,Lario,J.,Civis,J.,Silva,P.G.,Zazo,C.,Go,y.J.L,Dabrio,J.,2002.Sedimentary recordofatsunamiduringRomantimes,BayofCadiz,Spain.J.Quat.Sci.17 (5–6),623–631.

Manuppella,G.,Ramalho,M.,Antunes,M.T.,Pais,J.,2007.CartaGeológicade Portugal,Folha53-A.Faro.InstitutoNacionaldeEngenhariatecnologíae Innovac¸ão,40pp.

Marcos,M.,Tsimplis,M.N.,2008.CoastalsealeveltrendsinSouthernEurope. Geophys.J.Int.175(1),70–82.

Marcos,M.,Jordà,G.,Gomis,D.,Pérez,B.,2011.Changesinstormsurgesin southernEuropefromaregionalmodelunderclimatechangescenarios.Glob. Planet.Change77(3–4),116–128,http://dx.doi.org/10.1016/j.gloplacha.2011. 04.002.

Masselink,G.,Short,A.D.,1993.Theeffectoftidalrangeonbeachmorphodynamics andmorphology:aconceptualbeachmodel».J.Coast.Res.9(3),785–800.

Meehl,G.A.,2007.Globalclimateprojections.In:Solomon,S.,Qin,D.,Manning,M., Chen,Z.,Marquis,M.,Averyt,K.B.,Tignor,M.,Miller,H.L.(Eds.),Climate Change2007:ThePhysicalScienceBasis.ContributionofWorkingGroupIto theFourthAssessmentReportoftheIntergovernmentalPanelonClimate Change.CambridgeUniversityPressCambridge,UnitedKingdomandNew York,NY,USA,pp.755–828.

Moura,D.,Boski,T.,1999.Unidadeslitoestratigráficasdopliocénicoeplistocénico noalgarve,vol.86.Com.Inst.Geol.EMineiro,Lisboa,85–106pp.

Moura,D.,Albardeiro,L.,Veiga-Pires,C.,Boski,T.,Tigano,E.,2006.Morphological featuresandprocessesinthecentralAlgarverockycoast(SouthPortugal). Geomorphology81,345–360pp.

Moura,D.,Boski,T.,Viegas,J.,Veiga-Pires,C.,2009.Fronteira

Pliocénico-Plistocénico:estudodecasonasformac¸õesdetríticasdoAlgarve,VII ReuniãodoQuaternárioIbérico,EdCIMA46–50.

Nicholls,R.,Mimura,N.,1998.Regionalissuesraisedbysea-levelriseandtheir policyimplications.Clim.Res.11,5–18.

Ojeda,J.,Álvarez,J.I.,Martín,D.,Fraile,P.,2009.ElusodelasTIGparaelcálculodel índicedevulnerabilidadcostera(CVI)anteunapotencialsubidadelniveldel marenlacostaandaluza,vol.9.Revistainternacionaldecienciaytecnología delainformacióngeográfica,Espa ˜na,83–100pp.

Pais,J.,Cunha,P.P.,Pereira,D.,Legoinha,P.,Dias,R.,Moura,D.,Silveira,A.B., Kullberg,J.C.,González-Delgado,J.A.,2012.ThePaleogeneandNeogeneof WesternIberia(Portugal).ACenozoicRecordintheEuropeanAtlanticDomain. Springer-Verlag,http://dx.doi.org/10.1007/978-3-642-22401-0,158p. Pereira,R.,Cabral,J.,2002.Interpretationofrecentstructuresinanareaof

cryptokarstevolution-meotectonicversussubsidencegenesis.Geodin.Acta15, 233–248pp.

Pfeffer,W.T.,Harper,J.T.,O’Neel,S.,2008.Kinematicconstraintsonglacier contributionsto21st-centurysea-levelrise.Science321,1340–1343.

Pilkey,O.H.,Davis,T.W.,1987.Ananalysisofcoastalrecessionmodels,North Carolinacoast.In:Nummedal,D.,Pilkey,O.H.,Howard,J.D.(Eds.),Sea-level FluctuationandCoastalEvolution,vol.41.SEPM(SocietyforSedimentary Geology)SpecialPublications,Tulsa,Okla,59–68pp.

Rahmstorf,S.,2007.Asemi-empiricalapproachtoprojectingfuturesea-levelrise. Science315,368–370.

Rodrigues,B.A.,Matias,A.,Ferreira,O.,2012.Overwashhazardassessment.Geol. Acta10(4),427–439pp.

Sampath,D.M.R.,Boski,T.,Loureiro,C.,Sousa,C.,2014.Modellingofestuarine responsetosea-levelriseduringtheHolocene:applicationtotheGuadiana Estuary—SWIberia.geomorphologynaestuary—SWIberia.Geomorphology 232,47–64.

Tooley,M.,Jelgersma,S.,1992.ImpactsofSea-LevelRiseonEuropeanCoastal Lowlands.Blackwell,P.267pp.

Vellinga,M.,Wood,R.,2008.Impactsofthermohalinecirculationshutdowninthe twenty-firstcentury.Clim.Change91,43–63.

Vermeer,M.,Rahmstorf,S.,2009.Globalsealevellinkedtoglobaltemperature. Proc.Natl.Acad.Sci.U.S.A.106,21527–21532.

Zazo,C.,2015.Explorandolascostasdeunpasadoreciente:Loscambiosdelnivel delmaryclimáticos.In:DiscursodeRecepcióndeAcadémicoNumerario.Real AcademiadeCienciasExactasFísicasyNaturales,Realigraf,76pp.

Imagem

Fig 1. Location of the study area within the Gulf of Cadiz and main localities.
Fig. 3. Geomorphological mapping and vulnerability reclassification.
Fig. 4. Slope map (in%) and reclassification in terms of vulnerability.
Fig. 6. Map of distances in meters.
+7

Referências

Documentos relacionados

72 Sob o marco teórico feminista e dos estudos sobre deficiência, com vistas a contribuir no debate sobre análise de políticas sociais, o presente estudo conclui que apesar do

Although this company that we intend to study, managed to overcome and survive some of those issues during the economic crisis, and with the chosen research tools

Em 2002, Dello Strologo e colabora- dores sugeriram uma nova classifi cação dos doentes com cistinúria, baseada nos estudos genéticos: i) tipo A: causada por mutações no gene

Existem pontos de vista que defendem que um território ou região (termos usados como sinónimos) resulta unicamente de um longo processo de “auto-apropriação territorial”, ou

Este artigo discute o filme Voar é com os pássaros (1971) do diretor norte-americano Robert Altman fazendo uma reflexão sobre as confluências entre as inovações da geração de

Os modelos desenvolvidos por Kable &amp; Jeffcry (19RO), Skilakakis (1981) c Milgroom &amp; Fry (19RR), ('onfirmam o resultado obtido, visto que, quanto maior a cfiráda do

Neste solo não houve influência do tratamento na duração da fase pupal de machos e fêmeas (Ta- bela 8), os quais foram igualmente afetados nas diferentes umidades, pois a

As principais conclusões do estudo referente à MATRIZ INPUT-OUTPUT, realizado numa parceria entre a Universidade de Évora, a CCDR Alentejo e o Instituto Nacional de