• Nenhum resultado encontrado

Multi-Dimensional Array Signal Processing Applied to MIMO Systems

N/A
N/A
Protected

Academic year: 2021

Share "Multi-Dimensional Array Signal Processing Applied to MIMO Systems"

Copied!
56
0
0

Texto

(1)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 1

Multi-Dimensional Array Signal Processing

Applied to MIMO Systems

Prof. Dr.-Ing. João Paulo C. Lustosa da Costa

University of Brasília (UnB)

Department of Electrical Engineering (ENE)

Laboratory of Array Signal Processing

PO Box 4386

Zip Code 70.919-970, Brasília - DF

(2)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 2

Outline

 Universidade de Brasília: A Short Overview  Motivation

 Antenna Array Based Systems

 Multi-Dimensional Array Signal Processing Multi-Dimensional Array Interpolation Model Order Selection

Prewhitening

 MIMO-OFDM System  Conclusions

(3)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 3

Outline

 Universidade de Brasília: A Short Overview  Motivation

 Antenna Array Based Systems

 Multi-Dimensional Array Signal Processing

Multi-Dimensional Array Interpolation

Model Order Selection

Prewhitening

 MIMO-OFDM System

 Conclusions

(4)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 4

Universidade de Brasília: A Short Overview (1)

 Universidade de Brasília (UNB)

One of the best federal universities in Brazil

The best university in the central-west region of Brazil

• Region with 12 million inhabitants UNB is located in Brasília

• capital of Brazil

– political influence and cooperation with the Federal Government 

• one of the most expensive cities in Brazil 

• one of the safest cities in Brazil 

• Great weather (avrg 20,6oC, avrg min 17oC, avrg max 26,6oC)  • Several amazing waterfalls around Brasília 

– Itiquira, Pirinópolis, Chapada dos Veadeiros and others

(5)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 5

(6)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 6

Universidade de Brasília: A Short Overview (3)

 Universidade de Brasília (UNB)

In 2013, around 23234 candidates for 4219 places In 2013, 37465 students

In 2013, 2594 professors

(including all departments and all semesters)  Department of Electrical Engineering

composed of three bachelor courses

• Communication Network Engineering

• Mechatronics

• Electrical Engineering

• Computer Engineering

around 1560 bachelor students around 65 professors

(7)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 7

Outline

 Universidade de Brasília: A Short Overview  Motivation

 Antenna Array Based Systems

 Multi-Dimensional Array Signal Processing

Multi-Dimensional Array Interpolation

Model Order Selection

Prewhitening

 MIMO-OFDM System

 Conclusions

(8)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos

Motivation (1)

5

[1] Ericsson Mobility Report, Nov 2014

 Mobile network subscribers forecast [1]

(9)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos

Motivation (2)

5  Mobile network traffic forecast [1]

(10)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos

Motivation (3)

5  5th generation mobile networks (5G) [2]

Generation 1G 2G 3G 4G 5G

Year 1981 1991 2001 2011 2020 Throughput < 1 kbps 9,6 kpbs 144 – 2000 kpbs 100 – 1000 Mbps – 10 Gbps 100 Mbps

[2] J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A.C.K. Soong, and J. Zhang, "What will 5G be?," IEEE Journal on Selected Areas in Communications, Vol. 32, No. 6, pp. 1065 - 1082, June 2014

millimeter wave wireless communications (up to 90 GHz)

compensation using massive MIMO Massive Distributed MIMO

Multi-hop networks and device-to-device (D2D) communications Cognitive radio technology

(11)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 11

Outline

 Universidade de Brasília: A Short Overview  Motivation

 Antenna Array Based Systems

 Multi-Dimensional Array Signal Processing

Multi-Dimensional Array Interpolation

Model Order Selection

Prewhitening

 MIMO-OFDM System

 Conclusions

(12)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos

Antenna Array Based Systems (1)

Standard (Matrix) Array Signal Processing

5 Four gains: array gain, diversity gain, spatial multiplexing gain and

interference reduction gain

TX RX

Array gain: 3 for each side

Diversity gain: same information for each path

(13)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos

Antenna Array Based Systems (2)

Standard (Matrix) Array Signal Processing

5 Four gains: array gain, diversity gain, spatial multiplexing gain and

interference reduction gain

TX RX

Array gain: 3 for each side

Diversity gain: same information for each path

(14)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos

Antenna Array Based Systems (3)

Standard (Matrix) Array Signal Processing

5 Four gains: array gain, diversity gain, spatial multiplexing gain and

interference reduction gain

TX RX

(15)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos

Antenna Array Based Systems (3)

Standard (Matrix) Array Signal Processing

5 Four gains: array gain, diversity gain, spatial multiplexing gain and

interference reduction gain

TX RX

(16)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 16

Outline

 Universidade de Brasília: A Short Overview  Motivation

 Antenna Array Based Systems

 Multi-Dimensional Array Signal Processing Multi-Dimensional Array Interpolation

Model Order Selection

Prewhitening

 MIMO-OFDM System

 Conclusions

(17)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos

Receive array: 1-D or 2-D

Frequency Time

Transmit array: 1-D or 2-D

Direction of Arrival (DOA)

Delay Doppler shift Direction of Departure (DOD)

Multi-Dimensional Array Signal Processing (1)

MIMO channel model

(18)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos

 Multi-Dimensional Array Signal Processing

5 Dimensions depend on the type of application

MIMO

Received data: two spatial dimensions, frequency and time Channel: 4 spatial dimensions, frequency and time

• Microphone array

– Received data: one spatial dimension and time

– After Time Frequency Analysis

• Space, time and frequency

• EEG (similarly as microphone array)

• Psychometrics

• Chemistry

• Food industry …

(19)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos

Multi-Dimensional (Tensor) Array Signal Processing

5 Advantages: increased identifiability, separation without imposing

additional constraints and improved accuracy (tensor gain)

RX: Uniform

Rectangular Array (URA)

1 2 3 1 2 3 1 2 3 m2 1 1 1 2 2 2 3 3 3 m1 n 1 2 3

 9 x 3 matrix: maximum rank is 3.

Solve maximum 3 sources!

(20)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos

Multi-Dimensional (Tensor) Array Signal Processing

5 Advantages: increased identifiability, separation without imposing

additional constraints and improved accuracy (tensor gain)

RX: Uniform

Rectangular Array (URA)

m1 1 2 3 m2 1 2 3 1 2 n 3

[3] J. B. Kruskal. Rank, decomposition, and uniqueness for 3-way and N-way arrays. Multiway Data Analysis, pages 7–18, 1989

3 x 3 x 3 tensor: maximum rank is 5 [3].

Solve maximum 5 sources!

(21)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos

Multi-Dimensional (Tensor) Array Signal Processing

5 Advantages: increased identifiability, separation without imposing

additional constraints and improved accuracy (tensor gain)

=

+

+

• For matrix model, nonrealistic assumptions such as orthogonality (PCA) or independence (ICA) should be done.

• For tensor model, separation is unique up to scalar and permutation ambiguities.

(22)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos

Multi-Dimensional (Tensor) Array Signal Processing

5 Advantages: increased identifiability, separation without imposing

additional constraints and improved accuracy (tensor gain) • Array interpolation due to imperfections

– Application of tensor based techniques

Estimation of number of sources d

– also known as model order selection

– multi-dimensional schemes: better accuracy

• Prewhitening schemes

– multi-dimensional schemes: better accuracy and lower complexity

• Parameter estimation

– Drastic reduce of computational complexity

• Multidimensional searches are decomposed into several one dimensional searches

(23)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 23

 Measurements or data from several applications, for instance,

 MIMO channels, EEG, stock markets, chemistry, pharmacology, medical imaging, radar, and sonar

 Array interpolation

 SPS, FBA, ESPRIT and multidimensional techniques

 Model order selection

 estimation of the number of the main components (total number of parameters)

 Parameter estimation techniques

 extraction of the parameters from the main components

 Subspace prewhitening schemes

 application of the noise statistics to improve the parameter estimation

Measurements Model order

selection Subspace Prewhitening Parameter Estimation Is the noise colored? Yes No Array Interpolation

(24)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 24

Outline

 Universidade de Brasília: A Short Overview  Motivation

 Antenna Array Based Systems

 Multi-Dimensional Array Signal Processing Multi-Dimensional Array Interpolation Model Order Selection

Prewhitening

 MIMO-OFDM System

 Conclusions

(25)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 25

Multi-Dimensional Array Interpolation (1)

 Data model

(26)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 26

Multi-Dimensional Array Interpolation (2)

Power response for r-th dimension

(27)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 27

Multi-Dimensional Array Interpolation (3)

Interpolation in each r-th mode

obtained from measurements. obtained from power response.  Interpolated data

Structure closer to PARAFAC structure

Tensor is attenuated.

(28)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 28

Multi-Dimensional Array Interpolation (3)

 d = 3, 8 x 8 antenna array, N = 100

(29)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 29

Outline

 Universidade de Brasília: A Short Overview  Motivation

 Antenna Array Based Systems

 Multi-Dimensional Array Signal Processing Multi-Dimensional Array Interpolation Model Order Selection

Prewhitening

 MIMO-OFDM System

 Conclusions

(30)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 30

Model Order Selection (1)

 Noiseless case

Our objective is to estimate d from the noisy observations .

 Matrix data model

+

+

(31)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 31

1 2 3 4 5 6 7 8 0 2 4 6 8 10 Eigenvalue index i  i

Model Order Selection (2)

Finite SNR, Finite N

M - d noise eigenvalues follow a Wishart distribution.

d signal plus noise eigenvalues

d = 2, M = 8, SNR = 0 dB, N = 10  The eigenvalues of the sample covariance matrix

(32)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 32

Model Order Selection (3)

 Observation is a superposition of noise and signal

 The noise eigenvalues still exhibit the exponential profile: EFT

 We can predict the profile of the noise eigenvalues to find the “breaking point”

Let P denote the number

of candidate noise eigenvalues.

choose the largest P such that the P noise eigenvalues can be fitted with a decaying exponential

(33)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 33

Multi-Dimensional Model Order Selection (1)

Noiseless data representation

Problem

where is the colored noise tensor.

=

+

+

(34)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 34

We can define global eigenvalues

R-D exponential profile

(35)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 35

Comparison between the global eigenvalues profile and the profile of the last unfolding

R-D exponential profile

(36)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 36

 White Gaussian noise

Model Order Selection in Additive White Gaussian Noise Scenario Probability of correct Detection vs. SNR

(37)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 37

Outline

 Universidade de Brasília: A Short Overview  Motivation

 Antenna Array Based Systems

 Multi-Dimensional Array Signal Processing Multi-Dimensional Array Interpolation Model Order Selection

Prewhitening

 MIMO-OFDM System

 Conclusions

(38)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 38

Motivation

Colored noise is encountered in a variety of signal processing applications, e.g., SONAR, communications, and speech processing.

Without prewhitening the parameter estimation is severely degraded.

 Traditionally, stochastic prewhitening schemes are applied.

 By prewhitening the subspace via our proposed deterministic prewhitening scheme, an improvement of the parameter estimation is obtained compared to the stochastic prewhitening schemes.

(39)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 39

Noise Analysis

Stochastic

prewhitening schemes

With colored noise the d main

components are more affected.

 Analysis via SVD

Deterministic prewhitening scheme

(40)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 40

Simulations

The noise correlation is known.

SE – Standard ESPRIT

Subspace Prewhitening for Colored Noise with Structure RMSE vs. Correlation Level

(41)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 41

 These matrix based prewhitening schemes have a worse accuracy for

multidimensional colored noise or interference with Kronecker correlation structure,

 when applied in conjunction with the subspace-based parameter estimation techniques, such as R-D Standard ESPRIT and R-D Standard Tensor-ESPRIT

 Therefore, we propose the Sequential Generalized Singular Value Decomposition (S-GSVD) of the measurement tensor and of the multidimensional noise samples

 enables us to improve the subspace estimation

 based on the prewhitening correlation factors estimation

 has a low complexity and a high accuracy version

(42)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 42

Simulations

Subspace Prewhitening for Multi-dimensional Colored Noise RMSE vs. Number of Samples without Signal Components (Nl)

STE – Standard Tensor-ESPRIT

(43)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 43

Iterative S-GSVD

 In some multidimensional applications,

 the noise samples without the presence of signal components are not

available

 For these cases, we propose the Iterative Sequential GSVD (I-S-GSVD)

jointly estimation of the signal data and of the noise statistics via a proposed

iterative algorithm in conjunction with the S-GSVD

low computational complexity of the S-GSVD

 for intermediate and high SNR regimes similar accuracy as the S-GSVD, where

is required

 convergence with two or three iterations

 applied in conjunction with the subspace-based parameter estimation techniques, e.g., R-D Standard Tensor-ESPRIT (R-D STE)

(44)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 44

Simulations

Subspace Prewhitening for Multi-dimensional Colored Noise RMSE vs. Correlation Level

STE – Standard Tensor-ESPRIT

(45)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 45

Simulations

Subspace Prewhitening for Multi-dimensional Colored Noise RMSE vs. Number of Iterations

STE – Standard Tensor-ESPRIT

(46)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 46

Outline

 Universidade de Brasília: A Short Overview  Motivation

 Antenna Array Based Systems

 Multi-Dimensional Array Signal Processing Multi-Dimensional Array Interpolation Model Order Selection

Prewhitening

 MIMO-OFDM System  Conclusions

(47)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos

MIMO-OFDM System (1)

 Time dimensions: period and frames

(48)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos

MIMO-OFDM System (2)

K: number of receive antennas. M: number of transmit antennas.

N: number of time-slots in the whole time frame.

P: number of symbol periods in each time-slot.

F: number of subcarriers

Our objective is to estimate S and H from the noisy observations Y. .

Known.

(49)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos

MIMO-OFDM System (3)

 Matrix representation

 Tensor representation

Solved first!

(50)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos

State-of-the-art MIMO-OFDM Schemes

 Existing Solution: Alternating Least Squares (ALS) Receiver

Drawback: iterative, higher complexity, requires pilot symbols (loss in transmission efficiency)

 Proposed Solution I: Least Squares Khatri-Rao factorization (LS-KRF) Closed-form, lower complexity for medium-to-high SNRs, requires

pilot symbols (loss in transmission efficiency)

 Proposed Solution II: Simplified Closed-form PARAFAC

Avoid the knowledge on the first row in the symbol matrix

Closed-form, lower complexity, same performance of the pilot symbols based schemes for intermediate and high SNR regimes (high transmission efficiency)

(51)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos

MIMO-OFDM Simulations (1)

51 -15 -10 -5 0 5 10 15 20 25 30 10-4 10-3 10-2 10-1 SNR (dB) B it E rr o r R a te

Bit Error Rate vs. SNR @ K=2, M=4, F=4, N=5, P=3

ALS (1=2=0.0001) (P-)LS-KRF -15 -10 -5 0 5 10 15 20 25 30 10-3 10-2 10-1 100 SNR (dB) N M S E

Channel estimate NMSE vs. SNR @ K=2, M=4, F=4, N=5, P=3

ALS (1=2=0.0001)

(P-)LS-KRF

Parameter Settings:

(52)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 52

-15 -10 -5 0 5 10 15 20 25 30 0 0.02 0.04 0.06 SNR (dB) M e a n P ro c e s s in g T im e ( s

) Mean Processing Time vs. SNR @ K=2, M=4, F=4, N=5, P=3

-15 -10 -5 0 5 10 15 20 25 30 5 10 15 20 SNR (dB) N u m b e r o f It e rt a ti o n s

Number of Iterations in ALS vs. SNR @ K=2, M=4, F=4, N=5, P=3

ALS (

1=2=0.0001)

LS-KRF P-LS-KRF

No. of Iters. Outer (

1=0.0001)

No. of Iters. Inner (2=0.0001)

(53)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 53

Parameter Settings I:

K=2, M=4, F=4, N=5, P=3

-15 -10 -5 0 5 10 15 20 25 30 10-3 10-2 10-1 SNR (dB) B it E rr o r R a te

Bit Error Rate vs. SNR @ K=2, M=4, F=4, N=5, P=3 (P-)LS-KRF (w/ Overhead) S-CFP w/ Pairing (w/o Overhead)

-15 -10 -5 0 5 10 15 20 25 30 10-3 10-2 10-1 100 101 SNR (dB) N M S E

Channel estimate NMSE vs. SNR @ K=2, M=4, F=4, N=5, P=3 (P-)LS-KRF (w/ Overhead) S-CFP w/ Pairing (w/o Overhead)

(54)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 54

Outline

 Universidade de Brasília: A Short Overview  Motivation

 Antenna Array Based Systems

 Multi-Dimensional Array Signal Processing Multi-Dimensional Array Interpolation Model Order Selection

Prewhitening

 MIMO-OFDM System  Conclusions

(55)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 55

Conclusions

 In this presentation, we have present our state-of-the-art proposed schemes for

array interpolation

model order selection (MOS)

subspace prewhitening

Multi-Dimensional Array Interpolation: measurements fit to PARAFAC structure

 Important contributions in the MOS field

Modified Exponential Fitting Test (M-EFT): Matrix data contaminated by white noise

R-D EFT: Tensor data contaminated by white noise

 Important contributions in the subspace prewhitening field

Deterministic prewhitening: Matrix data and noise with correlation structure

Sequential GSVD: Tensor data and noise with tensor structure

Iterative Sequential GSVD: Tensor data and noise with tensor structure No availability of noise samples

 In the MIMO-OFDM field:

(56)

Universidade de Brasília

Laboratório de Processamento de Sinais em Arranjos 56

Thank you for your attention!

Prof. Dr.-Ing. João Paulo C. Lustosa da Costa

University of Brasília (UnB)

Department of Electrical Engineering (ENE)

Laboratory of Array Signal Processing

PO Box 4386

Zip Code 70.919-970, Brasília - DF

Referências

Documentos relacionados

Liver function and lipid metabolism parameters, as well as the levels of vitamin D, haemoglobin, transferrin and ferritin tented to improve as therapy

Emotion Regulation Scale; EDI-3: Eating Disorder Inventory; FFMQ: Five Facet Mindfulness Questionnaire; IPEA: Institute of Applied Economic Research; MBCT: Mindfulness-based

This thesis had the goal of presenting the current main strategies for the digital preservation of information. It was our goal to contribute to the field by

tendo em vista levantar os aspectos gerais relacionados ao posto de trabalho estu- dado; (3) avaliação postural, onde foi aplicado um método específico de diagnóstico, visando gerar

[r]

No que conceme a adequa&lt;;aoentre a forma&lt;;aoacademica e 0 tipo de func;6esexercidas antes do ingresso no curso de mestrado, a Figura 11 evi- dencia que 43% dos

Participaram desse estudo duas professoras do ensino fundamental que lecionam em classes de primeiro ano, pertencentes a duas escolas diferentes, e três alunos

[r]