• Nenhum resultado encontrado

Combined application of bio-organic phosphate and phosphorus solubilizing bacteria (Bacillus strain MWT 14) improve the performance of bread wheat with low fertilizer input under an arid climate

N/A
N/A
Protected

Academic year: 2021

Share "Combined application of bio-organic phosphate and phosphorus solubilizing bacteria (Bacillus strain MWT 14) improve the performance of bread wheat with low fertilizer input under an arid climate"

Copied!
10
0
0

Texto

(1)

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Environmental

Microbiology

Combined

application

of

bio-organic

phosphate

and

phosphorus

solubilizing

bacteria

(Bacillus

strain

MWT

14)

improve

the

performance

of

bread

wheat

with

low

fertilizer

input

under

an

arid

climate

Muhammad

Tahir

a

,

Umaira

Khalid

c

,

Muhammad

Ijaz

b,∗

,

Ghulam

Mustafa

Shah

a

,

Muhammad

Asif

Naeem

a

,

Muhammad

Shahid

d

,

Khalid

Mahmood

e

,

Naveed

Ahmad

a

,

Fazal

Kareem

c

aCOMSATSInstituteofInformationTechnology,DepartmentofEnvironmentalSciences,Vehari,Pakistan bBahauddinZakariyaUniversity,BahadurSub-Campus,CollegeofAgriculture,Layyah,Pakistan cBahauddinZakariyaUniversity,DepartmentofAgronomy,Multan,Pakistan

dGovernmentCollegeUniversity,DepartmentofBioinformaticsandBiotechnology,Faisalabad,Pakistan eAarhusUniversity,FacultyofScienceandTechnology,DepartmentofAgro-ecology,Aarhus,Denmark

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received19April2017 Accepted12November2017 Availableonline24April2018 AssociateEditor:JerriZilli

a

b

s

t

r

a

c

t

Thisstudywasaimedtoinvestigatetheeffectofbio-organicphosphateeitheraloneorin combinationwithphosphorussolubilizingbacteriastrain(BacillusMWT-14)onthegrowth andproductivityoftwowheatcultivars(Galaxy-2013andPunjab-2011)alongwith recom-mended(150–100NPkgha−1)andhalfdose(75–50NPkgha−1)offertilizers.Thecombined applicationofbio-organicphosphateandthephosphoroussolubilizingbacteriastrainat eitherfertilizerlevelsignificantlyimprovedthegrowth,yieldparametersand productiv-ityofbothwheatcultivarscomparedtonon-inoculatedcontroltreatments.Thecultivar Punjab-2011 producedthehigherchlorophyllcontents,cropgrowthrate,andthestraw yieldathalfdoseofNPfertilizer; whileGalaxy-2013,with thecombinedapplicationof bio-organicphosphateandphosphoroussolubilizingbacteriaunderrecommendedNP fer-tilizer dose. Combined over both NP fertilizer levels, the combineduse of bio-organic phosphate andphosphorous solubilizing bacteria enhanced the grain yieldof cultivar Galaxy-2013by54.3%andthatofcultivarPunjab-2011by83.3%.Thecombined applica-tionofbio-organicphosphate andphosphoroussolubilizingbacteria alsoincreasedthe

Correspondingauthor.

E-mail:muhammad.ijaz@bzu.edu.pk(M.Ijaz).

https://doi.org/10.1016/j.bjm.2017.11.005

1517-8382/©2018SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

Keywords: Phosphorous Phosphoroussolubilizing bacteria Bioavailability Rhizosphere Lowfertilizerinput

populationofphosphoroussolubilizingbacteria,thesoilorganicmatterandphosphorous contentsinthesoil.Inconclusion,thecombinedapplicationofbio-organicphosphateand phosphoroussolubilizingbacteriaoffersaneco-friendlyoptiontoharvestthebetterwheat yieldwithlowfertilizerinputunderaridclimate.

©2018SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Introduction

Breadwheat(TriticumaestivumL.)isconsumedasstapleby thebillionsacrosstheglobeowningtoitsgreatercaloriesand proteincontentsascomparedtothe othercereals.1,2

How-ever,theaverageyieldofbreadwheatperunitareaisverylow thanitsactualpotentialinmanydevelopingcountriesofthe worldincludingthePakistan.Manyfactorssuchasimproper sowingtime,poorseedquality,poorirrigation/nutrient man-agementandthelowsoilorganicmatter(SOM)contents,1–8

areresponsibleforthislowproductivityofbreadwheat. Amongthesefactors,theSOMisverycrucialasitaffects theavailabilityofplantnutrients.3TheSOMcontentsofabout

3% are considered essential for the suitable soil physical condition,bettercationexchangecapacityandthenutrient availabilitytoobtainthehighercropyields.3,9 However,the

SOMcontentsofthePakistanisoilsare>0.5%owingtohigh temperature.3,10 whichdecreasestheavailabilityofnitrogen

and phosphorous dueto reductioninthe cation exchange capacity.11–13

Phosphorous is crucial element required for the plant growth and development.14–16 The unique sourceof

phos-phorous fertilizerisrock phosphatewhich isacomplex of phosphateandcalcium.17However,theproductionof

elemen-tal phosphorous, phosphoric acid, and other phosphorous basedfertilizerfrom therockphosphate isitselfanenergy consumingprocess.17–19

Inthisaspect,theconversionofrockphosphatethrough biochemical means into solubleand readily available state whichmaydirectlybefedtoplantsisausefultechnique.17

Thebestavailable,ecosystemfriendly,andcheapertechnique toconverttherockphosphateintoplantavailablephosphateis theuseofcompost(agriculturewaste)andbacteria.20–23This

biochemicalprocesshaslowenergyinputdemandanddoes notrequirethechemicalcatalyst.Theendproductobtained in this process is rich in available phosphorous and SOM contents,17withoptimumcarbon(C)andNratio(C:N).

Therhizosphericsoilisdominatedbythediversebacterial communities.24–28Thesebacterialcommunitiesareinvolved

indevelopingthemutualinteractionwithplantrootsandthus improvethegrowthanddevelopmentofplantsthrough vari-ousmechanisms.19,29–31Thesemechanismsincludebiological

nitrogen fixation (BNF), production of growth hormones, improvementintheavailabilityofthenutrientsparticularly phosphorous,andthebio-controlofplantpathogens.19,31,32

ThebacterialstrainsbelongingtogeneraAzospirillum, Azo-tobacter,Bacillus,Enterobacter,Pseudomonas andPantoea have beenisolatedfromtherhizosphereofvariouscropsandare reportedtoimprovetheplantgrowth.28,31,33–38Amongthese,

Bacillusiswellknowngenuswhosemultiplestrainspossess thepotentialtopromotethegrowthofwheat.28,31,36,39

As the bio-organic phosphate (BOP) is rich in soluble phosphorous, its addition to soil may improve the plant growth moreefficiently as compared withthe use of syn-thetic phosphorousfertilizersourcessuchasdiammonium phosphateandsinglesuperphosphate.Furthermore,theuse ofphosphatesolubilizingbacteria(PSB)alongwithsynthetic phosphorousfertilizermayimprovetheproductivityofcrops byincreasingthesolubilityofthephosphorousinthesoil.As theBOPisrichintheorganicmatter,itmayfurtherimprove theavailabilityofothernutrientstotheplantsandmaythus provide thesuitable conditionsforthesurvival, multiplica-tion and functioningofthebeneficial rhizosphere bacteria. Thesebacteriainturnincreasethesoilfertilitythroughthe process of bio-mineralization.40 The PSB solubilizethe soil

phosphorousthroughreleasingtheorganicacids(e.g.acetic acid,formicacid,lacticacid,glycolicacidandsuccinicacids, etc.)andthecarboxylandhydroxylgroupsoftheorganicacids produced by PSB,chelate the phosphate bounded cations, therebyconvertingphosphorousintosolubleforms.41

AdditionofPSBstimulatestheprocessofphosphorous sol-ubilizationbothinsoilaswellasinBOP,asthephosphorous solubilizationismajoractivityofPSB.However,tothebestof ourknowledge,verylimitedinformationisavailableaboutthe effectofcombinedapplicationofBOPandPSBonsoilfertility aswellasonthegrowthandproductivityofcontrastingwheat cultivarsgrownatdifferentfertilizerlevels.Forthisstudy,we hypothesizedthattheuseofPSBalongwithBOPandNP fer-tilizermayenhancethesolublephosphoruswithinthesoil. Thespecificobjectiveofthisstudywastocheckthecombined effectofBOPandPSBonsoilfertilityandproductivityofbread wheatunderdifferentlevelsofNPfertilizer.

Materials

and

methods

Preparationofbioorganicphosphate

Bioorganicphosphate(enrichedwithavailablephosphorous and organic mattercontents)waspreparedusingcompost, biogasresidueandrockphosphatebyadoptingtheprocedure asdescribedbyNarayanan17withsomemodifications.Forthis

purpose,rockphosphate(freefromsilicawith26%total phos-phorous)waspulverizedandrefinedtogetauniformsizeof 75microns.Thecompostwaspreparedaftercompostingof cropandfruitresiduesfor15days.Thebiogas residuewas obtainedfromalocalbiogasplantwhichusespoultrywaste andanimalwastei.e.cowdung.Thereafter,boththebiogas residuesandcompostwereair-driedintrayandgroundedin

(3)

aballmill(CAMstarterTypeQS5-15A-500V 15A,China)to passthrougha1.0mmsieve.Thegroundmaterialwasmixed withoreofrockphosphateintheratioof1:2.Theblendwas thensuspendedinawaterstirredtankwithawater-solidratio of7:3.Thereactionwascarriedoutinagitatedstirredtank (bioreactor,CEMMkII,ArmfieldLtd,UK)usingtheconditions proposedbyNarayanan.17Bacterialcultureofphosphate

sol-ubilizingbacterial(PSB)strainBacillusMWT-14,42wasaddedto

thereactorkeepingtheinoculumstrengthof107cfu/mLand

tankvolumeof3–5%.

Thewholeprocesswascarriedoutinthreesteps.Atthe firststep,slurry(mixtureofbiogasresidue,compostandrock phosphate)was addedslowly and continuouslytothe bio-reactor(CEMMkII,ArmfieldLtd,UK)toallowthefermentation bykeepingtankonagitation for7–10daysattemperature, pressure andpH conditionsas mentionedbyNarayanan.17

Afterthis step,PSB strain Bacillus MWT-14 was inoculated to the bioreactor and kept on continuous agitation for an extra5daystoallowthediffusionofatmosphericoxygen/air intothereactor.After5days,bacterialculture(107cfu/mL)of

nitrogenfixingbacteria Azospirillum(unpublished data)was inoculatedtothereactor;and thereactorwaskepton agi-tationforanextra5days.Afterthecomplete fermentation process,theproductwas filteredtoseparatethe solid por-tion.Thissolid portionwasdried,groundandanalyzedon spectrophotometertomeasuretheconcentrationofsoluble phosphoroususingtheproceduredescribedpreviously.43

Concentrationoforganicmatterinthesolidmaterialwas determined by using the procedure proposed by Allison44

withsomemodifications;2.0gweightofthesamplewasused insteadof1.0gin500mLconicalflaskand5.0mLofK2Cr2O7

wasaddedtoavoidtheearlycolorchange.Thisfinalproduct wasnamedasBOP(16.5%P2O5and25%organicmatterwith

19:1C:Nratio).

Preparationofinoculumandfieldexperimentation

BacterialstrainBacillussp.MWT-14(accessionno.KT933232) with known phosphate solubilization and growth promot-ing potential,42 was inoculated to nutrient broth (250mL)

and was kept on shaking (150rpm) for 24h at a temper-ature of 30±2◦C. Inoculum strength was determined on spectrophotometerbymeasuringthe opticaldensityofthe grownbacterialcultureandwasmaintainedat107cfumL–1.

Further,we re-determined the strength ofinoculum using serialdilutionplatecountmethod.31Thereasonforselecting

theBacillus sp.MWT-14 wasthat this strainshowed maxi-mumphosphoroussolubilizationactivityandimprovedthe wheatgrowthinourpreviousstudy.42TheBOP@125kgha−1

andPSBstrainwereappliedassoletreatmentaswellasin combinedformalongwithrecommended(150–100NPkgha−1, respectively)andhalfoftherecommended(75–50NPkgha−1, respectively)dosesintwobreadwheatcultivars(Galaxy-2013 andPunjab-2011).Urea(46%N)anddiammoniumphosphate (46%P,18%N)wereusedasourceofnitrogenand phospho-rous,respectively.Potassiumwasappliedatauniformrate of100K2Okgha−1 inall experimentalplotsusing sulphate

ofpotassium(K2SO4)assource.ThefulldoseofBOP,andK

wassoilappliedatthetimeofsowing.However,nitrogenwas

appliedinthreeequalsplitsatsowing,tilleringand dough stage.

Theexperimentwasconductedduringthe year2015–16 attheexperimentalfarmofCollegeofAgriculture,Bahauddin ZakariyaUniversity,BahadurSub-Campus,Layyah(latitudeof 30.9;longitudeof70.9andaltitudeof143mabovesealevel). Theexperimentwaslaidoutinrandomizedcompleteblock design(RCBD)infactorialarrangementwiththreereplications maintainingagrossplotsizeof4m×1.8m.

Forbacterialinoculation,thebacterialcultureofthestrain

Bacillussp.MWT-14wasmixedwithsterilizedfilter-mudand the seeds of boththe bread wheat cultivarswere pelleted withthismixturecontainingsterilizedfilter-mudandinoculla (107cfu/gofcarrier).Inoculatedseedsweresownatarateof

120kgha−1usingamanualhanddrill.

All theotheragronomic practiceswere keptuniformfor alltheexperimentaltreatments.Physico-chemical character-isticsofexperimentalsoilweredeterminedbeforeconducting andafterharvestingtheexperiment.Siltloamtexturedsoil, with EC 2.8dsm−1, pH 7.9, organic matter 0.33%,available phosphorouscontents 9.0mgkg−1 ofdry soil,andavailable Ncontents0.083%,wasusedinthisstudy.Themagnesium contentsofthePakistanisoilsare1000–8500ppm.

Recording

of

data

Populationofphosphatesolubilizingbacteria

Thesoilsamplesofeachexperimentalunitwerecollectedin sterilizedplasticbagsfromtherhizosphereofwheatat dif-ferentgrowthstagesi.e.tillering[at30–40daysaftersowing (DAS)], booting (60–70 DAS)and grain filling stage(100–120 DAS), and werestored at4◦C forfurtherprocessing. Popu-lationofPSBwasmeasuredusingplatecountserialdilution method.45Forthispurpose,0.1gofthecollectedrhizosphere

soil(ofeachexperimentalunit)wassuspendedintesttube containing9.0mLsterilizedsalinesolution(0.8%,w/v).Serial dilutionswerepreparedupto10−5 and100␮Lofeach dilu-tion was spread on the plates containing Pikovskaya agar medium,46supplementedwithtri-calciumphosphate(TCP)as

insolublephosphoroussource.Theplateswereincubatedat 30±2◦Cfor48–72h(h).Thenumbersofcolonyformingunits (cfu)showingtransparenthalozoneformation(indicates sol-ubilizationofinsolublephosphorous)were countedandlog valueswereobtainedtogetthebacterialpopulation(cfu/gdry soil).

Cropallometry

Data onplantgrowth parametersviz.leafarea index(LAI), cropgrowthrate(CGR),netassimilationrate(NAR)and the chlorophyllcontentswererecordedfortnightlystartingfrom 40DASofthewheatcrop.Ahomogenousarea(0.5m2)wascut

randomlytorecordthegrowthparameters.TorecordtheLAI, totalareaoftheseparatedleaveswasmeasuredbyusingaleaf areameter(DTAreaMeter,ModelMK2,DeltaTDevices, Cam-bridge,UK).TheLAIwascalculatedbydividingthetotalareaof theleavestothetotalgroundareawhichhadbeenharvested forthesampling.DataonCGR,wasrecordedafterharvesting

(4)

thecropsamplesfromanareaof0.5m2at15daysintervaland

wereweighedfreshlyandthenoven-driedat70±5◦Cfor48h. Thereafter,CGRandNARwerecalculatedbyfollowingthe pro-tocolasdescribedbyHunt.47Thechlorophyllcontentswere

measuredusingthechlorophyll meter(SPAD502,Spectrum Technologies,Inc,Aurora,IL)ateach15daysinterval.

Morphologicalandyieldparameters

Atmaturity,spikebearingtillers(fertileorreproductivetillers) fromanareaof1m2areaofeachplotwerecounted.

There-after,twentyplantsfromeach plotwererandomlyselected tomeasuretheplantheight,averagenumberofspikeletsper spikeand number of grainsper spike. Thebiological yield oftheeachtreatmentwasmeasuredbyharvestingthearea of3.0m2 from the each plot. The harvested sampleswere

sun-dried for a week, and were weighed. To measure the grainyield,thedriedbundleswere threshedandthegrains were separated from the straw. Theseparated grains were weighedand the grainweightwasrecorded.From seedlot ofeachplot,threerandomsamplesof1000grainswere col-lected,weighedand averaged togetthe1000-grainweight. Thestrawyieldwascalculatedbysubtractingthegrainyield fromthe biologicalyield.Theharvestindexwascalculated astheratioofgrainyieldtothebiologicalyieldexpressedin percentage.

Statisticalanalysis

Thecollecteddatawasstatisticallyanalyzedusingthe soft-ware “Statistix (8.1version, Tallahassee, Florida)” using the fisheranalysisofvariancetechnique.Thedifferenceamong the treatments were compared using the least significant differencetestat5%probabilitylevel.48 Theco-relation

co-efficientswere drawntoobservetherelationshipofgrowth parametersofbreadwheatcultivarswiththe grainyieldof wheatusingthesoftware“Statistix(8.1version,Tallahassee, Florida)

Results

Cropallometry

Sole or combined application of BOP or PSB strain Bacillus

MWT-14withrecommendeddoseofNP(150–100NPkgha−1), and halfoftherecommendeddoseofNP(75–50NPkgha−1) fertilizersignificantly(p≤0.05)increasedtheLAI,CGR,NAR and thechlorophyll contentsofbothbreadwheatcultivars thantheirrespectivenon-inoculatedcontrol(Figs.1–4).

In Galaxy-2013, the highest LAI was recorded with BOP+PSBtreatmentalongwiththerecommendedNP fertil-izer(i.e.NPat150–100kgha−1);inPunjab-2011,theLAIwas themaximumwithBOP+PSBalongwiththehalfofthe recom-mendeddoseofNPfertilizer(75–50kgha−1)at90DAS(Fig.1). InGalaxy-2013,thehighestCGRwasrecordedwithBOP+PSB along with recommended NP fertilizer (150–100kgha−1);in Punjab-2011,theCGRwasthemaximumwithBOP+PSBalong withrecommendeddoseofNPfertilizer(150–100kgha−1),and halfoftherecommendeddoseofNPfertilizer(75–50kgha−1) at90DAS(Fig.2).Likewise,inGalaxy-2013,thehighestNAR was recorded withBOP+PSB along withthe recommended dose of NP fertilizer (150–100kgha−1); in Punjab-2011, the NARwasalmostthesimilarinBOP+PSBalongwith recom-mended(NPat150–100kgha−1)andhalfoftherecommended dose of NP fertilizer (75–50kgha−1) (Fig. 3). Similarly, in Galaxy-2013,thehighestchlorophyllcontentswererecorded with BOP+PSB along with the recommended dose of the NPfertilizer(150–100kgha−1);inPunjab-2011,thechlorophyll contentswerealmostsimilarwithBOP+PSBalongwith rec-ommended (150–100kgha−1)andhalf ofthe recommended doseoftheNPfertilizer(75–50kgha−1)(Fig.4).AtagivenNP level,Galaxy-2013showedrelativelygreaterLAI,CGR,NARand chlorophyllcontentsthanPunjab-2011(Figs.1–4).

PopulationofPSB

Population in terms of colony forming units (cfu) of PSB recorded at three different growth stages i.e. tillering,

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2

60 DAS 75 DAS 90 DAS 60 DAS 75 DAS 90 DAS

Galaxy-2013 Punjab-2011 Le a f a re a i nd ex Treatments

Non-inoculated PSB BOP PSB+BOP

Fig.1–Leafareaindexofbreadwheatcultivarsasinfluencedbybio-organicphosphate,PSBanddifferentlevelsofNP chemicalfertilizers;F1=halfoftherecommendedNPfertilizerlevel(N–Pat75–50kgha−1);F2=recommendedNPfertilizer level(N–Pat150–100kgha−1);PSB=phosphatesolubilizingbacteria;BOP=bio-organicphosphate.

(5)

0 10 20 30 40 50 60 70 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2

60 DAS 75 DAS 90 DAS 60 DAS 75 DAS 90 DAS

Galaxy-2013 Punjab-2011 Cr o p g ro wt h r a te (g m -2 da y -1) Treatments

Non-inoculated PSB BOP PSB+BOP

Fig.2–Cropgrowthrateofbreadwheatcultivarsasinfluencedbybio-organicphosphate,PSBanddifferentlevelsofNP chemicalfertilizers;F1=halfoftherecommendedNPfertilizerlevel(N–Pat75–50kgha−1);F2=recommendedNPfertilizer level(N–Pat150–100kgha−1);PSB=phosphatesolubilizingbacteria;BOP=bio-organicphosphate.

0 1 2 3 4 5 6 7 8 9 10 N on -i n ocu la te d PS B BO P PS B+ BO P N on -i n ocu la te d PS B BO P PS B+ BO P

Galaxy-2013 Punjab-2011

Net a ss im il ati o n r a te (g m -2 da y -1) Treatments F1 F2

Fig.3–Netassimilationrateofbreadwheatcultivarsasinfluencedbybio-organicphosphate,PSBanddifferentlevelsofNP chemicalfertilizers;F1=halfoftherecommendedNPfertilizerlevel(N–Pat75–50kgha−1);F2=recommendedNPfertilizer level(N–Pat150–100kgha−1);PSB=phosphatesolubilizingbacteria;BOP=bio-organicphosphate.

-5 0 5 10 15 20 25 30 35 40 45 50 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2

40-55 DAS 55-70 DAS 70-85 DAS 40-55 DAS 55-70 DAS 70-85 DAS

Galaxy-2013 Punjab-2011

T o ta l ch lo ro ph y ll content ind ex Treatments

Non-inoculated PSB BOP PSB+BOP

Fig.4–Totalchlorophyllcontentsofbreadwheatcultivarsasinfluencedbybio-organicphosphate,PSBanddifferentlevels ofNPchemicalfertilizers;F1=halfoftherecommendedNPfertilizerlevel(N–Pat75–50kgha−1);F2=recommendedNP fertilizerlevel(N–Pat150–100kgha−1);PSB=phosphatesolubilizingbacteria;BOP=bio-organicphosphate.

(6)

0.0 2.0 4.0 6.0 8.0 10.0 12.0 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2

Tillering Booting Grain filling Tillering Booting Grain filling

Galaxy-2013 Punjab-2011

B a c te ra il p o p u la tio n ( c fu /g o f s o il) Treatments

Non-inoculated PSB BOP PSB+BOP

Fig.5–Populationdynamicsofphosphatesolubilizingbacteriainrhizosphereofbreadwheatcultivarsasinfluencedby bio-organicphosphate,PSBanddifferentlevelsofNPchemicalfertilizers;F1=halfoftherecommendedNPfertilizerlevel (N–Pat75–50kgha−1);F2=recommendedNPfertilizerlevel(N–Pat150–100kgha−1);PSB=phosphatesolubilizingbacteria; BOP=bio-organicphosphate.

booting and grain filling stageshowed anincreasing trend fromtilleringtobooting,anddecreasedatgrainfillingstage forall theexperimentaltreatments(Fig.5). InGalaxy-2013, thehighestpopulationofPSB(averagedoverthreesampling stages)was recordedwithBOP+PSBalong withthe recom-mendeddoseofNPfertilizer(150–100kgha−1);inPunjab-2011, thepopulationofPSB(averagedoverthreesamplingstages) wasalmostsimilarwithBOP+PSBalongwithrecommended (NPat150–100kgha−1)andhalfoftherecommendeddoseof NPfertilizer(75–50kgha−1).Overall,thepopulationofPSBwas thehighestatbootingstage(8.67cfupergramsoil)followedby grainfilling(6.0cfupergramsoil)andtilleringstage(5.36cfu pergramsoil)(Fig.5).

Morphologicalandyieldparameters

Thisstudyindicatedthatthree-wayinteractionofbreadwheat cultivarswithfertilizerlevelsandthePSBwassignificantfor allthe morphological/yieldparameters,grain yield,harvest index,SOM,soilphosphorousandsoilN(Table1).Atagiven NPlevel,soleorcombinedapplicationofthePSB orBOP to boththewheatcultivarsshowedanimprovementinthe mor-phological/yieldparameters,grainyield,harvestindex,SOM, andthesoilphosphorouswithrespecttotheirnon-inoculated control(Table1).

The highest plant height, number of productive tillers, spikeletsperspike,grainsperspike,1000-grainweight, bio-logicalyield,strawyieldandtheharvestindexwasrecorded withtheBOP+PSB,inGalaxy-2013andPunjab-2011,withthe recommended (NP at 150–100kgha−1) and half ofthe rec-ommendeddoseofNPfertilizer(75–50kgha−1)respectively. Howeverthistreatmentcombinationwasstatisticallysimilar withthesole applicationofBOP alongwiththehalf ofthe recommendeddoseofNPfertilizer(75–50kgha−1)in Punjab-2011forplantheight;combinedapplicationofBOP+PSBalong withtherecommendeddoseofNPfertilizer(150–100kgha−1) inPunjab-2011forgrainperspike,1000-grainweight, biolog-icalyield,grainyield,strawyieldandharvestindex;andsole

applicationofPSBalongwithhalfoftherecommendeddose ofNPfertilizer(75–50kgha−1)inPunjab-2011fortheharvest index(Table1).

Soilproperties

Thisexperimentrevealedsignificant(p<0.05)increaseinSOM andsoilphosphorouscontentsduetosoleorcombined appli-cation of BOP and PSB over non-inoculated control plots

(Table 1). The highest SOM was recorded with the

appli-cation of BOP+PSB along with the recommended (NP at 150–100kgha−1)and half of the recommended dose of NP fertilizer (75–50kgha−1) in both of bread wheat cultivars. In both bread wheat cultivars, the phosphorous contents were the maximum with recommended dose of NP fer-tilizer (150–100kgha−1) and that was statistically similar with the half of the recommended dose of NP fertilizer (75–50kgha−1)inGalaxy-2013.Althoughthedifferenceswere non-significant,thehighestsoilNcontentswerenotedwith combinedapplicationofBOPandPSBathighNPfertilizer lev-elsinbothbreadwheatcultivars(Table1).

ThecorrelationpredictedthattheLAI,CGRandthe chloro-phyll contentswere stronglypositively correlated with the grainyieldofwheatatbothfertilizerlevelsinbothofthebread wheatcultivars(Table2).

Discussion

In the present study, soil properties were substantially improved with the application of BOP along with the PSB whichwasvisiblethroughimprovementinsoilOMandsoil phosphorous contents.Thisimprovementin soil phospho-rouswasduetopositiveinfluenceofPSBwhich ultimately enhancedthesolubilityandreleaseofphosphorousfromNP fertilizer inthe rhizosphere ofthe bothbread wheat culti-vars.Severalpreviousstudieshavereportedimprovementin SOMcontentsandnutrientbalanceduetosupplementation

(7)

Table1–Plantheight,numberofproductivetillers,spikeletsperspike,grainsperspike,1000-grainyield,biological yield,grainyield,strawyield,harvestindexoftwowheatcultivars,andthesoilorganicmatter,phosphorousand nitrogenatwheatharvestasaffectedbytheapplicationofbio-organicphosphateandphosphoroussolubilizingbacteria.

Treatments Galaxy-2013 Punjab-2011 Galaxy-2013 Punjab-2011 Galaxy-2013 Punjab-2011

N–P(kgha−1) N–P(kgha−1) N–P(kgha−1) N–P(kgha−1) N–P(kgha−1) N–P(kgha−1)

75–50 150–100 75–50 150–100 75–50 150–100 75–50 150–100 75–50 150–100 75–50 150–100

Plantheight(cm) Numberofproductivetillers(m−2) Spikeletsperspike

Control 93.3e 94.6de 87.8a–c 85.3bc 257e 311c–e 98b 89b 15.3g 16.5ef 14.8d 15.2c

PSB 97.9c–e 104.1bc 83.3c 90.1a–c 336b–d 303de 123b 116b 16.1f 18.1b 15.9c 15.9c

BOP 102.6b–d104.6bc 92.5ab 87.1a–c 362bc 373b 122b 117b 16.8de 17.2cd 15.7c 15.5c

PSB+BOP 107.7b 123.1a 94.5a 87.3a-c 390b 474a 174a 109b 17.7bc 20.2a 18.0a 17.5b

LSD(p0.05) 9.3 7.9 38.2 44.0 0.59 0.50

Grainsperspike 1000-grainweight(g) Biologicalyield(Mgha−1)

Control 30.6g 33.0ef 29.0b 29.6b 44.7e 47.9c–e 38.7c 40.6bc 5.5d 6.4cd 5.1cd 5.4c

PSB 32.2f 36.2b 31.4ab 31.8ab 46.9de 52.7b 41.2b 42.2ab 6.8c 7.6bc 5.9bc 6.4b

BOP 33.6de 34.4cd 31.0ab 31.4ab 49.1b–e 50.1b–d 44.1ab 42.9ab 6.9c 7.6bc 6.0b 6.2b

PSB+BOP 35.4bc 40.4a 32.0a 32.0a 51.6bc 58.9a 46.5a 46.7a 7.9b 8.9a 7.6a 7.7a

LSD(p0.05) 0.59 0.50 4.57 4.00 0.43 0.41

Grainyield(Mgha−1) Strawyield(Mgha−1) Harvestindex(%)

Control 2.5bc 3.0b 2.0b 2.2ab 3.0cd 3.4c 3.1bc 3.2bc 45.5e 46.9d 39.2d 40.7c

PSB 3.3b 3.8ab 2.5ab 2.8ab 3.5bc 3.8b 3.4ab 3.6ab 48.5c 50.0ab 42.4a 43.8.ab

BOP 3.4b 3.8ab 2.5ab 2.7ab 3.5bc 3.8b 3.5ab 3.5ab 49.3b 50.0ab 41.7b 43.5b

PSB+BOP 4.0ab 4.5a 3.8a 3.9a 3.9b 4.4a 3.8a 3.8a 50ab 50.6a 50.0a 50.6a

LSD(p0.05) 0.43 0.43 0.42 0.44 0.50 0.42

Soilorganicmatter(%) Phosphorous(mgkg−1) Nitrogen(%)

Control 0.33d 0.33d 0.33c 0.32c 9.1cd 9.0cd 9.2c 9.1d 0.083 0.083 0.081 0.082

PSB 0.38c 0.39bc 0.39bc 0.38bc 9.3c 9.5b 9.5c 9.3c 0.085 0.086 0.085 0.084

BOP 0.40bc 0.41b 0.41b 0.39bc 9.5b 9.5b 9.5c 9.2c 0.085 0.085 0.086 0.084

PSB+BOP 0.45a 0.48a 0.46a 0.47a 9.8ab 10.3a 9.9b 10.3a 0.095 0.099 0.098 0.099

LSD(p0.05) 0.03 0.02 0.2 0.3 NS NS

Figuresofmaineffectsandinteractionssharingthesamecaseletterdonotdiffersignificantlyatp0.05;BOP,bio-organicphosphorous;PSB, phosphoroussolubilizingbacteria;N,nitrogen;P,phosphorous.

ofsoilwithbio-organiccompounds,23,49–51andPSB.However,

mostofthestudiesarerestrictedtosoleapplicationofPSB orbio-organicsforsoilreconditioningandcropproductivity. Inthe presentstudy,the combinedapplicationofBOP and PSB atagivenfertilizer level wasa betterchoicethan the soleapplicationofBOPandPSBinboththebreadwheat cul-tivars. Thiswas dueto thefact that BOP and PSB showed synergisticbehavior,improved theperformanceand multi-pliedthe effectofeachother. Indeed,the PSB improvethe efficiencyoftheBOPbyimprovingthePavailability,andBOP providestheoptimumconditionsforthemultiplicationofPSB (increasedpopulationofPSB5.61–9.83cfu/gdry soil;Fig. 5).

Moreover, the bio-organics(e.g. compost) actsasthe main sourceofeasilyavailablenutrients,substanceswithgrowth promoting potential and improves the population ofplant growth promoting rhizobacterialike N fixers,phosphorous solubilizerand cellulosedecomposers,23,52 aswasobserved

inthisstudy.ThepopulationofPSBwassignificantlyhigher withthecombinedapplicationofBOPandPSBirrespectiveof theNPfertilizerdose.Indeed,theapplicationofBOPenriched with organic carbon providedthe sourceofenergy to bac-teria and increasedthemultiplication rateofrhizobacteria due towhich the population ofPSB was enhancedin this study.

Table2–Correlationco-officiantsofleafareaindex,chlorophyllcontentsandcropgrowthratewiththegrainyieldoftwo breadwheatcultivarsasaffectedbyapplicationofPGPRsatrecommendedandhalfdoseoffertilizer.

Treatments Galaxy-2013 Punjab-2011

N–P(kgha−1) N–P(kgha−1)

75–50 150–100 75–50 150–100

Leafareaindex 0.99 0.82 0.99 0.82

Chlorophyllcontents 0.86 0.97 0.88 0.95

Cropgrowthrate 0.93 0.90 0.82 0.81

(8)

Thisstudy indicated that the chlorophyll contents, LAI, CGRandNARofboththebreadwheatcultivarsunderanarid climateweresignificantlyimprovedwiththeapplicationof BOP andPSB;the combinedapplicationbeing most benefi-cial.Indeed,theapplicationofBOPtothesoilimprovesthe availabilityanduptakeofthenutrientslikeN,phosphorous, KandZntothegrowingplantswhichultimatelystimulates theplantgrowthwhichwasvisiblethroughimprovementin CGR,LAI and NAR inthis study.Moreover, the inoculation ofbacterialstrainBacillusMWT-14(withknownphosphorous solubilizationandIAAproducingactivity;Hussainetal.42)also

multipliedthe effect ofBOP byincreasingthe PSB popula-tion(Fig.5)andphosphoroussolubilitywhichcontributedto improvedperformance ofboth breadwheat cultivars. Sev-eralpaststudieshavereportedtheimprovedactivityandan increaseinthe population ofPGPRsinthe soilswithgood SOMandthepivotalroleofPGPRsinimprovingthe phospho-roussolubilization,18-20,49-56whichultimately resultedinan

increaseinthecholrophyllcontents,57,58theLAI,CGRandNAR

inthisstudy.

AtagivenNPlevel,Galaxy-2013showedrelativelygreater LAI,CGR, NARand chlorophyll contentsthan Punjab-2011. ThisbetterperformanceofGlaxy-2013than Punjab-2011in termsofgrowthparametersmightbeduetoinheritedgenetic potentialofthiswheatcultivartoproducemorebiomassata givenNPlevels.

Inour study, the variable responseof bread wheat cul-tivars to the BOP and PSB treatments were observed. The cultivar Galaxy-2013 performed better with the combined applicationofBOPandPSBatrecommendedNPfertilizerlevel (150–100kgha−1);theperformanceofPunjab-2011wasalmost similaratrecommendedandhalfoftherecommendeddoseof NPfertilizer.ThisindicatesthatthecultivarPunjab-2011can begrownatlowfertilizerinputwiththeuseofBOPandPSB withoutanycompromiseonthegrainyield.

ImprovementinLAI,CGRandNARfinallyresultedin bet-terplantheightofbothbreadwheatcultivars.Highestplant heightandthemoreLAIandCGRduetothecombined appli-cationofBOPandPSBultimatelyenhancedthetotalbiomass andstrawyieldofbothbreadwheatcultivars.Bettergrowth attributesduetocombinedapplicationofBOPandPSBalso resultedinthe morenumber ofproductivetillersand bet-terallocation ofphotosynthatesfrom sourcetosinkwhich enhancedthegrainsperspikeand1000-grainweight.More numberofproductivetillersandimprovedgrainsperspike and1000-grainweightthusproducedthehighestgrainyield. Improvementingrowthandyieldattributesduetodueto inoc-ulationwithPGPR arewelldocumentedinseveralprevious studies.28,30,31,37,38,59,60

Conclusion

Thesoilfertility,growthandproductivityofbreadwheat cul-tivarswassignificantlyincreasedwiththeapplicationofBOP orPSB;theeffectsbeingmorepronouncedwiththecombined applicationoftheboth.Indeed,theapplicationofBOPandPSB enhancedthesoilSOMandsoilphosphorouswhichworked assoilconditionerthusimprovingthegrowthofbothbread wheatcultivarswhich wasvisiblethroughimprovementin

LAI,CGRandNAR.Improvedgrowthofthebothbreadwheat cultivarsduetocombined applicationofBOP and PSB ulti-mately enhanced the morphological and yield parameters (number ofproductivetillers,1000-grainweight,grains per spike)whichultimately enhancedthegrainyieldatagiven fertilizer level. Beinga stresstolerant cultivar,Punjab-2011 performedefficientlyduetothecombinedapplicationofBOP andPSBatthehalfoftherecommendedlevelofNPfertilizer. Incontrast,Galaxy-2013showedpositiveresponseintermsof plantgrowthandgrainyieldatarecommendeddoseofNP fer-tilizerlevel.ItisrecommendedthattheBOPshouldbeapplied incombinationwithPSBtomaximizethebenefits.Thus,the combineduseofBOPandPSBatlowfertilizerinputmightbe quiteusefultoincreasethesoilfertility,thecropgrowthand theproductivityofbreadwheat.Thiswillleadtoward elimi-nationoftheenvironmentalpollutionthroughminimizingthe manufacturinganduseofthesyntheticfertilizers.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

ThetechnicalassistanceofMr.AliAhmad(LabAssistant)in performinglabworkatBZU,Multanisacknowledged.Special thankstoMr.Wazeer,Zeshan,AsgharandHusnainfortheir kindhelpinconductingfieldexperimentsanddatacollection. IamgratefultomanagementteamofHexonGroupof Com-panies,Multanforprovidingthematerialtoprovidethelab facilitiesforformulatingthebio-organics.

r

e

f

e

r

e

n

c

e

s

1.AbouzienaH,ShararafaidaA,El-DesokiE.Efficacyofcultivar

selectivityandweedcontroltreatmentsonwheatyieldand

associatedweedsinsandysoils.WorldJAgricSci.

2008;4:384–389.

2.Abd-El-HaleemS,RehamM,MohamedS.Geneticanalysis

andRAPDpolymorphisminsomedurumwheatgenotypes.

GlobalJBiotechnolBiochem.2009;4:01–09.

3.RasmussenP,RohdeC.Long-termtillageandnitrogen

fertilizationeffectsonorganicnitrogenandcarbonina

semiaridsoil.SoilSciSocAmJ.1988;52:1114–1117.

4.MullaD,BhattiA,HammondM,BensonJ.Acomparisonof

winterwheatyieldandqualityunderuniformversus

spatiallyvariablefertilizermanagement.AgricEcosyst

Environ.1992;38:301–311.

5.AkhtarM,CheemaM,JamilM,AliL.Effectoftimeofsowing

onsomeimportantcharactersofwheat,Triticumaestivum

genotypes.JAgricRes.2006;44:255–259.

6.KibeA,SinghS,KalraN.Water–nitrogenrelationshipsfor

wheatgrowthandproductivityinlatesownconditions.Agric

WaterManage.2006;84:221–228.

7.FarooqM,AzizT,BasraS,CheemaM,RehmanH.Chilling

toleranceinhybridmaizeinducedbyseedprimingwith

salicylicacid.JAgronCropSci.2008;194:161–168.

8.SattarA,CheemaMA,FarooqM,WahidMA,WahidA,Babar

BH.Evaluatingtheperformanceofwheatcultivarsunder

(9)

9.SoaneB.Theroleofsoilorganicmatterinsoilcompatibility:

areviewofsomepracticalaspects.SoilTillRes.

1990;16:179–201.

10.IsmailI,BlevinsR,FryeW.Long-termno-tillageeffectson

soilpropertiesandcontinuouscornyields.SoilSciSocAmJ.

1994;58:193–198.

11.BotA,BenitesJ.TheImportanceofSoilOrganicMatter:Keyto

Drought-ResistantSoilandSustainedFoodProduction.Vialedelle

TermediCaracalla,00100Rome,Italy:FoodandAgriculture

OrganizationoftheUnitedNations;2005:41–46.

12.BoatengSA,ZickermannJ,KornahrensM.Poultrymanure

effectongrowthandyieldofmaize.WestAfrJApplEcol.

2006;9:12–18.

13.DeLucaTH,MacKenzieMD,GundaleMJ.Biochareffectson

soilnutrienttransformations.In:LehmannJ,JosephS,eds.

BiocharforEnvironmentalManagement:ScienceandTechnology.

London,UK:Earthscan;2009:251–270.

14.RichardsonAE.Prospectsforusingsoilmicroorganismsto

improvetheacquisitionofphosphorusbyplants.FunctPlant

Biol.2001;28:897–906.

15.KhanAA,JilaniG,AkhtarMS,NaqviSMS,RasheedM.

Phosphorussolubilizingbacteria:occurrence,mechanisms

andtheirroleincropproduction.JAgricBiolSci.2009;1:48–58.

16.RichardsonAE,BareaJM,McNeillAM,Prigent-CombaretC.

Acquisitionofphosphorusandnitrogenintherhizosphere

andplantgrowthpromotionbymicroorganisms.PlantSoil.

2009;321:305–339.

17.NarayananC.Productionofphosphate-richbiofertiliser

usingvermicompostandanaerobicdigestorsludge–acase

study.AdvChemEngSci.2012;2:187–191.

18.CastagnoL,EstrellaM,SannazzaroA,GrassanoA,RuizO.

Phosphatesolubilizationmechanismandinvitroplant

growthpromotionactivitymediatedbyPantoeaeucalypti

isolatedfromLotustenuisrhizosphereintheSaladoRiver

Basin(Argentina).JApplMicrobiol.2011;110:1151–1165.

19.BhardwajD,AnsariMW,SahooRK,TutejaN.Biofertilizers

functionaskeyplayerinsustainableagricultureby

improvingsoilfertility,planttoleranceandcropproductivity.

MicrobCellFact.2014;13:66–76.

20.BadrM,TaalabA.Releaseofphosphorusfromrock

phosphatethroughcompostingusingorganicmaterialsand

itseffectoncorngrowth.BullNatlResCentre(Cairo).

2005;30:629–638.

21.MalboobiMA,OwliaP,BehbahaniM,etal.Solubilizationof

organicandinorganicphosphatesbythreehighlyefficient

soilbacterialisolates.WorldJMicrobiolBiotechnol.

2009;25:1471–1477.

22.NovakJM,BusscherWJ,LairdDL,AhmednaM,WattsDW,

NiandouMA.Impactofbiocharamendmentonfertilityofa

southeasterncoastalplainsoil.SoilSci.2009;174:105–112.

23.KumarR,SharmaS,SoodS,PrasadR,DubeyY.Bioorganic

nutrientsourceeffectongrowth,biomass,andqualityof

naturalsweetenerplantsteviaandsoilfertilityinthe

WesternHimalayas.CommSoilSciPlantAnal.

2015;46:1170–1186.

24.BueeM,DeBoerW,MartinF,OverbeekLV,JurkevitchE.The

rhizospherezoo:anoverviewofplant-associated

communitiesofmicroorganisms,includingphages,bacteria,

archaea,andfungi,andofsomeoftheirstructuringfactors.

PlantSoil.2009;321:189–212.

25.FarinaR,BeneduziA,AmbrosiniA,etal.Diversityofplant

growth-promotingrhizobacteriacommunitiesassociated

withthestagesofcanolagrowth.ApplSoilEcol.2012;55:44–52.

26.BouizgarneB,AouamarAAB.In:MaheshwariDK,ed.

DiversityofPlantAssociatedActinobacteria,BacterialDiversityin SustainableAgriculture.Switzerland:SpringerInternational

Publishing;2014:41–99.

27.MirzaBS,PotisapC,NussleinK,BohannanBJ,RodriguesJL.

Responseoffree-livingnitrogen-fixingmicroorganismsto

landusechangeintheAmazonrainforest.ApplEnviron

Microbiol.2014;80:281–288.

28.TahirM,MirzaMS,HameedS,DimitrovMR,SmidtH.

Cultivation-basedandmolecularassessmentofbacterial

diversityintherhizosheathofwheatunderdifferentcrop

rotations.PLoSONE.2015;10:e0130030.

29.TienT,GaskinsM,HubbellD.Plantgrowthsubstances

producedbyAzospirillumbrasilenseandtheireffectonthe

growthofpearlmillet(PennisetumamericanumL.).Appl

EnvironMicrob.1979;37:1016–1024.

30.VesseyJK.Plantgrowthpromotingrhizobacteriaas

biofertilizers.PlantSoil.2003;255:571–586.

31.TahirM,MirzaMS,ZaheerA,DimitrovMR,SmidtH,Hameed

S.Isolationandidentificationofphosphatesolubilizer

Azospirillum,Bacillus,andEnterobacterstrainsby16SrRNA

sequenceanalysisandtheireffectongrowthofwheat

(TriticumaestivumL.).AustJCropSci.2013;7:1284–1292.

32.BhattacharyyaP,JhaD.Plantgrowth-promoting

rhizobacteria(PGPR):emergenceinagriculture.WorldJ

MicrobiolBiotechnol.2012;28:1327–1350.

33.YasminS,BakarMAR,MalikKA,HafeezFY.Isolation,

characterizationandbeneficialeffectsofriceassociated

plantgrowthpromotingbacteriafromZanzibarsoils.JBasic

Microbiol.2004;44:241–252.

34.MirzaMS,MehnazS,NormandP,etal.Molecular

characterizationandPCRdetectionofanitrogen-fixing

Pseudomonasstrainpromotingricegrowth.BiolFertilSoil.

2006;43:163–170.

35.MishraA,ChauhanPS,ChaudhryV,TripathiM,NautiyalCS.

RhizospherecompetentPantoeaagglomeransenhancesmaize

(Zeamays)andchickpea(CicerarietinumL.)growth,without

alteringtherhizospherefunctionaldiversity.AntonieVan

Leeuwenhoek.2011;100:405–413.

36.KumarP,DubeyD,MaheshwariD.Bacillusstrainsisolated

fromrhizosphereshowedplantgrowthpromotingand

antagonisticactivityagainstphytopathogens.MicrobiolRes.

2012;167:493–499.

37.ShahidM,HameedS,TariqM,ZafarM,AliA,AhmadN.

Characterizationofmineralphosphate-solubilizingbacteria

forenhancedsunflowergrowthandyield-attributingtraits.

AnnMicrobiol.2014;65:1525–1536.

38.MehnazS,MirzaMS,HauratJ,etal.Isolationand16SrRNA

sequenceanalysisofthebeneficialbacteriafromthe

rhizosphereofrice.CanJMicrobiol.2001;47:110–117.

39.AbbasdokhtH,GholamiA.Theeffectofseedinoculation

(Pseudomonasputida+Bacilluslentus)anddifferentlevelsof

fertilizersonyieldandyieldcomponentsofwheat(Triticum

aestivumL.)cultivars.WorldAcedSciEngTechnol.

2010;68:979–983.

40.RashidMI,MujawarLH,ShahzadT,AlmeelbiT,IsmailIM,

OvesM.Bacteriaandfungicancontributetonutrients

bioavailabilityandaggregateformationindegradedsoils.

MicrobiolRes.2016;183:26–41.

41.LeeKK,MokIK,YoonMH,KimHJ,ChungDY.Mechanismsof

phosphatesolubilizationbyPSB(Phosphate-solubilizing

Bacteria)insoil.KorJSoilSciFertil.2012;45:169–176.

42.HussainM,AsgherZ,TahirM,etal.Bacteriaincombination

withfertilizersimprovegrowth,productivityandnetreturns

ofwheat(TriticumaestivumL.).PakJAgricSci.2016;53:633–645.

43.OlsenSR,ColeCV,WatanabeFS,DeanLA.Estimationof

AvailablePhosphorousinSoilsbyExtractionwithSodium Bicarbonate.Vol.939.USDeptAgrCir;1954:19.

44.AllisonL.Wet-combustionapparatusandprocedurefor

organicandinorganiccarboninsoil.SoilSciSocAmJ.

(10)

45.SandersER.Asepticlaboratorytechniques:platingmethods.

JVisExp.2012;63:e3064.

46.PikovskayaR.Mobilizationofphosphorusinsoilin

connectionwithvitalactivityofsomemicrobialspecies.

Mikrobiol.1948;17:362–370.

47.Hunt.PlantGrowthAnalysis.TheInstituteBiology’sStudiesin

Biology.EdwardArnold(Pub.)Ltd;1978:8–38.

48.SteelRGD,TorrieJH,DickyDA.PrinciplesandProceduresof

Statistics,ABiometricalApproach.3rded.N.Y.,USA:McGraw

Hill,Inc.BookCo.;1997:352–358.

49.AiraM,MonroyF,DomínguezJ,MatoS.Howearthworm

densityaffectsmicrobialbiomassandactivityinpigmanure.

EurJSoilBiol.2002;38:7–10.

50.TaoR,LiangY,WakelinSA,ChuG.Supplementingchemical

fertilizerwithanorganiccomponentincreasessoilbiological

functionandquality.ApplSoilEcol.2015;96:42–51.

51.TrishaRoyDR,BiswasSC,DattaBS,etal.Solubilizationof

puruliarockphosphatethroughorganicacidloaded

nanoclaypolymercompositeandphosphatesolubilizing

bacteriaanditseffectivenessasp-fertilizertowheat.JIndian

SocSoilSci.2015;63:327–338.

52.KoltonM,HarelYM,PasternakZ,GraberER,EladY,CytrynE.

Impactofbiocharapplicationtosoilontheroot-associated

bacterialcommunitystructureoffullydeveloped

greenhousepepperplants.ApplEnvironMicrobiol.2011;77:

4924–4930.

53.ChenY,RekhaP,ArunA,ShenF,LaiWA,YoungC.Phosphate

solubilizingbacteriafromsubtropicalsoilandtheir

tricalciumphosphatesolubilizingabilities.ApplSoilEcol.

2006;34:33–41.

54.AsaiH,SamsonBK,StephanHM,etal.Biocharamendment

techniquesforuplandriceproductioninNorthernLaos:1.

Soilphysicalproperties,leafSPADandgrainyield.FieldCrops

Res.2009;111:81–84.

55.GuptaS,MeenaMK,DattaS.Isolation,characterizationof

plantgrowthpromotingbacteriafromtheplant

Chlorophytumborivilianumandin-vitroscreeningforactivity

ofnitrogenfixation,phosphatesolubilizationandIAA

production.IntJCurrMicrobiolApplSci.2014;3:1082–1090.

56.AhmadM,ZahirZA,JamilM,NazliF,LatifM,AkhtarMF.

Integrateduseofplantgrowthpromotingrhizobacteria,

biogasslurryandchemicalnitrogenforsustainable

productionofmaizeundersalt-affectedconditions.PakJBot.

2014;46:375–382.

57.ManzoorM,AbbasiMK,SultanT.Isolationofphosphate

solubilizingbacteriafrommaizerhizosphereandtheir

potentialforrockphosphatesolubilization–mineralization

andplantgrowthpromotion.GeomicrobiolJ.2017;34:81–95.

58.ElkocaE,KantarF,SahinF.Influenceofnitrogenfixingand

phosphorussolubilizingbacteriaonthenodulation,plant

growth,andyieldofchickpea.JPlantNutr.2007;31:157–171.

59.MathivananS,ChidambaramA,SundramoorthyP,Baskaran

L,KalaikandhanR.Effectofcombinedinoculationsofplant

growthpromotingrhizobacteria(PGPR)onthegrowthand

yieldofgroundnut(ArachishypogaeaL.).IntJCurrMicrobiol

ApplSci.2014;3:1010–1020.

60.TahirM,NadeemA,NazimH,etal.Plantgrowthpromoting

rhizobacteriaimprovegrowthofnurserytransplantedrice

underagroecologicalconditionsofSouthernPunjab.Environ

Referências

Documentos relacionados

The combined assessment of P chemical fractionation with parameters of P adsorption isotherms in the soil indicates that the indiscriminate application of phosphate fertilizers

The application of non - composted organic residues in layers alternated with animal manure and natural phosphate showed results comparable to the application of composted

Application of cattle manure improve organic matter content and S-SO 4 , the natural phosphate increase phosphorous level, soil organic matter and exchangeable H+Al, and the

Variation in P reactive (Pi) and P non-reactive (Po) contents in the leachates according to the P contents extracted by Mehlich-1 in the top ring (0–10 cm) in two soil samples

Autonomous navigation is one of the most challenging abilities required by mobile robots, since it depends on it’s four fundamental tasks: Perception, the robot must acquire

However, while in colorectal cancer both RAC1 and RAC1b stimulate the cyclin D1 reporter to an equivalent extent and RAC1 appeared to be more effective than RAC1b in activating

Effect of phosphate solubilizing Pseudomonas strain inoculation (a) acid phosphatase activity, (b) peroxidase activity, (c) proline concentration, (d) protein estimation of

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and