• Nenhum resultado encontrado

On growth majorants of subharmonic functions

N/A
N/A
Protected

Academic year: 2017

Share "On growth majorants of subharmonic functions"

Copied!
4
0
0

Texto

(1)

Математичнi Студiї. Т.36, №1 Matematychni Studii. V.36, No.1

УДК 517.574

Yu. S. Protsyk, Ya. V. Vasyl’kiv

ON GROWTH MAJORANTS OF SUBHARMONIC FUNCTIONS

Yu. S. Protsyk, Ya. V. Vasyl’kiv.On growth majorants of subharmonic functions, Mat. Stud.

36(2011), 73–76.

We describe growth majorants of subharmonic in Rm

(m 2) functions. To do this, we

exceptionally reduce the problem to problems in the theory of positive monotonous functions.

Ю. С. Процык, Я. В. Василькив. О мажорантах роста субгармонических функций // Мат. Студiї. – 2011. – Т.36, №1. – C.73–76.

Описаны мажоранты роста субгармонических в Rm

(m2) функций. При этом

про-блема исследования мажорант роста сведена исключительно к задачам из теории поло-жительных монотонных функций.

1. Introduction. Statements of the main results.This communication should be consi-dered as an addition to [1]. So, we follow the notation from [1]. Recall the following definitions briefly.

Letλbe a nonnegative, continuous, nondecreasing, and unbounded function on (0,+∞), named the growth function and λ(0) = 0. The set of nonnegative Borel measures µ in

Rm (m 2), 0 / suppµ, such that N(r, µ) (br) for some a, b > 0 and all r > 0 is

denoted by Mm λ. Here

N(r;µ) =

      

(m−2) r

R

0

n(t;µ)t1−mdt, m3; r

R

0

n(t;µ)t−1

dt, m= 2;

n(t;µ) =µ({y:|y| ≤t}).

By Sm

λ we denote the set of subharmonic functions u in Rm (m ≥ 2), u(0) = 0 whose

Riesz measure µu belongs to Mmλ.

Definition 1. Let λ be a growth function. A δ-subharmonic function w in Rm (m 2),

w(0) = 0, 0 ∈/ suppµw, is said to be a function of finite λ-type if there are constants a and

b such that T(r, w)≤aλ(br) for all r > 0, where T(r, w) is the Nevanlinna characteristic of w [2].

The class of such functions is denoted by Λm

δ (λ), and by ΛmS(λ) we denote the subclass

of subharmonic functions of finite λ-type. We recall the following definitions from [1].

2010Mathematics Subject Classification:31A05.

c

(2)

74 Yu. S. PROTSYK, Ya. V. VASYL’KIV

Definition 2. A class Λm

δ (λ) admits a canonical representation if each function w from Λm

δ (λ) can be represented as a difference w = u−v of subharmonic functions u, v from Λm

S(λ)such that µu =µ+w, µv =µ−w. Hereµ+w, µ

w are positive and negative variations of the

Riesz measure µw.

Definition 3. A growth function λe is called a growth majorant for Sλm if for an arbitrary measureµ fromMm

λ there exists a subharmonic function u fromΛmS(eλ) such that µu =µ.

Definition 4. A growth function bλ is called a minimal growth majorant for Sm

λ if it is a

growth majorant and for each growth majorantλefor Sm

λ there exist constantsa, b >0 such

that bλ(r)≤aeλ(br) for all r >0.

The following results were obtained in [1].

Theorem A. Let λ be a growth function such that the function rm−1

λ′

(r) (m ≥ 2) is nondecreasing on (0,+∞), whereλ′

(r)denotes the right-hand derivative. i) Λm

δ (λ)admits a canonical representation if and only ifλis the minimal growth majorant

forSm λ ;

ii) λ is the minimal growth majorant for Sm

λ if and only if

r2

Z

r1

λ(t)

tk+1 dt≤ak

l

λ(br1)

rk

1

+λ(br2)

rk

2

, k∈N (1)

for somea, b, l and for arbitrary r1, r2, such that 0< r1 < r2.

Lemma B. Let m N [2,+). If a growth function λ(r) is such that the function

rm−1

λ′

(r) (m≥2)is nondecreasing on (0,+∞)and eλ(r)is a growth majorant for Sm λ , then

1. λ(r)≤aeλ(br) for somea, b > 0and all r >0; 2. each function w fromΛm

δ (λ) is representable as a difference w=u−v of subharmonic

functionsu, v from Λm

S(eλ) such thatµu =µ+w, µv =µ−w.

From Theorem A it follows that for an arbitrary growth function λ the classΛm

δ (λ)need

not admit a canonical representation. Lemma B lets us to set a more general statement on solvability of the problem on a canonical representation. The following theorem describes the growth majorants.

Theorem 1. Letλbe a growth function such that functionrm−1

λ′

(r) (m ≥2)is nondecrea-sing on (0,+∞). Then a growth function λe is a growth majorant for Sm

λ if and only if

r2

Z

r1

λ(t)

tk+1 dt≤ak

l eλ(br1)

rk

1

+ eλ(br2)

rk

2

!

, k∈N (2)

for some a, b, l and for arbitrary r1, r2, such that0< r1 < r2.

The proof of this theorem is similar (mutatis mutandis) to that of Theorem A so, we omitted it.

(3)

ON GROWTH MAJORANTS OF SUBHARMONIC FUNCTIONS 75

Theorem 2. Letλbe a growth function such that functionrm−1

λ′

(r) (m ≥2)is nondecrea-sing on (0,+∞) and q(t) is nondecreasing, positive, integer function such that the integral

+R∞

r r t

q(t) λ(t)

t dt is finite for anyr >0. Then the function

e λ(r) =

r

Z

0

r t

q(t)−1 λ(t)

t dt+

+∞

Z

r

r t

q(t)λ(t)

t dt (3)

is the growth majorant for Sm λ .

2. Proof of Theorem 2. Let us show that eλ(r) from Theorem 1 satisfies condition (2). Let {n1, n2, . . . , ni, . . .}, ni ∈N be the set of values for the function q(t). Note that the

elements are placed in the ascending order. We set yi = inf{t: q(t) =ni}.

For arbitrary r1, r2 (0 < r1 < r2), i ∈ N, we have (a) there exists ni ∈ N such that

r1 ≤yi ≤r2 or (b) such ni does not exist.

For the case (a), we have

r2

Z

r1

λ(t)

tk+1dt =

yj

Z

r1

λ(t)

tk+1dt+

l−1

X

i=j yi+1

Z

yi

λ(t)

tk+1dt+

r2

Z

yl

λ(t)

tk+1dt, (4)

where j = min{i∈N: r1 yi}, l = max{iN: yi r2}. Now we estimate the first

summand from the right-hand side of (4). For k ≥nj−1, we get

yj

Z

r1

λ(t)

tk+1dt=

1 rk 1 yj Z r1 r1 t

kλ(t)

t dt ≤

1 rk 1 yj Z r1 r1 t

nj−1 λ(t)

t dt =

1 rk 1 yj Z r1 r1 t

q(t)λ(t)

t dt.

Fork ≤nj−1−1, we obviously have

yj

Z

r1

λ(t)

tk+1dt=

1 rk 2 yj Z r1 r2 t

k λ(t)

t dt≤

1 rk 2 yj Z r1 r2 t

nj−1−1 λ(t)

t dt =

1 rk 2 yj Z r1 r2 t

q(t)−1 λ(t)

t dt.

Therefore,

yj

Z

r1

λ(t)

tk+1dt≤

1 rk 1 yj Z r1 r1 t

q(t)λ(t)

t dt+

1 rk 2 yj Z r1 r2 t

q(t)−1 λ(t)

t dt. (5)

As above, for the other integrals in the right-hand side of (4), we obtain

yj+1

Z

yj

λ(t)

tk+1dt≤

1

rk

1

yj+1

Z

yj

r1 t

q(t) λ(t)

t dt+

1

rk

2

yj+1

Z

yj

r2 t

q(t)−1 λ(t)

t dt, j ≤i≤l−1, (6)

r2

Z

yl

λ(t)

tk+1dt≤

1 rk 1 r2 Z yl r1 t

q(t)λ(t)

t dt+

1 rk 2 r2 Z yl r2 t

q(t)−1 λ(t)

(4)

76 Yu. S. PROTSYK, Ya. V. VASYL’KIV

Using (4)–(7), we get

r2

Z

r1

λ(t)

tk+1dt≤

1

rk

1

r2

Z

r1

r1 t

q(t) λ(t)

t dt+

1

rk

2

r2

Z

r1

r2 t

q(t)−1 λ(t)

t dt≤

≤ 1 rk

1 +∞

Z

r1

r1 t

q(t)λ(t)

t dt+

1

rk

2

r2

Z

0

r2 t

q(t)−1λ(t)

t dt≤ e λ(r1)

rk

1

+ eλ(r2)

rk

2

.

Similarly, for the case (b), we have

r2

Z

r1

λ(t)

tk+1dt≤

1

rk

1

r2

Z

r1

r1 t

q(r1)λ(t)

t dt+

1

rk

2

r2

Z

r1

r2 t

q(r1)−1 λ(t)

t dt=

= 1

rk

1

r2

Z

r1

r1 t

q(t)λ(t)

t dt+

1

rk

2

r2

Z

r1

r2 t

q(t)−1 λ(t)

t dt ≤

≤ 1 rk

1 +∞

Z

r1

r1 t

q(t)λ(t)

t dt+

1

rk

2

r2

Z

0

r2 t

q(t)−1λ(t)

t dt≤ e λ(r1)

rk

1

+ eλ(r2)

rk

2

.

Theorem 2 is proved.

REFERENCES

1. Yu.S. Protsyk, Growth majorants and canonical representation of δ-subharmonic functions, Mat. Stud.

20 (2003), №1, 40–52. (in Ukrainian)

2. M.G. Arsove, Function representable as differences of subharmonic functions, Trans. Amer. Math. Soc.

75 (1953), 327–365.

Technological Faculty,

Ukrainian National Forestry University, yu.protsyk@gmail.com

Faculty of Mechanics and Mathematics, Lviv National University,

yavvasylkiv@gmail.com

Referências

Documentos relacionados

Bulgaria has known a significant drop of the GDP after the political changes in 1989/1990 but the growth rate became positive from 1990 until 1996 when another steep

A prévia conscientização dos trabalhadores de que os recursos de tecnologia de informática estão no ambiente de trabalho para servir apenas como instrumentos de execução das

Figura 5.1: Resultado da simulação para os diferentes casos: a) Ambos os veículos encontram-se dentro do raio de comunicação, b) os raios de comunicação intersectam-se,

Stress under cell wall; Y - total cell wall stress from which cell grows; Θ - proportionality constant between net stress on cell wall and its elongation rate; Π (MPa) -

O Regime Complementar do Procedimento da Inspeção Tributária (RCPIT), no artigo 44.º n.º 1 determina que “o procedimento de inspeção é previamente preparado,

O desenvolvimento deste projecto tem como principal propósito a compreensão do segmento masculino em relação à utilização dos cosméticos e produtos de cuidado

Задача управления физической подготовкой уча- щейся молодежи относится к задачам создания опти- мальных информационно-управляющих систем, при- чем

Basing on the results of MANOVA test it has been observed that the strongest significant effect on an increase of the tensile strength R m exerted the addition of Mg, followed by