• Nenhum resultado encontrado

On Stresses Singularity in one Problem of Elasticity Theory for the Wedge

N/A
N/A
Protected

Academic year: 2017

Share "On Stresses Singularity in one Problem of Elasticity Theory for the Wedge"

Copied!
6
0
0

Texto

(1)

Ա ԱՍ Ա ՈՒԹ ՈՒ Ա Ա Ա Ա Ա Ղ Ա

61, №1, 2008

539.3

. .

Ключевыеслова: ,

r

−1,

, .

Keywords: elastic wedge, stress singularities in form

r

−1, neighborhood of angular point, transcendental equation.

Ա. .Ս Ա

ք

α

ք

(

0

<

α

2

π

)

ք ,

:

, և 1969 ., Ա. .

α

<

π

ք ,

π

α

2

π

ք :

π

=

α

և

α

=

2

π

ք

:

A.M.Sargsyan

On Stresses Singularity in one Problem of Elasticity Theory for the Wedge

The behavior of the stresses in the angular point neighborhood of the elastic wedge with arbitrary opening

angle

α

(

0

<

α

2

π

)

is considered. On the radial bounds of the wedge the boundary conditions of the

smooth contact are given.

The investigation of the transcendental equation roots at

α

<

π

, determining the order of the stresses

singularity , which was carried out by A.I.Kalandia in 1969, is completed for the interval

π

α

2

π

.

The mechanical sense of the stresses singularity of

r

−1 type in case of

α

=

π

and

α

=

2

π

is interpreted.

(

<

α

π

)

α

0

2

, o

.

,

, 1969 . . .

α

<

π

,

π

α

π

2

.

1 −

r

α

=

π

,

π

=

α

2

.

,

α

, ( I-I)

( II-II), , –

( I-II), , - , . . [1].

(2)

= +

λ

λ

ϕ

+

λ

ϕ

=

ϕ

Φ

2

1

1

[

cos(

(

1

)

)

sin(

(

1

)

)

]

)

,

(

j

j j

j

j

B

A

r

r

λ

,

,

j

j

B

A

– ,

,

λ

.

α

,

ν

,

.

[2] . . , –

, ( I, III

I-II) III-III,

0

),

(

τ

=

=

ϕ

ϕ

f

r

r

u

.

0

sin

sin

λα

±

α

=

. , (1)

0

),

(

σ

=

=

f

r

ϕ

u

r

.

[3].

– I-III

II-III ( ).

3

,

0

=

ν

α

0

<

α

2

π

.

λ

Re

min

.

Re

λ

<

1

λ

min

Re

1

.

, III-III, . . : « III-III

)

,

0

(

π

.

λ

=

0

,

α

=

π

,

».

. . :

1. К я ы

α = π

?

α

=

π

(1)

λ

=

k

(

k

=

0

,

1

,

2

,

)

,

0

=

λ

,

. :

π

α

<

0

(1)

λ

min

=

π

α

1

α

=

π

ε

(

ε

)

)

(

1

ε

π

ε

.

ε

0

r

1

.

. .- . . . . ,

[4, 5].

(3)

. 1 . 2

1 2 0

2 2 2 2

[(

)

]sgn

( )

(

)(

)

P

P x

c

x

p x

a

x

x

b

+

=

π

(2)

)

(

x

p

,

)

(

)

(

2

1 2

0

P

P

k

K

a

c

π

=

(3)

0

c

,

)

(

k

K

,

a

x

b

a

b

k

=

1

2 2

,

<

<

)

)(

(

)

(

sgn

)

(

2 2 2 2 3

b

x

x

a

k

K

x

aP

x

=

τ

(2')

)

(

x

τ

)

(

)

(

2

3

k

K

k

K

E

P

=

δ

(3

'

)

δ

– ,

a

x

b

a

b

k

=

,

<

<

=

1

0

(

1

2

)(

1

2 2

)

)

(

t

k

t

dt

k

K

( )

(

b

0

)

,

)

(

x

p

(

τ

(

x

)

)

1

r

( . 1 2).

,

P

j

(

j

=

1

,

2

,

3

)

,

,

δ

c

0 (

K

(

k

)

0

b

).

0

c

δ

, , (3) (3

'

),

P

j

.

r

−1

.

(2

'

) (3

'

) . .

.

2. П х ы III–III

π

α

π

2

, я я я

π

>

(4)

min

1,

0

1

,

3

2

2

1, 3

2

2

π α −

< α ≤ π

λ

=

− π α

π ≤ α ≤ π

⎪ π α −

π ≤ α ≤ π

min

λ

α

.3.

π

=

α

2

λ

min

=

0

, . . (

r

0

)

1 −

r

.

, [6, 7]

,

,

min

Re

λ

[2] - .

, III-III

π

α

π

2

,

,

π

=

α

2

.

, [8]

}

2

,

,

0

{

0 0

1

α

ϕ

α

α

>

π

Ω

r

a

Ω

2

{

a

r

<

,

α

0

ϕ

α

0

}

( . 4),

,

0

=

τ

rϕ

ϕ

=

±

α

0

(

α

=

2

α

0

)

:

)

u

ϕ

(

r

,

±

α

0

)

=

±

g

1

(

r

)

(

1

r

<

)

,

)

σ

ϕ

(

r

,

±

α

0

)

=

f

2

(

r

)

(

1

r

<

)

,

u

ϕ

(

r

,

±

α

0

)

=

±

g

2

(

r

)

(

0

r

1

)

) ),

I-I III-III, .

,

,

– e ,

[9]. ,

a

2

Ω

Ω

1

0

α

=

ϕ

0 = ϕ

P

. 4

π

α

2

π

0 1 2

min

λ

(5)

r

a

r

u

ϕ

(

,

±

α

0

)

=

0 .

. ,

, , (1).

α

0

=

π

,

. .

r

−1,

,

, « « »

». [10]

,

(

x

<

b

)

,

( . 5).

.

. 5

:

)

(

0

)

0

,

(

),

(

)

(

)

0

,

(

x

f

x

x

b

x

b

x

a

u

z

=

±

<

τ

yz

=

<

<

± ±

,

a

x

x

b

x

x

f

x

u

±y

(

,

0

)

=

±

(

)

(

<

),

τ

±yz

(

,

0

)

=

0

<

,

)

(

0

)

0

,

(

x

x

b

y

=

<

σ

±

.

.

)

0

,

(

x

yz

τ

x

<

b

,

x

>

a

,

σ

y

(

x

,

0

)

x

<

b

x

>

a

. ,

(3) (3

'

). ,

b

a

,

r

−1.

,

r

−1

, , ,

.

. .

1 −

r

,

c

0

δ

, : ,

( ) ,

0

=

x

σ

x,

j

P

,

P

j, ,

, . ,

[10], ,

y

x

a

b

a

(6)

b

2

(

b

=

a

),

.

0

b

( . 1, 2)

b

a

( . 5)

,

, , – ,

.

1. Williams M. L. Stress singularities resulting from various boundary conditions in angular corners of plates in extensions. // J. Appl. Mech. 1952. Vol. 19. № 4. P. 526-528.

2. . . .

// . 1969. .33. № 1. . 132-135.

3. Melan E. Ein Beitrag zur Theoric geschweisster Verbindungen. // Ing.- Archiv. 1932. Bd. 3. Heft 2. p.123.

4. . . . .– .: ,

1949. 270 .

5. . ., . .

. .: , 1983. 487 .

6. . ., . . . .: ,

1977. 312 .

7. . ., . . . .: ,

1981. 688 .

8. . .

. // . . . 1990. .43. № 2. . 12-21.

9. . ., . .

. // . . . 1990. .43. № 2. . 3-11.

10.Gevorgyan S.Kh., Manukyan E.H., Mkhitaryan S.M., Mkrtchyan M.S. On A Mixed Problem For An Elastic Space With A Crack Under Antiplane And Plane Deformations. Collection of Papers. Yerevan-2005. 282p.

Referências

Documentos relacionados

In this paper, with the definitions of average deflection and average rotation, the governing equa- tions and the boundary conditions were derived from the plane elasticity

Nineteen countries of the Americas (Bolivia, Brazil, Canada, Chile, Costa Rica, Cuba, Domi- nican Republic, Ecuador, El Salvador, Guate- mala, Jamaica, Mexico,

Leprosy is not a disease apart, since in the countries where it is endemic it is a general public health problem, one to be considered along with the others present in the

Abstract: As in ancient architecture of Greece and Rome there was an interconnection between picturesque and monumental forms of arts, in antique period in the architecture

During the simulation of rod forward micro extruding characterized by wave h = 10µm and λ = 40µm, at the interface billet – container, following distributions of effective

We also determined the critical strain rate (CSR), understood as the tangent of the inclination angle between the tangent to the crack development curve and the crack development

Given the reservation productivity, equilibrium vacancies and unemployment are given at the intersection of the job creation condition and the Beveridge curve.. The analysis