• Nenhum resultado encontrado

On Free Vibrations of Orthotropic Plates in the Presence of Viscous Resistance

N/A
N/A
Protected

Academic year: 2016

Share "On Free Vibrations of Orthotropic Plates in the Presence of Viscous Resistance"

Copied!
11
0
0

Texto

(1)

Ա ԱՍ Ա ՈՒԹ ՈՒ Ա Ա Ա Ա Ա Ղ Ա

64, №1, 2011

539.3

O ЫХ Х ЫХ

Ч

. ., . .

ч : , ,

, , .

Keywords: viscous resistance, frequency of free vibrations, symmetric and antisymmetric problems,

shear vibrations,longitudinal vibrations.

Ա .Ա.,Ս . .

,

: Ա

, 3 – 2 , 1

: Ո - ,

3 :

Aghalovyan L.A., Sargsyan .Z.

On Free Vibrations of Orthotropic Plates in the Presence of Viscous Resistance

The three-dimensional problem of elasticity theory of the free vibrationsof orthotropic platesin the presence of viscous resistance, on the facial plane of which mixed-boundary conditions of elasticity theory are given is considered. By the asymptotic method it is shown that 3 groups of free vibrations, 2 groups of shearing and 1 group of longitudinal free vibrations are appeared. The stress-deformed states, principal values of frequencies and the forms of natural vibrations of plates relevant to 3 groups of free vibrations are determined.

,

. , 3 –

2 , 1 .

-, ,

.

( ,

, )

- ё .

ё

- , [1-5].

, ё , ё

.

1.

( )

0

{( , , ), , , , }

D= x y z x yD zh h<<l ( D0– , 2h – ,

l– ), ё

[6] :

0

zz xz yz

(2)

,

.

[5].

,

/ , = / , = /

x l y l z l

ξ = η ζ

/ , = / , = /

U=u l V v l W w l. h

l

ε = ,

:

( )

(

)

(

( ) ( ) ( )

)

(

)

1

2 2 2

* * *

, ,

, , ;

,

1, 2,3

0,

,

, ,

,

,

,

,

.

s s i t

jk

s s s

s i t s

s

e

x y z

j k

s

N

U V W

U

V

W

e

h

− + ω

αβ

ω

σ = ε

σ

α β =

=

=

= ε

ω = ε ω

ω = ρ ω

(1.3)

(1.3)

0 0 0 0

n

n n k n k

n n n k

a b a b

∞ ∞ ∞

= = = =

⎛ ⎞⎛ ⎞=

⎜ ⎟⎜ ⎟

⎠⎝

∑∑

,

:

( ) ( ) ( )

(

)

( )

( )

( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( )

( )

( )

1 1

13 11 12

* * *

1 1 1

11 11 12 22 13 33 66 12

1 1

12 11 22 22 23 33 55 13

13 11 23

2

0, (1, 2, 3; , ,

),

,

,

s

s s

s m

m n n m

s s s

s s s s

s s s

s s s s

s

s

iK

U

U V W

U

U

V

a

a

a

a

V

W

U

a

a

a

a

W

a

a

− −

− −

− − −

− −

∂σ

∂σ

∂σ

+

+

+ ω

ω −

ω

=

∂ξ

∂η

∂ζ

=

σ +

σ + σ

+

=

σ

∂ξ

∂η

∂ξ

=

σ +

σ +

σ

+

=

σ

∂η

∂ξ

∂ζ

=

σ +

σ

∂ζ

( ) ( ) ( )1 ( ) ( )

22 33 33 44 23

1

,

2

,

0, ,

0, ,

s s

s s

W

V

s

a

a

K

k h

n

m m

s

+

σ

+

=

σ

∂η

∂ζ

=

ρ

=

=

(1.4)

1

k – , ρ – .

(1.4) U( )s ,V( )s ,W( )s

:

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1

12 11 23 22 12

66

1 1 1

13 22 13 12 33

55

1 1

23 33 11 23

44

1

,

,

1

,

,

1

,

s s s s s

s s

s s s s s

s s

s s s s

s s

V

U

W

U

V

A

A

A

a

U

W

W

U

V

A

A

A

a

V

W

W

U

A

A

a

− − − −

− − −

− −

σ =

+

σ = −

+

∂ξ

∂η

∂ζ

∂ξ

∂η

σ =

+

σ = −

+

∂ζ

∂ξ

∂ζ

∂ξ

∂η

σ =

+

σ =

∂ζ

∂η

∂ζ

( )1 13

,

s

V

A

ξ

∂η

(1.5)

2 2

2

22 33 23 11 33 13 12 33 13 23 11 22 12

11

, , ,

22 33 12

,

a a

a

a a

a

a a

a a

a a

a

A

=

A

=

A

=

A

=

(3)

2 2 2 11 23 12 13 22 13 12 23

13 , 23 , 11 22 33 2 12 13 23 11 23 22 13 33 12.

a a a a a a a a

A = − A = − Δ =a a a + a a aa aa aa a

Δ Δ

U( )s ,V( )s ,W( )s (1.4) :

( )

(

)

( ) ( )

(

)

2

55 * * *

2

55 44 11

2

,

0, ,

0, ,

, ,

;

,

,1

.

s

s m s

m n n m U

U

a

iK

U

R

n

m m

s

U V W a

a

A

− −

+

ω

ω −

ω

=

=

=

∂ζ

(1.6)

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 1 1

1 1

2 2

11 12 12 22

55 44

1 1

1 1

2 2

23 13 13 23

11 11 11

,

1

.

s s s s

s s

s s

U V

s s

s s

s W

W

W

R

a

R

a

A

U

A

V

R

A

A

A

− − − −

− −

− −

− −

∂σ

∂σ

∂σ

∂σ

= −

+

= −

+

∂ζ∂ξ

∂ξ

∂η

∂η∂ξ

∂ξ

∂η

∂σ

∂σ

=

+

+

∂ζ∂ξ

∂η∂ξ

∂ξ

∂η

(1.7)

,

(1.6) s=0:

( )

(

)

( )

0 2

0 2

55 *0 *0

2

2

0

U

a

i K

U

+

ω −

ω

=

∂ζ

(

U V W a

, ,

;

55

,

a

44

,1

A

11

)

.

(1.8)

(1.8) :

( ) ( )

(

)

( )

(

)

(

)

0 0 2 0 2

1 55 *0 *0 2 55 *0 *0

55 44 11

cos

2

sin

2

, ,

;

,

,1

.

U U

U

C

a

i K

C

a

i K

U V W a

a

A

=

ω −

ω ζ +

ω −

ω ζ

(1.9)

(1.9), , ё (1.5)

(1.1) (1.2) σxz

( )0

0

U

=

∂ζ

ζ = ±

1

, (1.10)

( )0 ( )0 1U , 2U C C :

( ) ( ) ( ) ( )

0 0

1 0 2 0

0 0

1 0 2 0

sin

cos

0,

sin

cos

0,

U U U U

U U U U

C

C

C

C

⎧−

γ +

γ =

γ +

γ =

⎪⎩

(1.11)

(

2

)

0 55 *0 2 *0

U a i K

γ = ω − ω .

:

0 0

sin

γ

U

cos

γ =

U

0

, (1.12)

2 :

0 0

sin

γ = ⇒ γ = π

U

0

U

n

,

n

∈ Ν

, (1.13)

(

)

0 0

cos

0

2

1 ,

2

U U

n

n

π

γ = ⇒ γ =

+

∈ Ν

. (1.14)

(1.13) ,

:

2 2 2 *0

55

,

n

n

iK

K

n

N

a

π

(4)

1)

55 n K

a π

> :

2 2 2 *0

55

,

n

n

iK

i K

n

N

a

π

ω =

±

. (1.16)

(1.3), (1.16) , ,

2 2 2

55

1

exp

K

K

n

t

a

h

π

− −

ρ ⎝

2 2 2

55

1

exp

K

K

n

t

a

h

π

− +

ρ ⎝

.

2)

55 n K

a π

< :

2 2 2 *0

55

,

n

n

iK

K

n

a

π

ω =

±

∈ Ν

. (1.17)

(1.3) , .

55 13

1a =G – ,

. .

,

( “I”). , 2 2 2

* h

ω = ρ ω ,

2 2

I 2

0

55

1

,

n

n

iK

K

n

a

h

π

ω =

±

∈ Ν

ρ ⎝

. (1.18)

(1.11) (1.13) C2( )U0 =0, , (1.9) :

( )0 ( )0

( )

( )0

( )

I 1

,

cos

0 1 I

,

cos

n U U Un

U

=

C

ξ η

γ ζ =

C

ξ η

π ζ

n

,

n

∈ Ν

.

(1.19)

(1.14) ( ,

“II”)

(

)

2

2

II 2

0

55

2

1

1

,

4

n

n

iK

K

n

a

h

π

+

ω =

±

∈ Ν

ρ

(1.20)

:

( )0 ( )0

( ) (

)

II 2 II

2

1

,

sin

,

2

n Un

n

U

=

C

ξ η

+ π

ζ

n

∈ Ν

. (1.21)

, (1.1) (1.2) σyz,

:

2 2

III 2

0

44

1

,

n

n

iK

K

n

a

h

π

ω =

±

∈ Ν

ρ ⎝

( ) (1.22)

(

)

2

2

IV 2

0

44

2

1

1

,

4

n

n

iK

K

n

a

h

π

+

ω =

±

∈ Ν

ρ

( ) (1.23)

( )0 ( )0

( )

III 1 III

,

cos

,

n Vn

(5)

( )0 ( )0

( ) (

)

IV 2 IV

2

1

,

sin

,

2

n Vn

n

V

=

C

ξ η

+ π

ζ

n

∈ Ν

( ) (1.25)

(1.1) σzz,w.

( )0

0

W

=

∂ζ

ζ =

1

;

( )0

0

W

=

ζ = −

1

. (1.26)

(1.26), (1.9),

( )0 ( )0 1W, 2W C C :

( ) ( ) ( ) ( )

0 0

1 0 2 0

0 0

1 0 2 0

sin

cos

0,

cos

sin

0.

W W W W

W W W W

C

C

C

C

⎧−

γ +

γ

=

γ −

γ

=

⎪⎩

(1.27)

:

(

)

0 0

2

1

cos 2

0

,

4

W W

n

n

+ π

γ

= ⇒ γ

=

∈ Ν

, (1.28)

(

)

2

2

V 2

0 11

1

2

1

,

16

n

iK

A

n

K

n

h

π

ω =

±

+

∈ Ν

ρ ⎝

. (1.29)

, (1.26)

. (1.27) C2( )W0 =C1( )W0tgγW0, , (1.9)

(1.28) :

( )0 ( )0

( )

(

) ( )

V 1 V

2

1

,

cos

1

,

4

n Wn

n

W

=

C

ξ η

+ π

− ζ

n

∈ Ν

, ( )

( )0

0 1

1

0

.

cos

W W

W

C

C

=

γ

(1.30)

(1.2) w

( )0

0

W

=

ζ = ±

1

. (1.31)

(1.31), (1.9),

:

(

)

2

VI 2 2

0 11

2

1

1

,

4

n

n

iK

A

K

n

h

+

ω =

±

π

∈ Ν

ρ

( )(1.32)

(

)

VII 2 2 2

0 11

1

,

n

iK

A

n

K

n

h

ω =

±

π

∈ Ν

ρ

( ) (1.33)

( )0 ( )0

( )

(

)

VI 1 VI

2

1

,

cos

,

2

n Wn

n

W

=

C

ξ η

+

πζ

n

∈ Ν

( ) (1.34)

( )0 ( )0

( )

VII 2 VII

,

sin

,

n Wn

W

=

C

ξ η

π ζ

n

n

∈ Ν

( ) (1.35)

, , (1.19), (1.21),

(1.24), (1.25), (1.30), (1.34), (1.35),

,

(6)

I 0n

ω II

0n ω

( )0

yz

σ

, W( )0 , , . .

, :

( )0 ( )0 ( )0 ( )0

I I II II

0

n n n n

V

=

W

=

V

=

W

=

,

n

∈ Ν

.

(1.36)

III IV 0n 0n, 0n

ω = ω ω V VI VII

0n 0n, 0n, 0n ω = ω ω ω

( )0 ( )0 ( )0 ( )0 III III IV IV

0

n n n n

U

=

W

=

U

=

W

=

, (1.37)

( )0 ( )0 ( )0 ( )0 ( )0 ( )0 V V VI VI VII VII

0

n n n n n n

U

=

V

=

U

=

V

=

U

=

V

=

,

n

∈ Ν

.

(1.38)

, , I II

0n 0n, 0n ω = ω ω III IV

0n 0n, 0n

ω = ω ω :

( ) ( )

( ) ( ) ( ) ( )

(

)

(

)

0 0

I II

0 0 0 0

13 I 1 I 13 II 2 II

55 55

0, ,

1, 2,3,

13,

2

1

2

1

sin

,

cos

,

2

2

jkn jkn

n Un n Un

j k

jk

n

n

n

C

n

C

n

a

a

σ

= σ

=

=

+ π

+ π

π

σ

= −

π ζ σ

=

ζ

∈ Ν

(1.39)

( ) ( )

( ) ( ) ( ) ( )

(

)

(

)

0 0

III IV

0 0 0 0

23 III 1 III 23 IV 2 IV

44 44

0, ,

1, 2,3,

23,

2

1

2

1

sin

,

cos

,

2

2

jkn jkn

n Vn n Vn

j k

jk

n

n

n

C

n

C

n

a

a

σ

= σ

=

=

+ π

+ π

π

σ

= −

π ζ σ

=

ζ ∈Ν

(1.40)

, V VI

0n 0n, 0n

ω = ω ω (1.1), :

( )

( ) ( )

( )(

)

(

) ( ) (

)

0

0 0

11 V 23 1 V 23 13 11

0, ,

1,2,3,

,

,

2

1

2

1

,

sin

1

, 11,22,33;

,

,

,

4

4

jkn

n Wn

j k

j

k n

n

n

A C

A A

A

σ =

=

∈Ν

+ π

+ π

σ

= −

ξ η

−ζ

(1.41)

(1.2) :

( ) ( )

( ) ( )

(

)

(

)

(

)

( ) ( )

(

)

0 0

VI VII

0 0

11 VI 23 1 VI 23 13 11

0 0

11 VII 23 2 VII 23 13 11

0, ,

1, 2, 3,

,

2

1

2

1

sin

,

11, 22, 33;

,

,

,

2

2

cos

,

11, 22, 33;

,

,

,

.

jkn jkn

n Wn

n Wn

j k

j

k

n

n

A C

A

A

A

A C

n

n

A

A

A

n

σ

= σ

=

=

+ π

+ π

σ

=

ζ

σ

= −

π

π ζ

∈ Ν

(1.42)

, 3 , –

ω ωI0n, II0n, III IV 0n, 0n

ω ω –

ω ω0Vn, VI0n.

2. . ,

( )

{ }

0

{ }

( )0

{ }

( )0

{ }

( )0

{ }

( )0

{ }

( )0

{ }

( )0 I II , III , IV , V VI VII

n n n n n n n

U U V V W W W

1− ≤ ζ ≤1, . ., , ( ) ( )

1

0 0 I I 1

0

n m

U U

d

ζ =

,

n

m

(

U V W

, ,

)

,

n m

,

∈ Ν

.

(2.1)

(2.1), (1.8)

(7)

( )

( )

(

)

( )

0 2

2 0

I I

I

55 *0 *0 I

2

2

0

m

m m m

U

a

i K

U

+

ω

ω

=

∂ζ

. (2.2)

(2.2) Un( )0I ζ

[

−1, 1

]

, :

( )

( )

(

( )

)

( ) ( )

1 2 0 1

2

0 I I 0 0

I

I 55 *0 *0 I I

2

1 1

2

0

m

n m m n m

U

U

d

a

i K

U U

d

− −

ζ +

ω

ω

ζ =

∂ζ

. (2.3)

(2.3) (1.10), :

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) 1

1 2 0 0 1 0 0 1 0 0

0 0

I I I I I I

I I

2

1 1 1 1

n n n m n m

m m

U

U

U

U

U

U

U

d

U

d

d

− −

ζ =

ζ = −

ζ

∂ζ

∂ζ

∂ζ

∂ζ

∂ζ

∂ζ

(2.3) :

( ) ( )

( )

(

)

( ) ( )

1 0 0 1

2 0 0

I I

I I

55 *0 *0 I I

1 1

2

0

n m

m m n m

U

U

d

a

i K

U U

d

− −

ζ +

ω

ω

ζ =

∂ζ

∂ζ

. (2.4)

(1.8) Un( )0I ,

( )0 I m

U , :

( ) ( )

( )

(

)

( ) ( )

1 0 0 1

2 0 0

I I

I

55 *0 *0 I I

1 1

2

0

nv m

m m n m

U

U

d

a

i K

U U

d

− −

ζ +

ω

ω

ζ =

∂ζ

∂ζ

. (2.5)

(2.4) (2.5), :

(

I I

)(

I I

)

1 ( ) ( )0 0

55 *0 *0 *0 *0 I I

1

2

0.

n m n m n m

a

i K

U U

d

ω − ω

ω + ω

ζ =

(2.6)

nm, I I

*0n *0m

ω ≠ ω (2.6) :

( ) ( ) 1

0 0 I I 1

0

n m

U U

d

ζ =

. (2.7)

,

( )

( )

( )

{ } {

}

0 I

I 0 I

1 I

,

cos

,

n

n n

Un

U

n

C

Ψ =

Ψ

=

π ζ

η ξ

,

n

∈ Ν

(2.8)

1− ≤ ζ ≤1.

n

Ψ .

3.

s

1

. (1.6) s=1 I *0n *0n

ω = ω .

(1.6): ( )

(

)

( )

(

)

( ) ( )

1 2

1 0 1

I I I I

I

55 *0 *0 I 55 *1 *0 I I

2

2

2

2

n

n n n n n n Un

U

a

iK U

a

iK U

R

+

ω

ω −

+

ω

ω −

=

∂ζ

(3.1)

(3.1) Un( )1I

:

( )1 ( )0

I I

1

n nm m

m

U

b U

=

(8)

(1.1) (1.2), σxz.

(3.2) (3.1) , (2.2)

( )

( )

(

)

( )

0 2

2 0

I I

I

55 *0 *0 I

2 2

m

m m m

U

a i K U

= − −

∂ζ ω ω , :

(

I I

)(

I I

)

( )0 I

(

I

)

( )0 ( )1

*0 *0 *0 *0 55 I 55 *1 *0 I I

1

2

2

n m n m nm m n n n Un

m

i K b a U

a

iK U

R

=

ω −ω

ω +ω +

= −

ω

ω −

+

(3.3)

(3.3) Uk( )I0 ζ

[

−1, 1

]

,

( )

{ }

0 I n

U , :

(

I I

)(

I I

)

I

(

I

)

( )0 ( )1

55 *0 *0 *0 *0

2

= 2

55 *1 *0 I I

nk n k n k n n Unk nk Unk

b a

ω − ω

ω + ω +

i K

a

ω

ω −

iK C

δ +

R

(3.4)

nk

δ – ,

( ) ( )

( ) ( )

( )

( ) ( ) ( ) 1

0

0 1 I 1 1 0

I 0 I 0 2 I I

1

1 I 1 I

1

,

Un

Unk Unk Un k

Uk Uk

C

C

R

R U

d

C

C

=

=

ζ

,

n

∈ Ν

.

(3.5)

n=k (3.4) :

( )

(

)

1

I I

*1 I

55 *0

2

Unn n

n

R

a

iK

ω =

ω −

,

n

∈ Ν

,

(3.6)

nk:

( )

(

)(

)

1 I

I I I I

55 *0 *0 *0 *0

2

Unk nk

n k n k

R

b

a

i K

=

ω − ω

ω + ω +

,

n

∈ Ν

.

(3.7)

(1.5), (1.7) , (1.36) RUn( )1I =0, , (3.5) (3.7) :

0

nk

b

=

,

n

k

,

ω =

*1I n

0

,

n

N

. (3.8)

nn

b Un:

( )

( ) ( )

(

)

1 2

0 1

I I

2 0

1 I

1

1

n n

n

U

U

d

U

+ ε

ζ =

, ( )

( )

( )

1 2

2

0 0

I I

1

n n

U

U

d

=

ζ

, (3.9)

: ( ) ( )

1

0 1 I I 1

0

n n

U U d

ζ =

,

n

∈ Ν

.

(3.10)

( )1 I n

U (3.10), (3.2), :

( ) ( ) ( ) ( )

1 1

1

0 0 0 0

I I I I

0 1 1

0

n

nk n k nn n n

k

b

U U

d

b

U U

d

=

ζ +

ζ =

∑ ∫

.

nk, ( ) ( )

1 0 0 I I 1

0 nn n n

b U U d

ζ =

,

0

nn

b

=

,

n

∈ Ν

.

(3.11)

, ω*0n = ω*0In :

( )1 I

I

0,

*1

0,

n n

(9)

2

s= . (1.6) s=2

: ( )

(

)

( )

(

)

( ) ( )

2 2

2 0 2

I I I I

I

55 *0 *0 I 55 *2 *0 I I

2

2

2

2

n

n n n n n n Un

U

a

iK U

a

iK U

R

+

ω

ω −

+

ω

ω −

=

∂ζ

(3.13)

:

( )2 ( )0

I I

1

n nr r

r

U

c U

=

=

,

n

∈ Ν

.

(3.14)

, :

( )

(

)

2

I I

*2 I

55 *0

2

Unn n

n

R

a

iK

ω =

ω −

,

n

=

k

, (3.15)

( )

(

)(

)

2 I

I I I I

55 *0 *0 *0 *0

2

Unk nk

n k n k

R

c

a

i K

=

ω − ω

ω + ω +

,

n

k

, (3.16)

( )

( )

( )

( ) ( ) ( ) ( )

1 1

2 2 0 2

I 0 2 I I 0 I I

1 1 I 1

1 I

1

1

Unk Un k Un k

Uk Uk

R

R U

d

R

d

C

C

− −

=

ζ =

Ψ ζ

. (3.17)

( )2 I Un

R , (1.5), (1.7), (1.36), :

( )2

(

)

2 ( )I1 2 ( )0I 2 ( )0I

I 55 23 55 22 2 2

66

1

1

n n n

Un

W

U

U

R

a A

a

A

a

=

+

∂ζ∂ξ

∂ξ

∂η

. (3.18)

(3.18) Wn( )I1 ,

(1.6), (1.13) :

( )

( ) ( )

1

2 2 2

1 1

I

I I

2

55 11 n

n Wn

W

n

W

R

a A

+

π

=

∂ζ

,

n

∈ Ν

,

(3.19)

( )1 I Wn

R , (1.5), (1.7) ,(1.19):

( )1 2 ( )0I

( )

( )0

I 23 1 I 23

11 55 11 55

1

1

1

1

sin

n

Wn Un

U

R

A

C

A

n

n

A

a

ξ

A

a

=

= −

π

π ζ

∂ξ∂ζ

. (3.20)

(3.19), :

( )1 ( )1 ( )1

0I 1 2

55 11 55 11

sin

cos

n W W

n

n

W

D

D

a A

a A

π

π

=

ζ +

ζ

.

(3.19), (3.20) (3.19):

( )

( )

( )

(

)

1 0 55 23

I 1 I

55 11

1

sin

1

n Un

a A

W

C

n

n

a A

τ ξ

=

π ζ

π

.

, Wn( )I1

( ) ( ) ( )

( )

( )

(

)

1 1 1 0 55 23

I 1 2 1 I

55 11 55 11 55 11

1

sin

cos

sin

1

n W W Un

a A

n

n

W

D

D

C

n

n

a A

a A

a A

ξ

π

π

=

ζ +

ζ +

π ζ

π

(3.21)

( )1 ( )1 1, 2

W W

(10)

( )1

(

)

( )I1 ( )0I

I 11 23

1

1

0;

n n

0

n

W

U

W

A

A

ζ=

ζ = − =

=

∂ζ

∂ξ

. (3.22)

(3.22), (1.19) (3.21),

( )1 ( )1 1, 2

W W

D D ,

, , :

( )

( )

( )

( )

( )

( )

( )

( ) 1

1 55 11 0 11 23

1 1 I

55 11 55 11 11

55 11

1

1 55 11 0 11 23

2 1 I

55 11 55 11 11

55 11

1

cos

,

2

1

cos

1

sin

.

2

1

cos

n W Un n W Un

a A

A

A

n

D

C

n

a A

a A

A

n

a A

a A

A

A

n

D

C

n

a A

a A

A

n

a A

+ ξ + ξ

π

=

π

π

π

=

π

π

(3.23)

(3.18), (3.21), (3.23) (1.19), :

( )

( )

( )

(

) ( )

(

)

(

)

(

)

( )

( )

( )

( )

1

2 0 55 23 11 23

I 1 I

55 11 55 11

11

55 11 2

0 0

55 23 55

55 22 1 I 1 I

55 11 66

1

1

cos

1

2

1

cos

1

cos

,

1

n Un Un Un Un

a A

A

A

n

R

C

n

a A

A

a A

a A

a A

a

a A

C

C

n

a A

a

+ ξξ

ξξ ηη

π

=

π

+ ζ −

+

π ζ

(3.24)

( )2 I Unk R : ( ) ( ) ( ) 1 2 2

I 0 I

1 1 I

1

sin

Unk Un Uk

R

R

k d

C

=

π ζ ζ

. (3.25)

(3.24) (3.25), :

( )

( )

(

)(

)

(

)

(

)

( )

( )

( ) 0 1 I 2

2 55 55 23 11 23 55 11

I 2 2 0

55 11 55 11 1 I

55 2 11

2

1

1

2

1

c s

i

o

s n

Un n k Unk Uk

n

C

a A

a k a A

A

A

R

n

a A

n

a A k

C

a A

+ + ξξ

π

= −

π

π −

. (3.26)

, (3.15), (3.16), (3.26), I

*2n ω cnk:

( )

( )

( )

(

(

)

)(

(

)

)

0 1 I 55 11 55 23 11 23

I

*2 0 2 I

1 I 55 11 *

2 0 55 11

1

2

1

cos

sin

Un n Un n

n

C

a A

A

A

a A

n

C

a A

iK

n

a A

ξξ

π

ω =

π

ω −

π

,

n

∈ Ν

.

(3.27)

( )

( )

( )

(

)(

)

( )

(

)(

)

(

)

(

)

2 0

1 I 55 23 11 23

55 11

0 I I I I 2 2

1 I *0 *0 *0 *0 55 11 55 1 2

1

55 11

2

1

1

2

2

1

co

i

s

s n

n k Un nk

Uk n k n k

n

C

k

a A

A

A

a A

c

n

C

i K

a A

n

a A k

a A

+ + ξξ

π

=

π

π ω −ω

ω +ω +

(3.28)

(11)

0

nn

c

=

,

n

∈ Ν

.

(3.29)

, Un( )2I I

*2n

ω , . , :

( ) ( ) I I 2 I

* *0 *2

0 2 2

I I I

,

,

.

n n n

n n n

U

U

U

n

⎧ω = ω + ε ω

=

+ ε

∈ Ν

⎪⎩

(3.30)

(1.2) .

( )1 I 0 n

W ≠ , ,

, . .

. , Wn( )I0 =0,Wn( )I1 ≠0 ,

.

,

.

, .

1. . .

.// . - ,

-. . . 2000. №3. .8-11.

2. . .

.// . :

-“ ” , 2002. .9-19.

3. . ., . .

.// . 2006.

.70. .1. .111-125.

4. . ., . .

. // . . . 2005. .58. №2.

.48-58.

5. . . .

// - . .

. 2009. . 5-35.

6. . . . .: , 1959. 439 .

:

ч, , . ,

.

: 0019 , . 24 ,

: (+37410) 52-58-35, -mail: aghal@mechins.sci.am

.: (093)069950, : (0224)22335 E-mail: messarg@gmail.com

Referências

Documentos relacionados

The iterative methods: Jacobi, Gauss-Seidel and SOR methods were incorporated into the acceleration scheme (Chebyshev extrapolation, Residual smoothing, Accelerated

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

Outrossim, o fato das pontes miocárdicas serem mais diagnosticadas em pacientes com hipertrofia ventricular é controverso, pois alguns estudos demonstram correlação

H„ autores que preferem excluir dos estudos de prevalˆncia lesŽes associadas a dentes restaurados para evitar confus‚o de diagn€stico com lesŽes de

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

Dos objectivos traçados no nosso trabalho, verificamos que da análise quantitativa da transição das Lux GAAP para as IFRS nas diferentes rubricas, bem como nos