• Nenhum resultado encontrado

Introduction Introduction toCMOS VLSIDesign

N/A
N/A
Protected

Academic year: 2022

Share "Introduction Introduction toCMOS VLSIDesign"

Copied!
41
0
0

Texto

(1)

Introduction to CMOS VLSI

Design

Introduction

Manoel E. de Lima

David Harris - Harvey Mudd College

(2)

Introduction

 Integrated circuits: many transistors on one chip.

Very Large Scale Integration (VLSI): very many

Complementary Metal Oxide Semiconductor – Fast, cheap, low power transistors

 Today: How to build your own simple CMOS chip – CMOS transistors

– Building logic gates from transistors – Transistor layout and fabrication

 Rest of the course: How to build a good CMOS chip

(3)

CMOS VLSI Design

WHY VLSI DESIGN?

Money, technology, civilization

(4)

Annual Sales

10

18

transistors manufactured in 2003

100 million for every human on the planet

0 50 100 150 200

1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002

Year

Global Semiconductor Billings(Billions of US$)

(5)

CMOS VLSI Design

Digression: Silicon Semiconductors

Modern electronic chips are built mostly on silicon substrates

Silicon is a Group IV semiconducting material

crystal lattice: covalent bonds hold each atom to four neighbors

Si Si Si

Si Si Si

Si Si Si

http://onlineheavytheory.net/silicon.html

(6)

Silicon Lattice

 Transistors are built on a silicon substrate

 Silicon is a Group IV material

 Forms crystal lattice with bonds to four neighbors

Si Si

Si

Si Si

Si

Si Si

Si

(7)

CMOS VLSI Design

0: Introduction Slide 7

Dopants

 Silicon is a semiconductor

 Pure silicon has no free carriers and conducts poorly

 Adding dopants increases the conductivity

 Group V: extra electron (n-type)

 Group III: missing electron, called hole (p-type)

As Si Si

Si Si Si

Si Si Si

B Si

Si

Si Si Si

Si Si Si

- +

+ -

(8)

p-n Junctions

 A junction between p-type and n-type semiconductor forms a diode.

 Current flows only in one direction

p-type n-type

anode cathode

(9)

CMOS VLSI Design

A Brief History

Invention of the Transistor

Vacuum tubes ruled in first half of 20th century Large, expensive, power-hungry, unreliable

1947: first point contact transistor (3 terminal devices)

Shockley, Bardeen and Brattain at Bell Labs

(10)

A Brief History, contd..

1958: First integrated circuit

Flip-flop using two transistors

Built by Jack Kilby (Nobel Laureate) at Texas Instruments

Robert Noyce (Fairchild) is also considered as a co-inventor

smithsonianchips.si.edu/ augarten/

Kilby’s IC

(11)

CMOS VLSI Design

A Brief History, contd.

First Planer IC built in 1961

2003

Intel Pentium 4 processor (55 million transistors)

512 Mbit DRAM (> 0.5 billion transistors)

53% compound annual growth rate over 45 years

No other technology has grown so fast so long

Driven by miniaturization of transistors

Smaller is cheaper, faster, lower in power!

Revolutionary effects on society

(12)

 1970’s processes usually had only nMOS transistors

Inexpensive, but consume power while idle

 1980s-present: CMOS processes for low idle power

MOS Integrated Circuits

Intel 1101 256-bit SRAM Intel 4004 4-bit Proc

(13)

CMOS VLSI Design

Moore’s Law

1965: Gordon Moore plotted transistor on each chip

Fit straight line on semilog scale

Transistor counts have doubled every 26 months

Year

Transistors

4004

8008 8080 8086

80286 Intel386

Intel486 Pentium

Pentium ProPentium IIPentium III Pentium 4

1,000 10,000 100,000 1,000,000 10,000,000 100,000,000 1,000,000,000

1970 1975 1980 1985 1990 1995 2000

Integration Levels SSI: 10 gates

MSI: 1000 gates LSI: 10,000 gates VLSI: > 10k gates

http://www.intel.com/technology/silicon/mooreslaw/

(14)

Transistor Types

Bipolar transistors

npn or pnp silicon structure

Small current into very thin base layer controls large currents between emitter and collector

Base currents limit integration density

Metal Oxide Semiconductor Field Effect Transistors

nMOS and pMOS MOSFETS

Voltage applied to insulated gate controls current between source and drain

Low power allows very high integration

First patent in the ’20s in USA and Germany

Not widely used until the ’60s or ’70s

(15)

CMOS VLSI Design

0: Introduction Slide 15

nMOS Transistor

 Four terminals: gate, source, drain, body

 Gate – oxide – body stack looks like a capacitor – Gate and body are conductors

– SiO2 (oxide) is a very good insulator

– Called metal – oxide – semiconductor (MOS) capacitor

– Even though gate is

no longer made of metal

n+

p Gate

Source Drain

bulk Si

SiO2 Polysilicon

n+

(16)

nMOS Operation

 Body is commonly tied to ground (0 V)

 When the gate is at a low voltage:

– P-type body is at low voltage

– Source-body and drain-body diodes are OFF – No current flows, transistor is OFF

n+

p Gate

Source Drain

bulk Si

SiO2 Polysilicon

n+

D 0 S

(17)

CMOS VLSI Design

0: Introduction Slide 17

nMOS Operation Cont.

 When the gate is at a high voltage:

– Positive charge on gate of MOS capacitor – Negative charge attracted to body

– Inverts a channel under gate to n-type

– Now current can flow through n-type silicon from source through channel to drain, transistor is ON

n+

p Gate

Source Drain

bulk Si

SiO2 Polysilicon

n+

D 1 S

(18)

pMOS Transistor

 Similar, but doping and voltages reversed – Body tied to high voltage (VDD)

– Gate low: transistor ON – Gate high: transistor OFF

– Bubble indicates inverted behavior

SiO2

n Gate

Source Drain

bulk Si Polysilicon

p+ p+

(19)

CMOS VLSI Design

0: Introduction Slide 19

Power Supply Voltage

 GND = 0 V

 In 1980’s, VDD = 5V

 VDD has decreased in modern processes

– High VDD would damage modern tiny transistors – Lower VDD saves power

 VDD = 3.3, 2.5, 1.8, 1.5, 1.2, 1.0, …

(20)

Transistors as Switches

 We can view MOS transistors as electrically controlled switches

 Voltage at gate controls path from source to drain

g

s d

g = 0

s d

g = 1

s d

g

s d

s d

s d nMOS

pMOS

OFF ON

ON OFF

(21)

CMOS VLSI Design

Transistors

Level Symbol Switch Conditions

Strong 1 1 P-switch gate=0, source=Vdd Weak 1 1 N-switch gate=1, source=Vdd Strong 0 0 N-switch gate=1, source=Vss Weak 0 0 P-switch gate=0, source=Vss

High impedance Z N-switch gate=0, or P-switch gate=1

0: Introduction Slide 21

Input 0

Output Good 0 Input

1

Output poor 1

Input 0

Output poor 0 Input

1

Output good 1

(22)

Input 0

Output Good 0 Input

1

Output poor 1

Input 0

Output poor 0 Input

1

Output good 1

(23)

CMOS VLSI Design

0: Introduction Slide 23

CMOS Inverter

A Y

0 1

V

DD

A Y

A Y GND

(24)

CMOS Inverter

A Y

0

1 0

V

DD

A=1 Y=0

GND ON OFF

A Y

(25)

CMOS VLSI Design

0: Introduction Slide 25

CMOS Inverter

A Y

0 1

1 0

V

DD

A=0 Y=1

GND OFF ON

A Y

(26)

CMOS Inverter

VinVin VoutVout VddVdd

VssVss

CCloadload

Q1Q1 Q2Q2

IIdd

1- 1- Vin = VddVin = Vdd

Análise do circuito:

Análise do circuito:

Vdd=+5V Vdd=+5V

0V0V

VoutVout Roff

Roff

RonRon

Cálculo de Vout

Vdd = Ids(Roff+Ron) =>

Vdd = Ids.Roff+Ids.Ron =>

Vdd = Ids.Roff+Vout =>

Vout = Vdd-Ids.Roff 0V IdsIds

Ron < 1 Kohms Roff 1010Kohms

Ids é pequeno, mas Roff é bastante grande

(27)

CMOS VLSI Design

CMOS Inverter

• Note que Vh = 5V, VL = 0V, e que Ids = 0A.

• Isto significa que não existe praticamente dissipação de potência.

(28)

CMOS Inverter

+5V

GNDGND

Vih=´1´

R +5V

GNDGND Iol Iil Out

In

Vol(max) Vil(max)

Tempo (seg) Tensão(V)

Vil(max) Nível ´0´

Capacitor carregado (´1´)

Transistor conduz

Ron 1 K

Transistor não conduz

Ron 1 K

(29)

CMOS VLSI Design

CMOS Inverter

VinVin VoutVout VddVdd

VssVss

CCloadload

Q1Q1 Q2Q2

IIdd

2- 2- Vin = 0VVin = 0V

Análise do circuito:

Análise do circuito:

Vdd=+5V Vdd=+5V

0V0V

VoutVout Ron Ron

RoffRoff

Cálculo de Vout

Vdd = Ids(Roff+Ron) =>

Vdd = Ids.Roff+Ids.Ron =>

Vdd = Vout+Ids.Ron =>

Vout = Vdd-Ids.Ron Vdd=5V IdsIds

Ron < 1 Kohms Roff 1010Kohms Ids é muito pequeno

(30)

CMOS Inverter

• Note que Vh = 5V, VL = 0V, e que Ids = 0A.

• Isto significa que não existe praticamente dissipação de potência.

(31)

CMOS VLSI Design

CMOS Inverter

+5V

GNDGND

Vil=0

R +5V

GNDGND Ioh Iih Out

In

Voh(min) Vih(min)

Tempo (seg) Tensão(V)

Vih(min) Nível ´1´

Capacitor

X

Transistor não conduz

Roff 1010

Transistor conduz

Ron 1 K

(32)

CMOS NAND Gate

A B Y

0 0

0 1

1 0

1 1

A B

Y

(33)

CMOS VLSI Design

0: Introduction Slide 33

CMOS NAND Gate

A B Y

0 0 1

0 1

1 0

1 1

A=0 B=0

Y=1 OFF

ON ON

OFF

(34)

CMOS NAND Gate

A B Y

0 0 1

0 1 1

1 0

1 1

A=0 B=1

Y=1 OFF

OFF ON

ON

(35)

CMOS VLSI Design

0: Introduction Slide 35

CMOS NAND Gate

A B Y

0 0 1

0 1 1

1 0 1

1 1

A=1 B=0

Y=1 ON

ON OFF

OFF

(36)

CMOS NAND Gate

A B Y

0 0 1

0 1 1

1 0 1

1 1 0

A=1 B=1

Y=0 ON

OFF OFF

ON

(37)

CMOS VLSI Design

Lógica Combinacional

 Porta NAND saídasaída A0 A0 11

00 11 11 BB

11 1 01 0

AA BB

P P

N

N

Vcc (‘1’)

GND (‘0’)

saída

Vcc

GND A

B

Saída Saída

GND A

B C

n

A B C n

Vcc

Porta NAND de n-entradas (A+B)

(A B)

Dual Lógico Dual Lógico

(38)

CMOS NOR Gate

A B Y

0 0 1

0 1 0

1 0 0

1 1 0

A B

Y

(39)

CMOS VLSI Design

Lógica Combinacional

 Porta NOR

AA N N BB

P

Vcc (‘1’)

GND (‘0’)

saída

P

Vcc

GND A

B

saída

Saída Vcc

n

A B C

A B C n

GND

saída

saída A A

00 11

00 11 00 BB

11 0 00 0

(A B)

(A+B)

Dual Lógico Dual Lógico

(40)

3-input NAND Gate

 Y pulls low if ALL inputs are 1

 Y pulls high if ANY input is 0

A B

Y

C

(41)

CMOS VLSI Design

0: Introduction Slide 41

Summary

 MOS Transistors are stack of gate, oxide, silicon

 Can be viewed as electrically controlled switches

 Build logic gates out of switches

Referências

Documentos relacionados

Diante disso, o objetivo desse estudo foi pesquisar Leishmania Leishmania infantum, Leishmania Viannia braziliensis e parasitos gastrointestinais em roedores silvestres e

Os Espaços Internet do concelho de Reguengos de Monsaraz e o Programa Escolhas através do Centro de Inclusão Digital são os locais onde os reguenguenses ciganos têm

Dessa forma foi desenvolvido um manual de aulas práticas que aborda os principais conteúdos trabalhados em sala de aula referente à disciplina de Genética

PRASANTHI et al., (2015) realizou a soldagem de dois materiais dissimilares, sendo um de aço médio teor de carbono e outro de titânio pelo processo de soldagem por

A gênese da literatura infantil caracteriza-se por essa prática da adaptação (NECYK, 2007, p. As narrativas, portanto, foram incorporadas às publicações das obras

NOTA: Se o SupportAssist Enterprise estiver instalado em um sistema operacional Linux, você pode também fornecer o nome de usuário e a senha da conta de usuário que seja membro

In this paper we aim at modelling the situation when a potential entrant – irrespective of any move by an incumbent – might have incentives to not enter a market, in order to

Entre os métodos utilizados para a definição de programas de secagem se destaca o proposto por Simpson (1996), que se baseia na determina- ção da temperatura de bulbo seco e