• Nenhum resultado encontrado

Elastin increases biofilm and extracellular matrix production of Aspergillus fumigatus

N/A
N/A
Protected

Academic year: 2021

Share "Elastin increases biofilm and extracellular matrix production of Aspergillus fumigatus"

Copied!
8
0
0

Texto

(1)

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Bacterial

and

Fungal

Pathogenesis

Elastin

increases

biofilm

and

extracellular

matrix

production

of

Aspergillus

fumigatus

Ildnay

de

Souza

Lima

Brandão

a

,

Heloiza

Maria

da

Silva

Oliveira-Moraes

b

,

Cristina

Maria

de

Souza

Motta

c

,

Neiva

Tinti

de

Oliveira

c

,

Oliane

Maria

Correia

Magalhães

a,∗

aUniversidadeFederaldePernambuco,CentrodeCiênciasBiológicas,DepartamentodeMicologia,CidadeUniversitária,PE,Brazil bUniversidadeFederaldePernambuco,CentrodeCiênciasBiológicasRuaDepartamentodeMicologia,CidadeUniversitária,PE,Brazil cUniversidadeFederaldePernambuco,CentrodeCiênciasBiológicas,DepartamentodeMicologia,Pernambuco,PE,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received27October2016 Accepted2October2017 Availableonline13February2018 AssociateEditor:WaldirElias

Keywords: Aspergillusfumigatus Biofilm Elastin Extracellularmatrix Hydrophobicity

a

b

s

t

r

a

c

t

Aspergillusfumigatusisanopportunisticsaprobefungusthataccountsfor90%ofcasesof pulmonaryaspergillosisinimmunosuppressedpatientsandisknownforitsangiotropism. Whenitreachestherespiratorytract,A.fumigatusinteractswithstructuralcomponentsand bloodvesselsofthelungs,suchaselastin.Tounderstandtheeffectofthisstructural com-ponent,weexaminedtheeffectofelastinontheproductionanddevelopmentofthebiofilm ofA.fumigatus.InRPMIcontaining10mg/mLofelastin,asignificantincrease(absorbance

p<0.0001;dryweightp<0.0001)intheproductionofbiofilmwasobservedincomparisonto whenRPMIwasusedalone,reachingamaximumgrowthof18.8mg(dryweight)ofbiofilmin 72h.Inaddition,elastinstimulatestheproduction(p=0.0042)ofextracellularmatrix(ECM) anddecreases(p=0.005)thehydrophobicityduringthedevelopmentofthebiofilm.These resultssuggestthatelastinplaysanimportantroleinthegrowthofA.fumigatusandthatit participatesintheformationofthickbiofilm.

©2018SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Introduction

Aspergillus fumigatus is an opportunistic saprobe fungus that accounts for 90% of pulmonary aspergillosis cases in immunosuppressedpatients.Thisdiseasecanexhibitvarious clinical forms, mainly consisting of allergic

bronchopul-∗ Correspondingauthor.

E-mail:olimicomed@yahoo.com.br(O.M.Magalhães).

monaryaspergillosis,aspergilloma,andinvasiveaspergillosis (IA),whichareimportantcausesofmorbidityandmortality rangingfrom70to90%.1,2

In aspergilloma and IA, A. fumigatusbehavesas a mul-ticellularcommunitysurroundedbyanextracellularmatrix (ECM),whichischaracteristicofabiofilm3,4andmayexplain,

togetherwithhistologicalevidence,theresistanceto antifun-galagentswhentheseclinicalformsaretreated.5,6

Thedevelopmentofthisfunguswithinthelungsandthe angiotropism7,8allowthismicroorganismtobeindirect

con-tactwithelastin,oneofthemainstructuralcomponentsofthe

https://doi.org/10.1016/j.bjm.2017.10.004

1517-8382/©2018SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

lungsandbloodvessels,whichisfundamentalfortheir physi-ology.CorrelationbetweenelastaseproductionbyA.fumigatus

andthedevelopmentofIAhasbeenobserved.9

Ithasrecentlybeen demonstrated theinfluenceofhost factorssuchasserumcomponents,asfetuinA,10and

extracel-lularDNA11inthepromotionofgrowthofA.fumigatusbiofilm;

however,nostudieshaveinvestigatedtheinfluenceoflung tissueconstituentsonthepromotionofbiofilmdevelopment. Inthisperspective,theaimofthisworkwastodetermine theinfluenceofelastininthegrowthanddevelopmentofthe biofilmofA.fumigatus.

Materials

and

methods

Fungalstrainandgrowthconditions

Basedondataobtainedfrom previousanalysisofvirulence factorssuchasbiofilmandgliotoxinproduction,andabilityto causepulmonaryaspergillosisinmice(unpublisheddata),we selectedtwoisolatesofA.fumigatus,URM5992 (environmen-talorigin) andURM6575 (clinicalsample),fromthe Culture Collection University Recife Mycology(URM) ofthe Federal UniversityofPernambuco(UniversidadeFederalde Pernam-buco–UFPE),Recife,Pernambuco(PE),Brazil,wereused.The isolatesweremaintainedat28◦Cinmaltextractagar.

Growthconditionsandinoculumstandardization

A.fumigatusisolatesweregrownonSabourauddextroseagar at37◦Cfor72h.Theconidiawerecollectedbywashingthe surfaceofthe culturewith5mLofphosphatebuffersaline (PBS),pH7.2,supplementedwith0.025%(v/v)Tween20.The inoculumwasadjustedto1×105cellsinRPMI1640

(Sigma-AldrichCorporation,USA)andbufferedtopH7.0with0.165M MOPS(Sigma-AldrichCorporation,USA)fortheproductionof biofilmin96-wellplates.12Forquantificationofthedryweight,

anotherinoculumwasadjustedto3.75×104cells/cm2.10

ProductionofA.fumigatusbiofilm

A. fumigatus biofilm were produced in flat-bottom 96-well polystyreneplates.Then,200␮Lofthestandardizedcell sus-pensionofeachA.fumigatusisolatewasaddedseparatelyin MOPS-RPMI1640(Sigma-AldrichCorporation,USA)or MOPS-RPMI 1640containing elastin (RPMI/Elastin) (Sigma-Aldrich Corporation,USA)atconcentrationof10mg/mLforeachtime (24,48,and72h).Plateswereincubatedat37◦C.Foreachtime interval,theculturemediumwasremovedfromthewells,and thecellswerewashedthreetimeswithPBS,pH7.2,toremove allnon-adherentcells.12

Toquantifythedryweightofthebiofilm,3mLsuspensions ofeachisolatewere placedseparatelyin6-wellpolystyrene plateswithMOPS-RPMI1640orRPMI/Elastin(10mg/mL), incu-bationtimes,andtemperatureslistedabove.10

Biofilmquantification

Biofilm was quantified using the technique developed by O’Tooleand Kolter13 and subsequently modifiedby Mowat

etal.12Theplatesweredried,and100␮Lof0.5%(w/v)crystal

violetsolutionwasaddedfor5min.Thesolutionwasremoved by thorough washing under running water. Biofilms were unstainedbyadding100␮Lof95%ethanoltoeachwellfor 1min.Theethanolwastransferredtoanothermicrotiterplate (96-well),andtheabsorbancewasmeasuredat570nm(A570) usingaVarioskanFlashfluorescencemeterwithSkanItTM2.4.5

REsoftware(ThermoFisherScientific,USA).

Quantificationofthebiofilmbiomass(dryweight)

Afterthe predeterminedtime, the biofilmwas removedby scrapingandfilteredthroughpaperfilters(Miracloth/22␮m, Merck, Germany), which were then dried to a constant weight.10

QuantificationoftheECM

ThebiofilmformedinRPMIandRPMI/Elastin(10mg/mL)for 48hat37◦Cwerestainedbytheadditionof100␮Lofa solu-tion of25␮g/mL Alexa Fluor 488 (CAAF; Life Technologies, Germany)inPBS,followedbyincubationfor45minat37◦C andstirringat250rpm.Thebiofilmwaswashedthreetimes withPBS.11Thefluorescenceintensitywasmeasuredusing

aVarioskanFlashfluorescencemeterwithSkanItTM 2.4.5RE

software (Thermo Fisher Scientific, USA) at excitation and emission wavelengths of 485nm and 520nm, respectively. CAAFstocksolutionsof5mg/mLwerestoredat−20◦Cand

thawedimmediatelybeforeuse.

Quantificationofbiofilmhydrophobicity

A microsphere adhesion assay with fluorescent orange sulfate-modifiedlatexmicrospheres(0.806␮m,Sigma-Aldrich Corporation, USA)was usedtotest biofilm hydrophobicity. ThebiofilminRPMIaloneandRPMI/Elastin(10mg/mL)were washed with 0.1M KNO3,pH 6.5,and then mixed withan

equalvolumeofthe microspheresolution(109/mL).

Subse-quently, the mixture was stirred for 30s and extensively washedwiththesamesolution.3Theamountoffluorescence

emittedresultingfromtheadherenceofthemicrospheresto thehyphaewasmeasuredwithaVarioskanFlashfluorescence meterwithSkanItTM2.4.5REsoftware(ThermoFisher Scien-tific,USA)atexcitationandemissionwavelengthsof520nm and540nm,respectively.

Biofilmmicroscopy

For microscopicanalysis, the biofilm was grownon cover-slips(22mm×22mm)inRPMIand RPMI/Elastin(10mg/mL) at37◦Cfor48hin6-wellpolystyreneplates.Thecoverslips wereremoved,andthebiofilmwasanalyzed.

To visualize the structure of the biofilm, 100␮L of CalcofluorWhite®(Sigma-AldrichCorporation,USA)and exci-tation/emissionfiltersof346/433nmwere usedtoobtain a bluecolor.TheECMquantificationandhydrophobicityassays wereconductedasdescribedaboveforthequantificationof fluorescence.

(3)

TheimageswereobtainedusingaLeicaDMI4000B fluo-rescencemicroscopeandLeicaMicrosystemsLASAFsoftware (Germany).

Analysisofbiofilmstructurebyscanningelectron microscopy(SEM)

TheA.fumigatusbiofilmsforelectronmicroscopywere devel-opedasdescribedinthepreviousbiofilmformationsection, in6-wellpolystyreneplates at37◦C during48h wereused forthisexperiment.FortheSEM,thesampleswereprocessed asdescribedbyGonzález-Ramírezetal.14Briefly,thebiofilms

werewashedwithPBSandfixedwith2%Glutaraldehyde (Elec-tronMicroscopySciences®,WashingtonPA,USA)for2h.Then, thebiofilmswerepost-fixedwith1%OsmiumTetroxide (Elec-tronMicroscopySciences®,WashingtonPA,USA)for2h.The bottomsofthe6-polystyreneplateswerecutwithahotpunch, andtheintactbiofilmwasobtained.Thesampleswere dehy-dratedwithethanolat10,20,30,40,50,60,70,80and90%for 10minandwithabsolutealcoholfor20min.Then,thebiofilms wereplacedintoacriticalpointdryerandwerecoatedwith ionizedgoldfor400sat15.0kV.TheSEMimageswereobtained usingaShimadzu-SS550microscopewithtungstenfilament (Kyoto,Japan).

Statisticalanalysisanddatapresentation

All datarepresent themean and standard deviationof six replicatesofeach isolate.Thegraphical representationand statisticalanalysisofexperimentaldatawereperformedby analysisofvariance(ANOVA)and/orTukey’stestformultiple comparisonsusingtheGraphPadPrism5software(GraphPad Software,Inc.,California,USA).pvalueslessthan0.05were consideredstatisticallysignificant.

Results

Biofilmgrowthinthepresenceofelastin

ThebiofilmformationbyA.fumigatus(URM5992andURM6573) wasassessedinmicroplateassayusingcrystalviolet stain-inganddryweight.Theadditionofelastin(10mg/mL)tothe mediumpromotedsignificantbiofilmgrowth(p<0.0001)inall evaluatedtimepoints(Fig.1AandB).Nodifferenceinbiofilm production was observed between the isolates (p=0.1447). Regardlessofthesource,bothstrainswere abletoproduce biofilm.

As expected, the addition of elastin led to increased biomassafter48h,whencomparedtobiofilminRPMImedium alone(9.4mg),reaching18.8mgat72h.Thesedatastrongly suggesttheinfluenceofelastinonA.fumigatusbiofilmgrowth anddevelopment.

Biofilmstabilitywasassessedbyshearmechanicalforce byseriallypipettingthebiofilmswithPBSduringthe wash-ingprocedure (results notshown).Weobservedduringthe first24hofgrowth,thebiofilmappearedconsistent,butitdid notstronglyadheretotheplates.After48h,thestructurewas stableandadherent.

Morphologically,bundles ofparallelhyphae (Fig. 1E and F) as well as an interlaced arrangement, acting possibly to strengthen and stabilizethe structure asa whole,were observedat48h.Inaddition,weobservedcircular arrange-ments (Fig. 1E and F), indicatingthe possible formationof channelsforaircirculation.

IncreasedofECMprovidedbytheelastin

Elastin (10mg/mL) increasedthe amount ofECM produced byA. fumigatus(p=0.0042)(Fig. 2)when comparedtoRPMI mediumalone.ThisincreasebecomesthebiofilmofA. fumiga-tusstrainstobemorecohesive,asshownphotomicrographs (Fig.3AandB).Inaddition, weobservedstrongstainingby CAAFinamorphousmaterialsaroundtheendsofthehyphae (Fig.3CandD).Theseresultsindicatestronglythatpulmonary constituentstimulatesA.fumigatustodevelopevasion mech-anismtohostdefenses.

Modificationofhydrophobicityofthemyceliumbythe elastin

Wefounddifferenthydrophobicpropertiesinthebiofilmof

A. fumigatus. The mycelium grown in the biofilm in RPMI wasmorehydrophobicthanobservedinRPMIsupplemented with elastin(10mg/mL) (Fig. 4movefigure2). The hydropho-bicitywasassessedinhydrophobicityassayofthemycelium surfacewithfluorescentorangesulfate-modifiedlatex micro-spheres(0.806␮m,Sigma-AldrichCorporation,USA).

Inthisassay,alargenumberofmicrospheresadheredto the biofilm grown in RPMIalone (Fig. 5A and B), whilein the presenceof elastin, the hydrophobicity was decreased (p=0.005)(Fig.5CandD).Whatisinterestinginthisdatais thatdifferentthanweexpected,thehydrophobicitydecreased whileECMproductionincreased.

Ourfindingrevealedthatthepresenceofhostcomponents, suchaselastin,iscapableofalteringthebehaviorofA. fumi-gatus,asshownhereforhydrophobicity.

Discussion

Biofilms are multicellular communities of microorganisms surrounded by an ECM. Growth in communities confers advantagestofungi,includingtheeaseofcolonizationofthe substrate,protectionfrom environmental aggression, resis-tancetophysicalandchemicalstress,metaboliccooperation, andregulationofgeneexpression.3,6

Severalreportshaveshownthataddingnewcomponents toRPMI1640mediumproducesconditionsthatmimicthehost organismduringinfection.4,11,15

Asfarasweknow,thisisthefirstreportofbiofilm produc-tionbyA.fumigatusonthepresenceofelastin.Inthisstudy, thepresenceofelastinintheRPMImediumledtoincreased biomassin100%after48h,whencomparedtobiofilminRPMI mediumalone.Theincreasebiofilmwhenaddedelastintothe growthmedium,suggeststheinfluenceoflungconstituents on the promotion of biofilm development of A. fumigatus.

Recently,hasbeendemonstratedtheinfluenceofotherhost factors,suchasserumcomponents,suchasfetuinA,10 and

(4)

A

2.0 ** ** **** **** **** **** **** **** **** **** **** 1.5 1.0 0.5 0.0 Time (h) 0 µm50 0 µm50 0 µm50 0 µm50 Time (h) Dr y w eight (mg) Absorbance (A570nm) 20 15 10 5 0 24h 48h 72h 24h 48h 72h

B

D

F

E

C

Fig.1–InfluenceofelastinonthegrowthofA.fumigatusbiofilm.ThegraphicsrepresentthemeanvalueswithSDsofthe biofilmproductionofbothisolatesofA.fumigatusmeasuredbyabsorbancewith0.5%crystalviolet(A)and(B)thedry weight.Asignificantincreaseinthepresenceof10mg/mLofelastin(graybars)comparedtoRPMIalone(blackbars)was observedforalltimeperiods(**p<0.01;****p<0.0001;ANOVA);(C)A.fumigatusURM6575biofilmgrowninRPMIisshown after48hat37◦Cunderlightinmicroscopyand(D)stainedwithCalcofluorWhite®(E)andinRPMIsupplementedwith 10mg/mLofelastinundermicroscopyand(F)stainedwithCalcofluorWhite®.Anincreasedamountofbiofilmwas producedinthepresenceofelastin(10mg/mL).Circulararrangements(yellowarrow)andparallelbundlesofhyphae(black arrow)areshown.Scalebar,50␮m.

extracellularDNA11onpromotingthegrowthofA.fumigatus

biofilm.

Nodifferencewasobservedinbiofilmproductionbetween theisolates(p=0.1447).BothisolatesofA.fumigatuswereable toproducebiofilm independentoftheirsubstrate oforigin (clinicalorenvironmental).Thisresultisconsistentwiththose ofGonzález-Ramírezetal.14whodidnotobservedifference

indevelopmentandbiofilmproductionbetweenclinicaland environmentalisolatesofA.fumigatus.

Weobtained maximumdry weight at72h of18.8mgis morethan twice themaximum value(8.3mg) obtainedfor Seidleretal.4duringthesametimeperiodofco-culturewith

bronchial epithelialcells,usingthe A.fumigatusATCC9197 strain. While the biofilm ofA. fumigatus(IFM 49896 strain) demonstrated by Toyotome et al.10 in presence of serum

protein fetuin A reached an average mass of 30mg. Indi-cating that other host constituents may be necessary for biofilmdevelopmentinA.fumigatus.Inaddition,thebiofilm

(5)

150 **** ** ** Fluorescence (485/520 nm) 100 50 URM5992 URM6573 0

Fig.2–Influenceofelastinonextracellularmatrix(ECM)of

A.fumigatusbiofilm.ThemeansandSDsshowthatthe

amountofECMproducedinthepresenceofelastin(gray bars)wassignificantlygreater(p=0.0042),thanthat producedinRPMIalone(blackbars).Thedifference betweenisolatesofclinical(URM6573)andenvironmental (URM5992)originwashighlysignificant(p<0.001,ANOVA). **p<0.01;****p<0.0001.

productionvariationobservedinthesestudiesmayberelated to the biofilm-forming capacity of each organism, vary-ing according to the isolates used, as known for group A

Streptococcus.16

The observed increase in biofilm production can be attributedtoseveralfactors,firstlytheelastinbeanabundant proteininlung tissueandblood vesselwalls,likelyserving asanimportantsourceofnutrientsforbiofilmproduction.9

Elastaseactivity mustbehighlighted amongallthe factors supposedly related to pathogenicity in this mold, because not only elastincan serve as a source ofnitrogen for the fungus,butalsoits degradationcouldallowpathogen inva-sion through host tissues.17,18 This activity has also been

describedinotherimportantpulmonarypathogens,suchas

Pseudomonasaeruginosa.19

Moreover,the elastincouldbeable topromote modula-tionofgenesinvolvedintheregulationofbiologicalprocesses, whichmayberelatedtotheestablishmentofdeepinfections, likehasbeendemonstratedtoTrichophytonrubrum.17

Previous studies evaluating biofilm growth kinetics observedincreaseforbiofilmproducedovertime,3,12whichis

ingoodagreementwiththeresultsofthepresentstudy. Regarding morphology, the hyphae arrangement in the biofilm of A. fumigatus observed is similar to that found bySeidleretal.,4 whereparallel-packedhyphae strengthen

thestructureinonedirectionwhilecrossinghyphaefurther stabilizethe structure.Inaddition,the presenceofcircular

A

AccV Probe Mag WD Det 5um

0 µm 25 0 µm 25 SE 17 x 2000 4.0 15.0kV

AccV Probe Mag WD Det 5um SE 17 x 2000 4.0 15.0kV

B

D

C

Fig.3–Enhancedproductionextracellularmatrix(ECM)ofA.fumigatusbiofilm.Photomicrographstakenbyscanning electronmicroscopyanalysisofA.fumigatusURM6575biofilminRPMI(A)andRPMIwithelastin(B)showincreased productionofECMinthepresenceofelastin(yellowarrow).Magnificationof2000×.A.fumigatusURM6575biofilmgrownin RPMIsupplementedwith10mg/mLofelastin(C)underlightmicroscopyandstainedwithconcanavalinA-AlexaFluor488® (D)showgreateramountsofECMattheendsofthehyphae(whitearrow).Scalebar,50␮m.

(6)

2000 **** ** ** Fluorescence (520/540 nm) 1500 1000 500 0 URM5992 URM6573

Fig.4–InfluenceofelastinonthehydrophobicityofA.

fumigatusbiofilm.Thehydrophobicityinthepresenceof

elastin(graybars)wassignificantlylower(p=0.005)than thatinRPMIalone(blackbars).Thedifferencebetweenthe clinical(URM6573)andenvironmental(URM5992)isolates washighlysignificant(p<0.0001,ANOVA).**p<0.01; ****p<0.0001.

arrangements,alsoobservedbyBeauvaisetal.3suggeststhe

possibleformationofchannelsforaircirculation,whichcould betheoriginoftheoxidationmechanismsresponsibleforthe productionofmelanin,aknownconstituentoftheECM.3,20

As expected, the increase of biofilm was followed by increaseamountofECM,thisresultisconsistentwiththose ofSeidleretal.4whoobservedtheincreaseintheamountof

ECMisrelatedtothegreateramountofbiofilm.

Thismatrix is anessential component forthe develop-mentofbiofilmbecauseitgluestogetherthehyphaeandfixes themtothesurface.3Inaddition,itprovidesprotectionagainst

externalfactors,suchastheactionofthehostimmunecells andantifungalagents.20–22

Inthisstudy,weusedCAAFtostainthepolysaccharides and SEM to analyze the ECM. In agreementwith previous studies,3,4,10wefoundtheECMasamatrixdiffusedbetween

thehyphaeand surroundsthem,whereitapparently glues togetherthehyphalthreadsofthenetwork.3

Consistentwithearlyobservations,3,4,11theECMwasalso

moreevidentendingflowtubes,suggestingitnotonlycovers andprotectsthestructureasawholebutalsoconnectsthe endsofthehyphaetoeachother.11

Thepresenceofcarbohydrate,evidenced byCAAF stain of␣-mannopyranosyl and␣-glucopyranosyl residuesofthe polysaccharides,suggestsitsavailabilityintheECMisaresult ofneedtoprovidenutritiontothehyphaethatmakeupthe biofilmstructure,especiallythosethataremostdistantfrom thenutrientsource.12

Ourfindingsconsistofamulticellularcomplexstructure andhighlyorganized, withpolysaccharidesinthecell wall andsurroundingthe hyphaeinthebiofilmlikereportedby earlystudies.3,4,12,22

This is the first study to observe an increase in ECM productioninA.fumigatusbiofilminthepresenceofa pul-monaryandbloodvesselsconstituent,theelastin.Thisfinding

suggeststhedevelopmentofbiofilmofA.fumigatusisstrongly influencedbyfactorspresentinthehostbecausetheECMis alsopresentinaspergillomaandprovidesgreaterstabilityto thehyphaenetwork.20Inaddition,itishypothesizedthatECM

playsasignificantroleinantifungalresistancebyadsorbing antifungaldrugmoleculesandpreventingtheirdiffusion.4,23

Apossibleexplanationforthismightbethegreater avail-abilityofnutrients,whichprobablyledtohighergrowthwith increasedproductionofECM.Previouslywas demonstrated thefundamentalroleofelastaseontissueinvasion, suggest-ing A.fumigatusopens breachesinthepulmonarybarriers, secretingtheseproteases,whicharerelatedtopathogenicity thisfungus.24

Anotherpossibleexplanationforthisisthattheincrease inECMproductionobservedinthisstudymayberelatedto thestimulationofthepulmonaryenvironment,whichcauses

A. fumigatustodevelop strategiestosurvivethe host.This matrix contains toxins,suchasgliotoxin, whichiscapable of inducingapoptosis inmacrophages, polymorphonuclear leukocytes and dendriticcells,aswellasmelanin, the pig-mentthatprotectsthefungusagainstoxidativestress.3,15,25,26

Thus,assuggested,thelungenvironmentappearstoselect theisolatesthatarebestadapted.27,28

Intermsofhydrophobicity,weusedanassaywith sulfate-modifiedlatexmicrospheres,becausetheyhavealowdensity ofnegativecharges, andmorethan 90% oftheirsurfaceis availableforhydrophobicinteractions.29

Adhesionisthefirststepincolonizationofasubstrateby afungus,whichoccursthroughvariousinteractionsbetween conidiaandthesubstratesurface.30Despitetheimportance

of the adhesion, little isknown about this process.31

Sev-eral studieshavefocusedprimarilyon thefungal cellwall, emphasizing proteins, especially the hydrophobins, which are responsible forthe high hydrophobicity ofconidia and hyphaewalls.Theseproteinsstabilizetheadhesionofspores tohydrophobicsurfaces,bothnaturalandartificial,possibly generatingmorphogeneticsignals.30,32.

In A. fumigatus have been demonstrated hydrophobins are responsible for the hydrophobic characteristic of the ECM.3,33,34 Bruns et al.15 and Gibbons et al.35 showed

up-regulationofhydrophobinsgenesofA.fumigatusinbiofilm condition,suggestingthatseveralhydrophobinsareexpressed intheA.fumigatusECM.

Thisisthefirststudytoreportachangeinthe hydropho-bicityofA.fumigatusbiofilmwhenelastin,afactorpresentin thehost,isaddedtogrowthmedium.Environmental condi-tionssuchastemperature,nutrientsupply,andhumidity,36as

wellastheculturingconditions,i.e.,solidorliquidmediaand biofilmconditions,canaffecthydrophobicity.3,37,38

Contrary to expectations, this study finds a significant decrease on hydrophobicitywhen elastinisaddedtoRPMI medium,eventhoughtheirpresencehascausedanincrease intheECM.

This inconsistency may be due to the role played by hydrophobins in completing the life cycle of these fungi, causingthesurfacetobehydrophobicandresistantto humid-ity,therebyfacilitatingthedispersionofsporesthroughthe air.39,40Thus,afterestablishedacommunityinthelung

envi-ronment,A.fumigatus,mostlikely,doesnotneedtoexpend energyforproductionofdispersingproteins.

(7)

A

B

D

0µm 50 0µm 50 0µm 50 0µm 50

C

Fig.5–DecreasedhydrophobicityofA.fumigatusbiofilm.A.fumigatusURM5992(environmentalorigin)biofilmafter48hat 37◦C.(AandB)BiofilmGrowninRPMIwithoutelastinunderlightmicroscopyandstainedwithlatexbeads,respectively.(C andD)biofilmgrowninRPMIwithelastin–10mg/mLunderlightmicroscopyandstainedwithlatexbeads,respectively. Scalebar,50␮m.

However,otherroleshavebeenattributedtohydrophobins, asdemonstratedbyRodAp,whichhamperimmune recogni-tion;anditsabsenceisassociatedwithareductionofvirulence inthisfungus.41–43Thesefindingsreinforcetheneedfor

fur-therstudiestoelucidatethebiologicalrolesofhydrophobins, especially in the context of the host-parasite relationship becauseseveralhostfactorsmayacttogether,inadditionto elastin,toinducetheexpressionoftheseproteinsinvivo.

Inconclusion,thisstudydemonstratedthatelastin influ-ences biofilm development of A. fumigatus. The results showedthattheECMproductionwasstronglyincreasedwhile the hydrophobicity of the biofilm decreased. The present studyconfirmspreviousfindingsandcontributesadditional evidencethatsuggestspulmonaryconstituentscanalso influ-encebiofilmdevelopmentofA.fumigatus.

However,additionalexperimentsshouldbenecessaryto allowforincreasedunderstanding of the role ofhost con-stituentsfordevelopmentofA.fumigatusbiofilm.

Conflicts

of

interest

Theauthorsdeclarethattheyhavenocompetinginterests.

Acknowledgements

TheauthorsaregratefultotheNationalCouncilforScientific andTechnologicalDevelopment,Brazil(ConselhoNacionalde DesenvolvimentoCientíficoeTecnológico–CNPq)forsupport.

In additiontothankingthe Dr.Dijanah CotaMachado and Dr.PaulEuzébiooftheDepartmentofPhysiologyand Depart-mentofBiophysics,respectively,oftheFederalUniversityof Pernambuco,Brazil.

r

e

f

e

r

e

n

c

e

s

1.FernándezLK,CharterinaSA,RubioAAG,SánchezNistalMA.

Thedifferentmanifestationsofpulmonaryaspergillosis:

multidetectorcomputedtomographyfindings.Radiologia.

2014;56(6):496–504.

2.O’GormanCM.AirborneAspergillusfumigatusconidia:arisk

factorforaspergillosis.FungalBiolRev.2011;25:151–157.

3.BeauvaisA,SchmidtC,GuadagniniS,etal.Anextracellular

matrixgluestogethertheaerial-grownhyphaeofAspergillus

fumigatus.CellMicrobiol.2007;9:1588–1600.

4.SeidlerJM,SalvenmoserS,MüllerFMC.Aspergillusfumigatus

formsbiofilmswithreducedantifungaldrugsusceptibility

onbronchialepithelialcells.AntimicrobAgentsChemother.

2008;52(11):4130–4136.

5.MowatE,WilliamsC,JonesB,McChleryS,RamageG.The

characteristicsofAspergillusfumigatusmycetoma

development:isthisabiofilm?MedMycol.

2009;47(1):S120–S126.

6.RajendranR,MowatE,McCullochE,etal.Azoleresistanceof

Aspergillusfumigatusbiofilmsispartlyassociatedwithefflux

pumpactivity.AntimicrobAgentsChemother.

2011;55(5):2092–2097.

7.FillerSG,SheppardDC.Fungalinvasionofnormally

(8)

8. KamaiY,ChiangLY,LopesBezerraLM,etal.Interactionsof

Aspergillusfumigatuswithvascularendothelialcells.Med Mycol.2006;44(1):S115–S117.

9. KhosraviAR,MahdaviOmranS,ShokriH,LotfiA,MoosaviZ.

Importanceofelastaseproductionindevelopmentof

invasiveaspergillosis.JMycolMed.2012;22:167–172.

10.ToyotomeT,YamaguchiM,IwasakiA,etal.FetuinA,aserum

component,promotesgrowthandbiofilmformationby

Aspergillusfumigatus.IntJMedMicrobiol.2012;302(2):108–116.

11.ShopovaI,BrunsS,ThywissenA,KniemeyerO,BrakhageAA,

HillmannF.ExtrinsicextracellularDNAleadstobiofilm

formationandcolocalizeswithmatrixpolysaccharidesin

thehumanpathogenicfungusAspergillusfumigatus.Front

Microbiol.2013;4:141.

12.MowatE,ButcherJ,LangS,WilliamsC,RamageG.

Developmentofasimplemodelforstudyingtheeffectsof

antifungalagentsonmulticellularcommunitiesof

Aspergillusfumigatus.JMedMicrobiol.2007;56:1205–1212.

13.O’TooleGA,KolterR.Initiationofbiofilmformationin

PseudomonasfluorescensWCS365proceedsviamultiple,

convergentsignallingpathways:ageneticanalysis.Mol

Microbiol.1998;28:449–461.

14.González-RamírezAI,Ramírez-GranilloA,Medina-Canales

MG,Rodríguez-TovarAV,Martínez-RiveraMA.Analysisand

descriptionofthestagesofAspergillusfumigatusbiofilm

formationusingscanningelectronmicroscopy.BMC

Microbiol.2016;16:243–255.

15.BrunsS,SeidlerM,AlbrechtD,etal.Functionalgenomic

profilingofAspergillusfumigatusbiofilmrevealsenhanced

productionofthemycotoxingliotoxin.Proteomics.

2010;10:3097–3107.

16.FiedlerT,KöllerT,KreikemeyerB.Streptococcuspyogenes

biofilms–formation,biology,andclinicalrelevance.Front

CellInfectMicrobiol.2015;5:1–11.

17.BitencourtTA,MacedoC,FrancoME,etal.Transcription

profileofTrichophytonrubrumconidiagrownonkeratin

revealstheinductionofanadhesin-likeproteingenewitha

tandemrepeatpattern.BMCGenomics.2016;17:249.

18.RementeríaA,López-MolinaN,LudwigA,etal.Genesand

moleculesinvolvedinAspergillusfumigatusvirulence.Rev

IberoamMicol.2005;22(1):1–23.

19.SmithK,RajendranR,KerrS,etal.Aspergillusfumigatus

enhanceselastaseproductioninPseudomonasaeruginosa

co-cultures.MedMycol.2015;53(7):645–655.

20.LoussertC,SchmittC,PrevostMC,etal.Invivobiofilm

compositionofAspergillusfumigatus.CelMicrobiol.

2010;12(3):405–410.

21.MüllerCF,SeiderM,BeauvaisA.Aspergillusfumigatus

biofilmsintheclinicalsetting.MedMycol.2011;49:96–100.

22.RajendranR[Ph.D.thesis]AdaptiveResistanceMechanismsof

AspergillusfumigatusBiofilms.Glasgow,UnitedKingdom:

UniversityofGlasgow;2013:267.

23.MowatE,LangS,WilliamsC,McCullochE,JonesB,Ramage

G.Phase-dependentantifungalactivityagainstAspergillus

fumigatusdevelopingmulticellularfilamentousbiofilms.J AntimicrobChemother.2008;62:1281–1284.

24.BlancoJL,HontecillasR,BouzaE,etal.Correlationbetween

theelastaseactivityindexandinvasivenessofclinical

isolatesofAspergillusfumigatus.JClinMicrobiol.

2002;40:1811–1813.

25.ComeraC,AndreK,LaffitteJ,ColletX,GaltierP,

Maridonneau-PariniI.GliotoxinfromAspergillusfumigatus

affectsphagocytosisandtheorganizationoftheactin

cytoskeletonbydistinctsignallingpathwaysinhuman

neutrophils.MicrobInfect.2007;9:47–54.

26.SchrettlM,BignellE,KraglC,etal.Siderophorebiosynthesis

butnotreductiveironassimilationisessentialforAspergillus

fumigatusvirulence.JExpMed.2004;200:1213–1219.

27.DeValkHA,MeisJ,DePauwBE,DonnellyPJ,KlaassenCHW.

Comparisonoftwohighlydiscriminatorymolecular

fingerprintingassaysforanalysisofmultipleAspergillus

fumigatusisolatesfrompatientswithinvasiveaspergillosis.J ClinMicrobiol.2007;45:1415–1419.

28.GuineaJ,GarcíadeViedmaD,PeláezT,etal.Molecular

epidemiologyofAspergillusfumigatus:anin-depthgenotypic

analysisofisolatesinvolvedinanoutbreakofinvasive

aspergillosis.JClinMicrobiol.2011;49:

3498–3503.

29.HazenKC,HazenBW.Apolystyrenemicrosphereassayfor

detectingcellsurfacehydrophobicitywithinCandidaalbicans

populations.JMicrobiolMethods.1987;6:289–299.

30.RamageG,RajendranR,Gutierrez-CorreaM,JonesB,

WilliamsC.Aspergillusbiofilms:clinicalandindustrial

significance.FEMSMicrobiolLett.2011;324:89–97.

31.SheppardDC.MolecularmechanismofAspergillusfumigatus

adherencetohostconstituents.CurrOpinMicrobiol.

2011;14:375–379.

32.LinderMB,SzilvayGR,Nakari-SetalaT,PenttilaME.

Hydrophobins:theprotein-amphiphilesoffilamentous

fungi.FEMSMicrobiolRev.2005;29:877–896.

33.DagueE,AlsteensD,LatgeJP,DufreneYF.High-resolution

cellsurfacedynamicsofgerminatingAspergillusfumigatus

conidia.BiophysJ.2008;94:656–660.

34.ParisS,DebeaupuisJP,CrameriR,etal.Conidial

hydrophobinsofAspergillusfumigatus.ApplEnvironMicrobiol.

2003;69:1581–1588.

35.GibbonsJG,BeauvaisA,BeauR,McGaryKL,LatgéJP,RokasA.

Globaltranscriptomechangesunderlyingcolonygrowthin

theopportunistichumanpathogenAspergillusfumigatus.

EukaryotCell.2012;11(1):68.

36.ValdiviaRH,HeitmanJ.Endosymbiosis:theevilwithin.Curr

Biol.2007;17:408–410.

37.EpsteinAK,PokroyB,SeminaraA,AizenbergJ.Bacterial

biofilmshowspersistentresistancetoliquidwettingandgas

penetration.PNAS.2011;108:995–1000.

38.SiqueiraV,LimaN.Surfacehydrophobicityofcultureand

waterbiofilmofPenicilliumspp.CurrMicrobiol.2012;64:

93–99.

39.BayryJ,AimaniandaV,GuijarroJI,SundeM,LatgéJP.

Hydrophobins–uniquefungalproteins.PLoSPathog.

2012;8(5):e1002700.

40.Kwon-ChungKJ,SuguiJA.Aspergillusfumigatus–whatmakes

thespeciesaubiquitoushumanfungalpathogen?PLoS

Pathog.2013;9(12):e1003743.

41.AimaniandaV,BayryJ,BozzaS,etal.Surfacehydrophobin

preventsimmunerecognitionofairbornefungalspores.

Nature.2009;460:1117–1121.

42.BrunsS,KniemeyerO,HasenbergM,etal.Productionof

extracellulartrapsagainstAspergillusfumigatusinvitroand

ininfectedlungtissueisdependentoninvadingneutrophils

andinfluencedbyhydrophobinRodA.PLoSPathog.

2010;6:1000873.

43.DagenaisTR,GilesSS,AimaniandaV,LatgéJP,HullCM,

KellerNP.AspergillusfumigatusLaeA-mediatedphagocytosis

isassociatedwithadecreasedhydrophobinlayer.Infect

Referências

Documentos relacionados

cultivo  da  profissionalização  e,  mais  especificamente,  no  sentido  do  pertencimento  e  da  identificação  com  a  docência,  considerando  serem 

Graph 13 - Portuguese average food and beverages national supply, household availability and individual consumption derived from Food Balance Sheets (BA,

No seguimento da atividade e porque quando falamos em música, associamos a instrumentos musicais, coloquei no centro da roda formada pelas crianças, um órgão, o que se

The Emotional Movie Database (EMDB) is a tool that was created in order to provide researchers with emotion eliciting 40-s film clips, which were assessed using the

a) Mapear os artigos publicados, índice de coautoria e visibilidade dos professores dos programas de pós-graduação. b) Realizar o ranking dos programas de pós-graduação e

The extracellular matrix is composed of a three-dimensional fiber mesh filled with different macromolecules such as: collagen (mainly type I and III), elastin, glycosaminoglycans,

Neste contexto, novos desafios se colocam às instituições de ensino superior: é a democratização do Conhecimento, cuja única üa de acesso é a educação, com

In this study, agronomic indicators were evaluated in lettuce fertilized with different amounts of roostertree biomass; fertilizer was incorporated into the soil