• Nenhum resultado encontrado

The z-transform. S-domain. Introduction. Fourier Transform, Laplace Transform, DTFT, & z-transform. Region of Convergence.

N/A
N/A
Protected

Academic year: 2022

Share "The z-transform. S-domain. Introduction. Fourier Transform, Laplace Transform, DTFT, & z-transform. Region of Convergence."

Copied!
11
0
0

Texto

(1)

The z-Transform

— Introduction

z Why do we study them?

„ A generalization of DTFT.

Some sequences that do not converge for DTFT have valid z-transforms.

„ Better notation (compared to FT) in analytical problems (complex variable theory)

„ Solving difference equation. Æ algebraic equation.

z Fourier Transform, Laplace Transform, DTFT, & z-Transform

Fourier Transform

Ω

=

ℑ { x ( t )} x ( t ) e

j t

dt

To encompass a broader class of signals:

)}

( { )

( )

) (

(

x t e t e j tdt

x t e stdtL x t

Ω

σ

Laplace Transform

σ

j Ω

S-domain

Region of Convergence

(2)

−∞

=

=

k

kT t k x t

x( ) [ ]δ( )

Similarly,

) ( ]}

Z{x[

] [ ]

[

) ( ] [ )}

( ] [ { } ) ( ] [ { )}

( {

z X n z

k x e

k x

dt e kT t k

x dt

e kT t k x kT

t k x L t x L

k

k k

skT

k

st k

st k

=

=

=

=

∑ ∫

∑ ∫ ∑

−∞

=

−∞

=

−∞

=

−∞

=

−∞

=

δ δ

δ

z-Transform

z

Eigenfunctions of discrete-time LTI systems

If x

[

n

]

= z0n z0n: some complex constant

n n

k

k k

k n k

z z H z z k h k

h z k

h k n x n

h n x n

y[ ]= [ ]∗ [ ]=

[ − ] [ ]=

0 [ ]={

[ ] 0 } 0 = ( 0) 0

−∞

=

−∞

=

−∞

=

Remark:

−∞

=

=

=

n

jnw e

z

x n e

z

X ( )

jw

[ ]

DTFT can be viewed as a special case:

z = e

jω

Discrete- Time LTI

z

n

H ( z ) z

n

w X(ejw)

DTFT

n x[n]

Ω X(jΩ)

2π/T

t x(t)

T

F.T.

(3)

— z-Transform

z (Two-sided) z-Transform (bilateral z-Transform)

Forward:

−∞

=

=

n

n X z

z n x n

x

Z{ [ ]} [ ] ( )

From DTFT viewpoint:

z re n

n j

x r F n x

Z{ [ ]}= { [ ]} ω=

(Or, DTFT is a special case of z-T when z=ejω, unit circle.)

Inverse:

( ) [ ( ) ]

2 ] 1

[ ∫

1 1

Γ

= X z z dz Z X z

n j

x n

π

Note: The integration is evaluated along a counterclockwise circle on the complex z plane with a radius r. (A proof of this formula requires the complex variable theory.)

z Single-sided z-Transform (unilateral) – for causal sequences

=

= 0

] [ )

(

n

z n

n x z

X

z Region of Convergence (ROC)

The set of values of z for which the z-transform converges.

„ Uniform convergence

If z=rejω (polar form), the z-transform converges uniformly if x[n]rn is absolutely summable; that is,

<∞

−∞

=

n

r n

n x[ ] |

|

„ In general, if some value of z, say z1

z = , is in the ROC, then all values of z on the circle defined by

| z | = | z

1

|

are also in the ROC. Î ROC is a “ring”.

„ If ROC contains the unit circle, |z| =1, then the FT of this sequence converges.

„ By its definition, X(z) is a Laurent series (complex variable) Î X(z) is an analytic function in its ROC

Î All its derivatives are continuous (in z) within its ROC.

(4)

„ DTFT v.s. z-Transform

-- = −∞<n<∞ n

n n

x sin c ,

]

1[ π

ω

Not absolutely summable; but square summable

Æ z-transform does not exist; DTFT (in m.s. sense) exists.

--

x

2

[ n ] = cos ω

0

n , − ∞ < n < ∞

Not absolutely summable; not square summable

Æ z-transform does not exist; “useful” DTFT (impulses) exists.

--

x

3

[ n ] = a

n

u [ n ], | a | > 1 , − ∞ < n < ∞

Æ z-transform exist (a certain ROC); DTFT does not exists.

z Some Common Z-T Pairs

„ δ [n] ↔ 1,

δ [ nm ] ↔ z

m

, m > 0 , z > 0

,

<

>

+ m z m z

n

]

m

, 0 ,

δ [

„ , 1

1 ] 1

[ 1 >

↔ − z

n z

u , , 1

1 ] 1 1

[ 1 <

↔ −

z

n z u

„ z a

n az u

an >

↔ − ,

1 ] 1

[ 1 ,

z a

n az u

an <

↔ −

,

1 ] 1 1

[ 1

„

[ ] [ ]

[

r

]

z r z z r

z n r

u n

r n >

+

↔ − ,

cos 2 1

cos ] 1

[

cos 1 2 2

0

1 0

0 ω

ω ω

[ ] [ ]

[

r

]

z r z z r

z n r

u n

r n >

+

↔ − ,

sin 2 1

sin ] 1

[

sin 1 2 2

0

1 0

0 ω

ω ω

(5)

— Properties of ROC for z-Transform

z Rational functions

) (

) ) (

( Q z

z z P

X =

Poles – Roots of the denominator; the z such that X

(

z

)

→∞ Zeros – Roots of the numerator; the z such that X

(

z

)

=

0

„ Properties of ROC

(1) The ROC is a ring or disk in the z-plane centered at the origin.

(2) The F.T. of

x [n ]

converges absolutely ⇔ its ROC includes the unit circle.

(3) The ROC cannot contain any poles.

(4) If x[n] is finite-duration, then the ROC is the entire z-plane except possibly

z = 0

or

z =

.

(5) If x[n] is right-sided, the ROC, if exists, must be of the form

z > r

max except possi- bly

z = ∞

, where

r

maxis the magnitude of the largest pole.

(6) If x[n] is left-sided, the ROC, if exists, must be of the form

z < r

min except possi- bly

z = 0

, where

r

minis the magnitude of the smallest pole.

(7) If x[n] is two-sided, the ROC must be of the form r1 < z <r2 if exists, where

r

1 and

r

2are the magnitudes of the interior and exterior poles.

(8) The ROC must be a connected region.

In general, if

X (z )

is rational, its inverse has the following form (assuming N poles:

{

dk

}

)

=

= N

k

n k k d A n

x

1

) ( ]

[ . For a right-sided sequence, it means

nN

1, where

N

1 is the first nonzero sample.

The nth term in the z-transform is

=

= N

k

n k k

n A d r

r n x

1

1) ( ]

[ .

This sequence converges if

<∞

=

1

|

|

1

N n

n kr

d for every pole

k = 1 , K , N

. In order to

be so,

| r | > | d

k

|, k = 1 , K , N

.

(6)

— Pole Location and Time-Domain Behavior for Causal Signals

Reference: Digital Signal Processing by Proakis & Manolakis

(7)
(8)

— The Inverse z-Transform

Inverse formula:

Γ

= X z z dz n j

x ( ) n 1

2 ] 1

[ π

This formula can be proved using Cauchy integral theorem (complex variable theory).

z Methods of evaluating the inverse z-transform (1) Table lookup or inspection

(2) Partial fraction expansion (3) Power series expansion

z Inspection (transform pairs in the table) – memorized them z Partial Fraction Expansion

N N

M M

z a z

a a

z b z

b z b

X

+ + +

+ +

= +

L L

1 1 0

1 1

) 0

( Æ

) (

) ) (

(

0 0

N N

M

M M

N

a z

a z

b z

b z z

X + +

+

= +

L

L

Hence, it has M zeros (roots of

bkzM−k ), N poles (roots of

akzN−k ), and (M-N) poles at zero if M>N (or (N-M) zeros at zero if N>M).

Æ

) 1

( ) 1

(

) 1

( ) 1

) (

( 1 1

1 0

1 1

1

0

= −

z d z

d a

z c z

c z b

X

N M

L

L ;

c

k, nonzero zeros;

d

k, nonzero poles.

„ Case 1: M <N, strictly proper Simple (single) poles:

) 1

( )

1 ( ) 1

) (

( 1 1

2 2 1

1

1 + +

+

=

z d A z

d A z

d z A

X

N

L N

where

dk

z k

k d z X z

A =(1− 1) ( )| =

Multiple poles: Assume

d

i is the sth order pole. (Repeated s times)

s i

s i

i N

i k

k k

k

z d C z

d C z

d C z

d z A

X( ) (1 ) (1 1 1) (1 2 1)2 (1 1)

, 1

1

= + +

+ +

=

L

single-pole terms multiple-pole terms where

1

)]

( ) 1 ) [(

( )!

(

1 1

=

=

di w s

m i s

m s m s i

m dw X w

dw d d

m C s

„ Case 2: MN

∑ ∑ ∑

=

=

=

+ +

= s

m

m i

m N

i k

k k

k N

M

r r

r dz

C z

d z A

B z

X

1

1 ,

1

1

0 (1 ) (1 )

) (

(9)

z Power Series Expansion

−∞

=

= n

z n

n x z

X( ) [ ]

„ Case 1: Right-sided sequence, ROC:

z > r

max

It is expanded in powers of

z

1.

Ex. , | | | |

1 ) 1

( 1 z a

z az

X >

= −

„ Case 2: Left-sided sequence, ROC:

z < r

min

It is expanded in powers of

z

.

Ex. , | | | |

1 ) 1

( 1 z a

z az

X <

= −

„ Case 3: Two-sided sequence, ROC:

2

1 z r

r < <

X(z)= X+(z) + X(z)

converges for

| z | > r

1 converges for

| z | < r

2

Æ x[n]= x+[n] + x[n]

causal sequence anti-causal sequence

(10)

— z-Transform Properties

If x[n]↔ X[z] and y[n]↔Y[z], ROC:

R

X

, R

Y

„ Linearity:

ax [ n ] + by [ n ] ↔ aX ( z ) + bY ( z )

ROC:

R ' ⊃ R

X

R

Y -- At least as large as their intersection; larger if pole/zero can- cellation occurs

„ Time Shifting: x[nn0]↔zn0X(z) ROC: R'= RX ±

{

0or

}

„ Multiplication by an exponential seqence:

anx[n]↔ X(z a) ROC:

RX

a

R'= -- expands or contracts

„ Differentiation of X(z):

( )

dz z zdX n

nx[ ]↔− , ROC:

R ' = R

X

„ Conjugation of a complex sequence: x*[n]↔ X*(z*), ROC:

R ' = R

X

„ Time reversal: x*[n]X*(1/z*),

ROC: R

'

=

1 /

RX (Meaning: If RX

:

rR <

|

z

|

<rL, then

R ' : 1 / r

L

< | z | < 1 / r

R.

Corollary:x[n]X(1/z)

„ Convolution: x

[

n

]

y

[

n

]

X

(

z

)

Y

(

z

)

ROC: R'⊃ RXRY (=, if no pole/zero cancellation)

„ Initial Value Theorem:

If x[n]=0, n<0, then x[0] limX(z)

z

=

(11)

„ Final Value Theorem:

If (1) x[n]=0, n<0, and

(2) all singularities of

( 1 − z

1

) X ( z )

are inside the unit circle, then [ ] lim(1 1) ( )

1

z X z x

z

=

Remarks: (1) If all poles of X(z) are inside unit circle, x

[

n

]

0 as

n→∞ (2) If there are multiple poles at “1”, x

[

n

]

→∞

as

n→∞ (3) If poles are on the unit circle but not at “1”, x[n]≈cosω0n

<Supplementary>

z-Transform Solutions of Linear Difference Equations Use single-sided z-transform:

Z{y[n−1]}=z1Y(z)+ y[−1] ] 2 [ ] 1 [ )

( ]}

2 [

{y n− = z2Y z +z1y− +y

Z

] 3 [ ] 2 [ ] 1 [ )

( ]}

3 [

{yn− =z3Y z +z2y − +z1y− + yZ

For causal signals, their single-sided z-transforms are identical to their two-sided z-transforms.

Ex., Find y[n] of the difference eqn.

] [ ] 1 [ 5 . 0 ]

[n y n x n

y − − = with x[n]=1,n≥0, and y[−1]=1 (Sol) Take the single-sided z-transform of the above eqn.

Æ

1 1

1 ) 1 ( ]}

1 [ ) ( { 5 . 0 )

(

= −

=

− +

z Y z y X z z

z Y

Æ

) 1 )(

5 . 0 1 (

1 5

. 0 1

5 . 0

1 5 1 . 5 0

. 0 1 ) 1 (

1 1

1

1 1

+

=

+

=

z z

z

z z z

Y

Æ

1 1 1 0.5

5 . 0 1

) 2

(

− −

= −

z z z

Y

Take the inverse z-transform

Æ y

[

n

]

=

2

0 . 5 ( 0 . 5 )

n,

n ≥ 0

Referências

Documentos relacionados

Em outros termos, o professor deve planejar e oferecer uma gama variada de experiências que responda, simultaneamente, às demandas do grupo e às individualidades de

Para alcançar tanto os objetivos gerais como os específicos, estruturamos nosso trabalho de forma a apresentar uma breve introdução sobre o artigo traduzido e sobre a nossa

Regarding the residual effect of poultry litter on yield of black oat cultivated after corn, there were differences between the levels of litter used and the

Feitas para facilitar a vida de seus moradores, o gigantismo as transformou em locais impróprios especialmente para os idosos, as grávidas, os portadores de necessidades

Em Manual da paixão solitária, de Moacyr Scliar, a personagem Diana torna-se a porta- voz da personagem Tamar, resgatada de uma passagem bíblica: Gênesis, capítulo 38, texto que

Perante esta complexidade, as defi nições operacionais de preconceito se- xual podem-se focar em diferentes fenômenos, incluindo atitudes face à atração entre pessoas do mesmo

a) Nas duas vezes em que Seu Luís abasteceu seu carro, ele não parou para estudar qual combustível lhe proporcionaria o menor custo. Como o etanol era mais barato, ele optou por