• Nenhum resultado encontrado

An improvement of photocatalytic activity of TiO2 Degussa P25 powder

N/A
N/A
Protected

Academic year: 2020

Share "An improvement of photocatalytic activity of TiO2 Degussa P25 powder"

Copied!
11
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Applied

Catalysis

A:

General

j o ur na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / a p c a t a

An

improvement

of

photocatalytic

activity

of

TiO

2

Degussa

P25

powder

V.G.

Bessergenev

a,∗

,

M.C.

Mateus

a

,

A.M.

Botelho

do

Rego

b

,

M.

Hantusch

c

,

E.

Burkel

c

aUniversidadedoAlgarve,FCT,CampusdeGambelas,Faro8005-117,Portugal

bCQFMandIN,InstitutoSuperiorTécnico,UniversidadedeLisboa,Lisboa1049-001,Portugal cUniversityofRostock,InstituteofPhysics,Rostock,Germany

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received28January2015

Receivedinrevisedform29April2015 Accepted3May2015

Availableonline11May2015 Keywords: Nano-powder Titaniumdioxide Photocatalysis Watertreatment

a

b

s

t

r

a

c

t

ThephotocatalyticactivitiesofDegussaP25powdersannealedatvarioustemperaturesinvacuumand

airwerestudiedtogetherwithinvestigationsoftheircompositionsbyXPS,oftheircrystalstructuresby XRDandoftheirspecificsurfaceareasbyBET.ItisshownthatthephotocatalyticactivityofP25powders

wasremarkablyenhancedaftervacuumannealing;thekineticcoefficientcanberaisedby75%during

annealingat400◦C.ItisobviousthatthisenhancementisnotrelatedtotheadhesionabilityoftheP25 powders.

©2015ElsevierB.V.Allrightsreserved.

1. Introduction

Itisgenerallyacceptedthatthetheoreticalmodelof photocata-lysisonaTiO2surfaceconsistsofdifferentconsecutivesteps,where

eachoneisessentialfortheactivityandtheefficiencyofthe photo-catalyst[1].Theinitialstepofthephotocatalyticprocessconsistsin thegenerationofelectron–holepairsuponirradiationofthe mate-rialwithphotonsofenergiesthatareatleastequaltothoseofthe bandgapvalues.Inthesecondstep,theformedelectron–holepairs caneitherrecombineinthebulkordiffusetothesurfacewhere theycanparticipateinchemical reactions.In thisstep,the life-timeandthevelocityoftheelectron–holerecombinationiscrucial. Chargecarriertrapsareusedtopromotethetrappingofelectrons andholesatthesurfaceleadingtorecombinationsuppressingand tomoreefficientchargetransferprocesses.

ThenextstepisthecreationofH•*andOH•*radicalsasaresult oftheelectron–holeinteractionwithwaterand,finally,aprobable multiplestepreactionoforganiccompoundswithactiveradicals. Theelectrontransferprocessis moreefficientifthespeciesare pre-adsorbedonthesurface[2].However,sofar,theinfluences ofthedifferentstagesofthismodelonthefinalefficiencyofthe photocatalystswerenotwelldetermined.

∗ Correspondingauthor.Tel.:+351289800900x7614;fax:+351289800066. E-mailaddress:vbess@ualg.pt(V.G.Bessergenev).

ItshouldbeemphasizedthatthephotocatalyticactivityofTiO2

dependsonquiteanumber ofparametersincludingthecrystal structure,theratiobetweentheanataseandtherutilephases,the particlesize,thespecificsurfaceareaandthemeanporesize[3]. Inaddition,TiO2 isamaterialthatisveryadequatetobuildtiny

structuresinallsortsofsizesandshapes[4].Inparticular,TiO2

samplespreparedandtreatedbydifferentmethodsexhibitagreat varietyinphotocatalyticefficiencyeventhoughtheyhavethesame crystalform.Beyondthis,thekineticconstantofthephotocatalytic degradationdependsontheconditionsoftheexperiment,namely, whethertheheterogeneouscatalysisistakingplaceonthesolid/gas surfaceoronthesolid/liquidone.

Usingfirst-principlescalculations,thetotalenergiesofthe stoi-chiometricTiO2surfacesalongwiththeequilibriumshapes(the

Wulffconstruction)ofmacroscopicrutileTiO2crystalshavebeen

established[5].Itwasshownthatthe(110)surfacehasthe low-estsurface energy andthat (001)surface hasthehighest one. Therespectivecalculationsofthesurfaceenergeticsandtheshape reconstructionofmacroscopiccrystalsforanataseTiO2werealso

effectuated[6,7].Anatase(101)and(100)surfaceshavethelowest energiesof 0.44and 0.53J/m2,respectively, andthe(110)

sur-facehasthehighestenergyof1.09J/m2whichareallhigherthan

therutile (110)surfaceenergy of 0.31J/m2.Asa consequence,

someofthesesurfacescanbepresentinnano-crystalline mate-rials. However,itshouldbetaken intoaccount,for comparison withexperimentalcrystalshapes,thattheWulffconstructiongives theequilibriumcrystalshapeofmacroscopiccrystalandthatthe http://dx.doi.org/10.1016/j.apcata.2015.05.002

(2)

calculationsare strictlyvalidonlyat zerotemperature.Mostof themethodsfornanocrystalssynthesisdonotpresentequilibrium thermodynamicconditions.

ThebulkstructuresofreducedTiO2−xcrystalsarequitecomplex withvarioustypesofdefectssuchasoxygenvacancies,Ti3+and

Ti4+interstitialsandplanardefectssuchascrystallographicshear

planes(CSPs).Thedefectstructurevarieswithoxygendeficiency andthequestionwhichtypeofdefectisdominantinwhichregion ofoxygendeficiencyisstillasubjectofstudies[3].

Thereisavastspectroscopicandchemicalevidenceforthe pres-enceofpointdefectsinsamplesannealedinvacuumthatleadsto thepresenceofTi3+ions.Theirconcentrationistypicallyreported

asbeingofseveralpercent.Theultravioletphotoemission spec-troscopy(UPS)spectraofsingle-crystalsurfacescontainabandgap featureat∼1eVbelowtheconductingbandedgewhichhasbeen interpretedintermsofoccupiedTi3dstates[8].

Variousattemptsforimprovingthephotocatalyticpropertiesof TiO2byannealingthesamplesinairand/orinvacuumhavebeen

made.Theseattemptswerebasedondifferentideas.Someofthe obtainedresultsarediscussedbelow.Before,itshouldbe empha-sizedthatTiO2nanopowderspreparedbydifferentmethodscan

havenotonlydifferentmorphologyanddifferentsurfacechemical composition,butalsodifferentcrystalcompositions.Forthis rea-son,alltheexperimentalresultscanbedividedintotwoclasses, namely,into resultsobtainedwithpowderspreparedby differ-entmethods[9–13]andintoresultsobtainedwithP25powders [14–17].Itshouldbeemphasizedthatnostudiesofchangesin sur-facechemicalcompositionalongwithathermaltreatmentwere doneinalltheabovementionedexperimentalstudies.Thekind ofheterogeneouscatalysisusedforphotolysisexperimentisalso important.

The existence of anomalies in temperature dependence of dielectricconstantinanatasethinfilmswasexperimentally estab-lishedin[18].Theseanomaliescanbeeasilycreatedbyannealingin vacuumandbesuppressedinlowpressureofoxygenand, there-fore,theyaresupposedtobeconnectedwithoxygenvacancies. Itmeansthatelectronicchargedistributionsintheregionaround vacanciesarenotsymmetricalsothatadditionaldipolemoments arepresent[18],whichcanfavourablyinfluencetheelectron–hole separation.Thismechanismwasnotconsideredneitherby the-orynorinexperiments.Therefore,theessentialnewfeatureinthe presentpaperis theaimtocreateoxygenvacanciesby anneal-inginvacuumandtocomparetheresultswithannealinginair. Since,thepresenceofvariousspeciesadsorbedontheTiO2surface

influencesthephotocatalyticactivityandchangesinthesurface chemicalcompositionduringtemperaturetreatmentXPS measure-mentswere performed.In addition, based onthe factthat the phasesofanataseandrutileofP25containseparated nanocrys-talsandthatadirectelectrontransportbetweenrutileandanatase throughthe commonboundarydoesnot exist, itis possibleto estimatechangesinthephotocatalyticactivityofanatasephase, separately.

2. Materialsandmethods

2.1. Samplepreparation

SampleswerepreparedusingtheDegussaP25powderwitha grainsizeofabout20nm.Oneseriesofthesampleswasannealed invacuum(∼2.5×10−5mbar)attemperaturesbetween20 and 750◦Cfor4h.Duringannealingthesampleswereplacedin tita-niumfoilcrucibleswithinastainlesssteelfurnacewithacopper cylinderfortemperaturehomogenization.Asheaters,twohalogen lamps(1kW)wereused.Anotherseriesofsampleswereprepared byannealinginairatthesametemperaturesfor4h.

Fig.1. TEMimageoftheDegussaP25powdersampleannealedat200◦C,during

4h.

InFig.1,atypicaltransmissionelectronmicroscopy(TEM)image ofthesampleannealedinvacuumat200◦Cisshown,evidencing thatthegrainsizesremainedafterannealing.

2.2. Phasecontrolmeasurements

Thecrystalstructureofthesampleswasstudiedusinga high-resolution PANalytical x’PertPRO XRD instrument with Cu K radiation(=1.54184 ´˚A)in–2configuration.Theanatase/rutile ratioin thesampleswasdeterminedusingRietveld refinement procedureprovidedbyFullProfprogram[19,20]aswellas com-mercialPANalyticalx’PertPROsoftware.For typicalXRDpattern 2intervalwas10–100◦withthestep=0.008◦,theresultsof RietveldrefinementareshowninFig.2.Thetypicalparametersof therefinementwereRP≈5.4,RWP≈7.81,GOF–index≤1.7.

2.3. XPScompositioncontrol

TheTiO2sampleswereanalyzedbyX-rayphotoelectron

spec-troscopy (XPS) using XSAM800 (KRATOS) X-ray spectrometer operatedinthefixedanalysertransmission(FAT)mode.AnAlK␣ (1486.7eV)X-raysourcewasused.Theanalyserwasoperatedat 20eVpassenergybothfordetailedandsurveyspectra.Allthe bind-ingenergieswerereferencedtotheC1speakat285.0eV,assigned tocarbonsinglyboundtocarbonandhydrogen.Forquantification purposes,thefollowingsensitivityfactorswereused:Ti2p–1.8, O1s–0.66andC1s–0.25.Otherdetailsondataacquisitionand treatmentwereaspublishedelsewhere[21].Somestudies dedi-catedtothedeterminationoftherelationbetweenTi3+/Ti4+states

forthesamplesannealedinsituinultrahighvacuum(10−9mbar) weredoneusingXPSsetupwithaPHI5600cispectrometeratthe LeibnizInstitutfürWerkstoffkunde,Dresden.Amonochromated AlK␣(1486.7eV)X-raysourceisused.Theanalyseroperatedat 5.85eVpassenergyfordetailedspectrausinga0.05eVstepwidth. CalculationoftheTi3+/Ti4+concentrationisbasedonthearearatio

ofthesetwotitaniumspeciesintheTi2p3/2-peak.

2.4. Effectivesurfaceareameasurement

Todeterminethespecificsurfaceareaandtheporesize dis-tribution,aMicromeriticsASAP2020–PhysisorptionAnalyzerwas

(3)

Fig.2. RietveldanalysisoftheX-raypowderdiffractionfromDegussaP25sampleannealedinvacuumat400◦Cduring4h.ThepositionsoftheBraggreflectionsareindicated

byverticalbars(|).Thedifferencebetweentheexperimental(dots)andthecalculated(solidline)intensitiesfromtherefinedmodelisshownbytheplotinthelowerpart ofthediagram(WinPLOTR–programoftheFullProfsuit).

used.Beforethemeasurement,thesamplesweredegassedat50◦C for 10hat a pressure of 50mmHg. The weight of the sample wasdeterminedbeforeandafterthemeasurement.Anisothermal adsorptionofnitrogenwasdoneat77K.Thespecificsurfacearea iscalculatedbytheBETequationintherangeof0.05≤p/p0≤0.25.

The pore size distributions and pore areas are derived by the Barret–Joyner–Halenda(BJH)analysiswithHalseycorrectionsin therangeof0.42≤p/p0≤1oftheadsorptionbranchesforN2on

thepowders.

2.5. Photocatalyticactivitymeasurements

Thelayoutofthephotoreactorapparatuswasdescribedindetail in[22].Briefly,thevolumeofirradiatedsolutionwasof7.9mlwith anopticalthicknessof1mm.A200WXenonlampwasusedas anUV lightsourceand awaterfilterwithfusedsilicawindows wasusedinordertoavoidanexcessiveheatingofthesolution. ThephotocatalyticprocessinwaterrequiresthepresenceofO2as

electronacceptor;thusacontinuousflowofairwasinjectedby meansofanairpump.Flowcontrolwasperformedbystabilization ofthesameairpressureattheinletofthephotoreactor. Fenari-mol(Riedel,99.7%)5mg/lsolutionswerepreparedinbidistilled water.TheFenarimolsolutionwasleftincontactwiththereactor cellabout12hinthedarkbeforeirradiationinordertoachieve theadsorptionequilibriumofthepesticidebetweenthesolution andthecellsurfaces.Duringirradiation,100␮lsamplesweretaken every0.25h,andimmediatelyanalyzedonaHPLCsystem (Agi-lentTechnologies1220LCInfinitysystemwithUVdetector)under thefollowingexperimentalconditions:LichroCART125-4column: Lichrospher100RP-18,5␮m;eluent:acetonitrile(Merck Lichro-solv)65%, MilliQ water 35%; 1.0ml/min flow; UV detection at 220nm.Thetotalirradiationtimewasbetween1.5and3hforeach sample.

Twokindsofexperimentswereperformed.Itwasnoticedthat thesedimentationrateswerethesameandthattheywerevery slowforthesamplesannealedattemperatures200–600◦C. How-ever,forthesamplesannealedatevenhighertemperaturesthe sedimentationratesweredrasticallyhigher.Thefirstkindof exper-imentswasperformedwithpowdersamplesdispersedinwater

solutions (10mg/50ml,for thesampleswithTannealing≤600◦C).

Inordertobeabletocomparethereactionratesforallthe sam-ples,anothertypeofexperimentwasperformed.Hereby,samples withidenticalweightweredeposited onfusedsilica substrates byevaporationfromaTiO2aqueoussuspension(10mg/10ml,the

finalamountofpowderwasdeterminedbyweightingafterwater evaporation)andtestedunderidenticalexperimentalconditions.

3. Results

InTable1theresultsofXRDandBETexperimentsforthe sam-plesannealedinvacuumandinairfor4hareshown.

3.1. X-raydiffractionresults

ItcanbeseenfromTable1,thatsignificantmodificationsof crystalstructureandcorrespondingchangesinanatase/rutileratios takeplaceforthesamplesannealedattemperatureshigherthan 550◦C. For the samples prepared at temperatures higher than 600◦C,thereisalsosignificantdifferenceintheanatase/rutileratio forthesamplesannealedinvacuumandinair,thedataareshown inFig.3.

Forthesamplesannealedinvacuum,thephasetransformation fromtheanatasephasetotherutilephaseoccursfasterthanforthe samplesannealedinairatthesametemperatures.Itcanbe sup-posedthatsurfaceoxygendefects,appearingduringthesample annealinginvacuum,createmoredisorderedsurfacestates hav-inglowerpotentialbarriersforatomicdiffusion,thusallowingfor fasterphasetransformationsthaninthecaseofsampleannealing inair.

3.2. XPSsurfacecompositioncontrol

The quantitative results of the surface compositions of the samples,annealed inairandin vacuum,obtainedfromXPSare presentedinTable2.Ti2pspectrawerefittedwithasinglepeak assignedtoTi4+.However,giventhepronouncedtailofthepeak

atlowerbindingenergies(Ti2p3/2)–aGaussian–Lorentzian

(4)

Table1

RutileandanatasecontentinthesamplesannealedinvacuumandairfromXRDdatabyRietveldrefinementanalysisandcorrespondingsurfaceandcumulativeporeareas determinedbyBETexperiments.

Annealingtemperature(◦C) Rutile Anatase BETsurface

area(SA),m2/g

Cumulativepore area(CA),m2/g

RatioCA/SA

%,offraction Particlesize,nm %,offraction Particlesize,nm Vacuum 200 16.37 42.4 83.63 25.4 36.0 15.3 0.425 400 16.17 43.3 83.83 25.6 29.0 25.8 0.889 550 22.29 43.5 77.71 26.8 41.0 37.1 0.904 600 32.97 51.7 67.03 28.4 39.9 35.8 0.897 620 59.74 54.5 40.26 27.7 31.4 21.9 0.697 650 89.98 68.4 10.02 33.9 19.9 14.1 0.709 670 91.46 75.5 8.54 39.1 15.5 10.5 0.677 700 100 86.0 0 – 11.0 7.1 0.645 Air Notannealed 16.67 42.3 83.33 25.0 41.27 – 200 16.53 42.6 83.47 25.2 55.5 44.1 0.794 400 16.57 44.5 83.43 25.7 57.2 41.0 0.717 550 21.78 48.5 78.22 28.6 44.9 32.9 0.733 600 32.29 50.0 67.71 28.4 38.2 31.4 0.822 620 46.58 61.0 53.43 32.6 29.8 30.2 1.013 650 63.41 66.5 36.59 32.4 22.3 19.9 0.892 670 77.03 75.9 22.97 35.2 20.3 19.4 0.956 700 93.44 97.8 6.56 45.8 13.3 11.6 0.872 750 99.2 119.6 0.8 – – –

thespectra–wecannotdiscardtheexistenceofasmall contri-bution(around2%)correspondingtoTi3+species.Someimportant

relationsarealsoshowninFig.4(a–d).

AsitcanbeseenfromXPSdata,thecontentofthestructural oxygen(latticeO2−)is,withintheexperimentalerror,thesame foralltemperaturesofannealinggivingthecompositionformula TiO2.15± 0.2forthesamplesannealedinvacuumandTiO2.10± 0.11

forthesamplesannealedinairthatcorrespondstoanexperimental errorofapproximately10%,takingintoaccountthatthe informa-tionaboutthe O2− species is extractedfromthe fittedpeak. It

shouldbeemphasizedthat thesamplesinXPSanalysispresent differentanatase/rutileratios. Up to-day,theequilibrium phase diagramforoxygencontentinTiO2anataseandrutilephasesat

differenttemperaturesinvacuumisstillunknown.Itisnot obvi-ousthat,thechangesinoxygencontentinvacuumarethesame, inthesetwophases.Theobtainedresultsshowthatthosechanges aresmallerthan10%.

Essentialdecreasesincarbonandnon-structuraloxygen con-tents are observed when the annealing temperature increases from500to600◦Cforbothseriesofsamplesannealedinairandin

Table2

XPSpeaksintensitiesandrelativecontentsobtainedforthesamplesannealedinairandinvacuum.

Tannealing,◦C 25 200 400 550 600 620 650 670 700 750 BE,eV Assignment

Air Ti,2p3/2 7.49 6.89 8.09 8.29 12.52 13.23 13.67 13.48 13.64 14.07 458.6 TiO2 Ti,2p1/2 3.44 3.28 4.05 3.99 5.98 6.37 7.41 7.99 7.26 7.38 464.2 O1,1s 24.78 22.85 24.82 26.57 39.04 38.90 41.03 42.28 43.76 45.83 529.7 O2–,structural O2,1s 4.57 3.50 3.16 2.68 4.58 4.51 5.82 4.83 4.77 4.79 531.0 O,OH O3,1s 4.51 4.87 4.66 4.58 3.59 3.54 3.28 3.46 3.04 3.11 532.2 O C O4,1s 1.96 3.01 2.56 2.95 1.29 1.18 0 0 0 0 533.5 H2O,O–C C1,1s 41.24 44.97 44.38 42.14 27.98 26.60 24.26 21.49 24.80 21.69 285.0 C–C,C–H C2,1s 8.46 7.09 5.26 4.84 3.42 4.06 2.40 4.36 1.45 1.52 286.8 C–O C3,1s 3.55 3.54 3.01 3.96 1.59 1.60 1.92 2.11 1.27 1.61 289.0 O–C O,CO3 O/Ti 3.3 3.4 2.9 3.0 2.6 2.5 2.4 2.4 2.5 2.5 O2–/Ti 2.3 2.2 2.0 2.2 2.1 2.0 1.9 2.0 2.1 2.1 C/Ti 4.9 5.5 4.3 4.1 1.8 1.6 1.4 1.3 1.3 1.2 O(nO2−)/Cox 0.9 1.1 1.3 1.2 1.9 1.6 2.1 1.3 2.9 2.5 Cox/Ctotal 0.2 0.2 0.20 0.2 0.2 0.2 0.2 0.2 0.1 0.1 Vacuum Ti,2p3/2 8.14 7.80 8.16 11.1 14.93 13.50 12.97 12.87 459.1 TiO2 Ti,2p1/2 4.26 3.73 4.01 5.70 7.67 6.39 6.93 6.18 464.8 O1,1s 26.49 26.15 26.36 36.90 45.22 43.24 40.82 41.54 529.7 O2−,structural O2,1s 6.55 7.50 2.59 4.54 4.97 4.45 5.27 6.04 531.0 O,OH O3,1s 3.23 3.59 5.14 2.51 1.91 3.49 3.07 3.71 532.2 O C O4,1s 0 0 2.54 0 0.64 0.72 0.81 0.46 533.5 O–C O5,1s 0 0 0.51 0 0.34 0.40 0.11 0.22 535.4 H2O C1,1s 41.40 41.18 41.68 32.30 20.40 23.08 25.87 23.68 285.0 C–C,C–H C2,1s 6.84 7.20 5.52 4.98 2.47 3.08 2.57 3.38 286.4 C–O C3,1s 3.10 2.85 3.48 1.95 1.45 1.64 1.57 1.93 288.9 O–C O O/Ti 2.93 3.23 3.05 2.61 2.35 2.63 2.52 2.73 O2–/Ti 2.14 2.27 2.17 2.19 2.00 2.17 2.05 2.18 C/Ti 4.14 4.44 4.17 2.33 1.08 1.40 1.51 1.52 O(nO2−)/Cox 0.98 1.10 1.20 1.02 2.01 1.92 2.24 1.96 Cox/Ctotal 0.19 0.20 0.18 0.18 0.16 0.17 0.14 0.18

(5)

Fig.3. Anatase/rutileratioindependenceonannealingtemperatureinvacuumand inair.

vacuum.Alsotheoxidizedcarbongetsmorestronglyoxidized:(O nonO2−)/Cox changesfromanaveragevaluearound1till550C

toanaveragevaluearound2from600◦Con(Fig.4aandc).These speciesofoxygenandcarbonusuallycomefromO–,OH,H

2O,O–C

absorbedonthesurfaceorareobtainedduringtheTiO2synthesis.

Itcanbeaccentuatedthat,afterbeingannealed,thesampleswere exposedtoairanddidnotreturntotheformercontentofthese kindsofspecies.CommonfeaturesinFig.4aandcarethatthevalue O2–/TiremainsconstantandthevalueO/Ti(Ototaloxygen

con-tent)decreasesfrom3to2.5startingfrom550◦Cunderannealing inairandinvacuum.Relativecontentsofvariousoxygen contain-ingspeciesobtainedfromoxygenpeakbyfitting,namelyO1(O2–,

structural),O2 (OH),O3(O=C),O4,O5 (O-C,H2O)are shownin

Fig.4bforthesamplesannealedinairandinFig.4dforthesamples annealedinvacuum.Itcanbeseenthattemperaturedependence oftheO1/Ototalratioisdifferentforthesamplesannealedinairand

invacuum.TheO1/Ototalratioalwaysincreaseduponannealingin

airwhichmeansthatbothphases,anataseandrutile,gainsome oxygenimprovingtheirstoichiometries,andthattheO1/Ototalratio

decreaseduponannealinginvacuumstartingfrom620◦C,where predominantlytherutilephaseexists(seeTable1).TheO2/Ototal

ratio(O-OandO-H)hasacomplexbehaviouruponannealinginair, but,takingintoaccounttheerrorofabout10%,itcanbeconsidered asapproximatelyconstantandinvacuumadecreaseofthisratiois observed.TheO3/Ototalratio(O=Cspecies)decreasesinbothcases

andthe(O4,O5)/Ototal(H2O,O-Cspecies)ratioalsodecreasesupon

annealinginairanditisapproximatelyzeroinvacuum.

3.3. SpecificBETsurfacearea

An adsorption measurement exhibits several structural fea-tures.Itispossibletoconcludeabouttheparticleshapefromthe

Fig.4. (a)XPSatomicratiosOtotal/Ti,O2–/Ti,Ctotal/Ti,(OnonO2−)/Cobtainedforthesamplesannealedinair.(b)XPSatomicratiosO1/Ototal(O1-O2−),O2/Ototal(O2-O,OH),

O3/Ototal(O3-O=C)andO4/Ototal(O4-H2O,O-C)obtainedforthesamplesannealedinair.(c)XPSatomicratiosOtotal/Ti,O2–/Ti,Ctotal/Ti,(OnonO2−)/Cobtainedforthesamples

annealedinvacuum.(d)XPSatomicratiosO1/Ototal(O1-O2−),O2/Ototal(O2-O,OH),O3/Ototal(O3-O=C)and(O4,O5)/Ototal(O4-H2O,O-C)obtainedforthesamplesannealed

(6)

Fig.5.AdsorptionbranchesofN2-adsorptionmeasurementsat77K. shapeoftheisothermandtheporousstructurefromthetypeofthe

hysteresis[23,24].Eachheattreatedtitaniapowderinthispaper showsatypeIVisotherm.Thecharacteristicsfortheadsorption branchofthisisothermareshowninFig.5andaresimilartothe isothermtypeII.

Astrongincreaseofadsorbedgasmoleculesisobserveduptoa relativepressureofp/p0=0.05whereamonomolecularcoverageis

reached.Thehigherthequantityofadsorptionatthispointis,the biggerthespecificsurfaceareais.Typicaladsorptionbranchesare showninFig.5.

Athigherrelativepressures,theadsorptionbranchespresent asmallincreaseuptop/p0=0.7.Theslopeofthecurvedepends

onthemesoporousstructure.Inmesoporesitispossibletobuild upamultimolecularcoatingwhileinmicroporesitisnot possi-ble.Thecurveforthepowdertreatedat600◦Cinvacuumshows

a bigger slope than the one treated at 200◦C in vacuum.The conclusion is that powders annealed at higher temperatures includemoremesoporeswhichisillustratedinFig.7.

Atrelativepressuresnear1,structuralinformationforthe exter-nalsurfaceareaandmacroporesareincluded,sinceonlyforthese structuresafurtheradsorptionispossible.Thesamplesannealed at lower temperatures are showing a higher increase, so it is expectedthattheratioofporeareaandspecificsurfaceareaislower [23,24].

Thedifferences betweentheisothermtypesIIand IV arein thedesorptionbranchand areillustratedinFig.6. Ahysteresis isdetectablebecauseofcapillarycondensationinthepores.The shape of thehysteresisdeterminesthefavourableshape of the poresandtheendofthehysteresis,wheretheadsorptionbranch and the desorption branch are equal, determines the smallest

(7)

Fig.7.Poresizedistributionofselectedsamples.

diameteroftheopenpores.Becausethispointisatratherhigh relativepressuresforeachsample,itcanbeconcludedthatonly themacroporesareopenporeswhilethemesoporesareclosed.

ThecombinationofatypeIVisothermandahysteresistypeH3 foreverysampleleadstothefactthatthepowdersaggregateto plate-likeparticleswithslitshapedpores[23,24].Thecalculated specificsurfaceareasandporeareasarelistedinTable1.

TheTiO2 powderstreated in air showa higherspecific

sur-faceareaincomparison withthesamplesannealedinvacuum, except,forthesamples,treatedat600and620◦C.Forthese sam-ples,specificsurfaceareasarenearlyequal.Forsamplestreated inair, theratiobetweenthepore areaandthespecific surface areais increasingwithraisingthetemperaturefrom400upto 700◦C,whereasthisratioisdecreasingforvacuumtreated sam-ples.Between600and620◦Cthementionedratiohasthelargest changeforbothatmospheres.Thistemperaturerangecorresponds toastrongphasetransitionfromanatasetorutile[25],asitcanbe seeninTable1andFig.3.

Forvacuumannealedsamples,aconsiderableincreaseinthe specificsurfacearea,observedat550and600◦C,canbeprobably explainedbyvacuumcleaningofthesurfacebecauseofevaporation ofspeciescontainingcarbon(seeFig.4c).Thiseffectofincreasein thespecificsurfaceareafor vacuumannealedsampleswasalso observedin[16].

Theporesizedistribution,Fig.7,showsamaximumofpores between1.7and4nmforeverysampleexceptforthe200◦Ctreated invacuum.Forthissample,noporesaredetectedinthissizerange. Theairtreatedpowdersupto600◦Ccontainahigheramountof detectablemicropores,between1.7and2.0nmdiameter,aswell asmesopores.

Thepowdertreatedat400◦CexhibitsasmallBETspecific sur-face area under vacuum conditions and the largest one under normalairconditions,becauseofthemesoporousarea.The evapo-ratingorburningoforganicrestsorabsorbedwaterinthepowder producescavities[23].However,thisrequiresoxygeninthe atmo-sphereorhightemperatures,whichexplainsthedifferencesinthe poresizedistributionofthe200and400◦Csamplesforboth atmo-spheres.Intheoxygenrichatmosphere,organicrestsareburned outinthetemperaturerangeupto300◦C,whereasan evapora-tionofthesereststakesplaceinvacuuminatemperaturerange

between200and400◦C.Therefore,theairtreatedsamplesforma higherspecificsurfaceareaduetoahigherporeareacomparedto thesamplestreatedinvacuumatlowertemperatures.

Asaconsequenceofthegraingrowth,poresareclosedandthe specificsurfaceareaaswellastheporeareaisdecreasing.Athigher temperatures,anewformationofporesisdue tocrystallization fromamorphousmaterialtoanataseandre-crystallization,from anatasetorutile[26].Thehigheramountofrutileinthevacuum treatedpowderscombinedwiththesmallergrainsizeimpliesthat poreformationattemperaturesaround600◦Cismorefavourable forthesesamplesthanfortheairtreatedones.Thisleadstothe highamountofporesintherangefrom4to10nmforthe600◦C samplesandthechangeinthementionedratiobetweenthepore areaandthespecificBETsurfaceareabetween600and620◦C. 3.4. Photocatalyticactivity

Table3showstheresultsofthestudyofthekineticsofFenarimol photocatalyticdegradation.

Therearethreedifferentdegradationprocessesthatoccurinthe photocatalyticreactorsimultaneouslywithverydifferentkinetic constants.Thefirstprocessisthedegradationontheanatasephase surfaceofTiO2powder.Thisprocesshasthehighestkinetic

con-stant.Thesecondprocessisthedegradationontherutilephase surfacewiththekineticconstantmuchlowerthanthatofanatase. Samplesannealedinvacuumattemperaturesequaltoorhigher than 700◦C have 100% of rutile phase and show such kinetic constants(seeTable3).ThethirdprocessistheFenarimoldirect degradationbyUVlightinthereactorwithoutTiO2powderwhich

hasthelowestkineticconstant.ThekineticconstantofFenarimol degradationcanbecalculatedfromthefirstorderkineticeq.(1): ln



I t I0



=−k×t (1)

whereItandI0arethecurrentandinitialHPLCchromatographic

integratedpeakintensitiesat220nm,kisthekineticconstantand tistimeinhours.Allthreeprocessesofdegradationare indepen-dentoneachotherand,accordingwith[17],thereisnosynergetic effectofco-presenceofanataseandrutileonphotocatalytic activ-ityofP25,consequently,kineticconstantcanberepresentedasa

(8)

Table3

Photocatalyticactivityofthesamplesannealedinvacuumandinairwithtwodifferentfunctionmodesofthereactor:powderdepositedontheglassanddispersedinthe solution.

Tannealing,◦C Samplemass,mg k,h−1 kA/g,(h×g)−1 Effectivearea,m2/g kAS/m2,(h×m2)−1

Powderannealedinvacuum

20 8.7 3.02 421 41.27 10.2 200 9.0 3.45 425 36.0 11.81 400 9.1 5.28 618 29.0 21.31 550 7.9 2.89 424 41.0 10.34 600 8.5 2.31 354 39.9 8.87 620 7.9 2.63 725 31.4 23.09 650 8.2 0.77 498 19.9 25.03 670 7.3 0.67 519 15.5 33.48 700 9.5 0.39 – 11.0 – Directdegradation 0 0.26 – – –

Powderannealedinair

20 8.7 3.02 421 41.27 10.2 200 8.0 2.57 343 55.5 6.18 400 8.4 2.58 327 57.2 5.72 550 7.6 2.74 414 44.9 9.22 600 8.5 2.43 370 38.2 9.69 620 7.9 2.57 505 29.8 16.95 650 9.2 2.14 536 22.3 24.04 670 8.0 0.87 288 20.3 14.19 700 7.4 0.55 394 13.3 29.62

Powderannealedinvacuum.Suspension

20 10.0 0.891 69 41.27 1.67

200 10.0 0.838 62 36.0 1.72

400 10.0 1.039 86.1 29.0 2.97

600 10.0 0.725 52.1 39.9 1.31

700 10.0 0.350 – 13.3 –

sumoftheconstantsk=kA+kR+kD,wherekA,kRaretheconstants

foranataseandrutilephasesandkDistheconstantofdirect

degra-dation.FromTable1thefractionsoftheanataseandrutilephases canbedeterminedforeachsampleannealedinvacuumorinair. BycalculatingspecifickineticconstantfortherutilephasekR/m,

wheremisthemassofthe100%rutilesample,itispossibleto cal-culatethespecifickineticconstantfortheanatasephase,according toeq.(2):

kA=k−

(mR×kR+kD)

mA

(2)

The specific kinetic constants normalized for the mass in dependenceonannealingtemperatureareshowninFig.8.

Asit can beseen from Table3 thechanges in specific area forthesamplesannealedinvacuumandin airattemperatures T400◦C arequitedifferent.Thesesamples,however, havethe sameanatase/rutileratios(seeFig.3orTable1)andconsistmostly oftheanatasephase(83%).Thus,thechangesinthespecificareacan beattributedforanatasephaseandthespecifickineticconstants, normalizedinrespectofthearea,canbecalculatedfromEq.(3). In supportof thisconclusionitcanbementioned thatthe spe-cificareasforthesamplesannealedinvacuumandinairat700◦C

Fig.8. Specifickineticcoefficient(kA)ofanatasephasecalculatedperunitmass.Thegraphofatypicalkineticcurve,obtainedforthesampleannealedinvacuumat650◦C

(9)

Fig.9. Specifickineticcoefficient(kAS)ofanatasephasecalculatedperunitof

spe-cificarea.

arealmostthesame(thesampleannealedinairhassmallfraction (6.56%)ofanatase).

kAS= kA

Specificarea (3)

TheresultsarepresentedinTable3andinFig.9.Theyshowthat thesamplesannealedat670◦C,bothinvacuumandinair,have valuesofkAS ofaboutthreetimeshigherthanthenotannealed

samples.

4. Discussion

Thereareaseriesofstudiesdedicatedtotheimprovementofthe photocatalyticpropertiesofnon-P25samplespreparedbydifferent methods[9–13].Generally,itwasshownthatbythemethodofheat treatmentofthesekindsofsamples,inairorinvacuum,sometimes, thephotocatalyticactivitycouldbeimproved,however,nostudy succeededtorisethephotocatalyticactivitysignificantlyhigher thanthatoftheP25powders.

Someworks oncommercial Degussa P25 TiO2 powders can

bementioned,separately,because,asminimum,theinitial mate-rials have more or less the same characteristics in different studies.

ItwasfoundbyPorteretal.[14]thatannealingtheP25 sam-plesinairattemperaturesfrom600to1000◦Cfor3hsignificantly affectsboth the microstructureand thephotoactivity. Overthe rangeofcalcinationtemperatures,thesamplescalcinedat650◦C revealedthehighestphotoactivities,whichcanbeascribedtoan improvementinthecrystallinityduetothecalcination[14].An increaseinthephotocatalyticactivityforthesamplecalcinedat 650◦CincomparisonwiththenottreatedP25wasfound∼11.5% (dataobtainedfromTableIVin[14]).

Yuetal.[15]studiedP25powderannealedinairandinvacuum at200,300,400and500◦Cfor3h.Amaximuminthephotocatalytic activitywasobservedforthesampleannealedat400◦Cinair.The increaseinthephotocatalyticactivityincomparisontothevacuum treatedsampleatthesametemperaturewasfoundtobeabout32% (dataobtainedfromFig.2in[15]).Thisincreasewasattributedto thecatalystsurfacewithmoreadsorbedoxygenthatwould gener-atemoresuperoxideanionradicalsunderUVirradiation,resulting inahigherphotoactivity[15].

Theinfluenceofthethermaltreatmentinaironthestructure andthephotocatalyticactivityofTiO2P25(P25nottreated,and

annealedat200,300,400,500,600and700◦C)wasstudiedby Fer-nandesMachadoandSantana[16].Thegreatestactivityforphenol degradationwasobtainedwithuntreated(original)TiO2P25[16].

Recently,acrystallinecompositionofDegussaP25powderswas carefullystudiedalong withthephotocatalyticactivityof artifi-ciallyprepared powdersobtainedbymixing anatase,rutile and amorphous phases previously separated from P25 by selective dissolution[17].Itwasfoundanexistenceofinhomogeneityof as-suppliedP25inthesamepackagepresumablybecauseP25is preparedbygas-flamesynthesis;anatase,rutileandamorphous phasesmaybeproduceddependingonflameconditions[17].It wasalsofoundthatthephotocatalyticactivityoftheamorphous phase isnegligible in comparison withtheonesofthe anatase andtherutilephases.It wasalsorevealedthatthecomponents ofP25,theanatase,therutileandtheamorphousphasesbehave independently withoutany interactions (absence of synergism) [17].

From this short description of theoretical and experimental resultsit canbeconcludedthat:first,there isnoevidencethat nanoparticles,obtainedbydifferentprocedureshavethesame rela-tionbetweensurfaceswithdifferentorientations(likein Wulff construction);second,anexistenceofadditionalelectroniclevels createdbyoxygenvacanciesandsituatedatabout1eVbelowthe conductingbandlevelisprovedonlyfortherutile(110)surface; third,oxygenvacanciescanbealsocreatedontheanatasephase surfacesbuttheenergiesforthecreationofthesevacanciesare higherthanthatonesfortherutilesurfaces.Experimentally,itwas proventhattherutilesurfacehasalowerphotocatalyticactivity thanthatoneoftheanatasephase,exceptinthecaseswhensmall metalclustersarepresentontherutilesurface[17].Theprocesses ofthecrystalstructureformation(confirmedbyXRD),thechanges inthemeso-andmicroporesdistributions(confirmedbyBETand BJHanalysis)andtheformationofoxygenvacanciesandofTi3+and

Ti4+interstitials(confirmedbyESR)canaffectthephotocatalytic

activitiesandallthesefactorscontributesimultaneously.

Asitfollowsfromtheobtainedresultsofthepresentwork,there arefewimportantmechanismsthathavestronginfluencesonthe photocatalyticactivities.

First,itcanbeemphasizedthat,forthesamplesannealedat T≤550◦C in vacuum both configurations of the photocatalytic experiments—TiO2powderdispersedinsolutionanddepositedon

fusedsilicasubstratesgavethesameresults,namelyanincreaseof thephotocatalyticactivityforthesamplesannealedatT=400◦Cin comparisonwiththesamplesannealedinair.Atthistemperature, thereareneithersignificantchangesintheanatase/rutileratio(see Table1)norin thesurfacecomposition(seeFig.4a–d).The dif-ferencebetweenthesurfaceareasforthesamplesannealedinair andinvacuumonlyincreasesthedifferenceinkASvalues.Oxygen

vacancies(orTi3+sites)haveastronginfluenceonthedielectric

constant[18]andontheelectricalresistivity[27,28]andcanbe easilycreatedatthesetemperaturesbyannealinginvacuumor byhigh-energyballmilling[29].RecentlyTi3+surfacedefects,its

properties,generationand photocatalyticapplicationhavebeen reviewed[30].

In this workP25 Degussa powderswereannealed insitu in ultrahighvacuumandrespectiveXPSspectraofTiwereobtained afterannealing. Theregularincrease in Ti3+/Ti4+ratio hasbeen

observedwhentemperatureofannealingwasincreased.The val-uesofTi3+/Ti4+ratioschangesfromapproximately1.3%atroom

temperature(thesamplewasonlyplacedintothechamberwith ultrahighvacuumwithoutheating)to1.38%at200◦Candto2.23% at 350◦C (the samples were heated at respective temperature underultrahighvacuumduring2h).Despitethereducing atmo-sphereofaround10−9mbartheamountofTi3+sitesisverysmall.

However,thepronouncedtailtheTi2p3/2componentinthelow

(10)

stronglysuggeststheexistenceoftheTi3+speciesevenifitsrelative

%isjustoftheorderof2%.

Second,whenthetemperatureofannealinginvacuumincreases from550to600◦C,therearestronglossesinthenon-stoichiometric oxygen and surface carbon species, as it is shown in Fig. 4a and c. Adsorbed oxygenon TiO2 surface scavenges the

photo-inducedelectronsandinhibitstheformationofTi3+sites[1].Hence,

whensurfaceadsorbedoxygenandcarboncontainingspeciesare removed,theprocessoftheelectron–holerecombinationbecomes moreeffective.This,inturn,resultsindecreasingthephotocatalytic activityasitisshowninFig.8.Asitcanbealsonoted,theeffective areaat550–600◦C(seeTable1)isalmostequalforthesamples annealedinvacuumandinairandtheinfluenceofchangesinthe effectiveareacanbeexcludedatthesetemperatures.

Third, further increase in the annealing temperatures (Tann>600◦C) results in fast anatase to rutile phase

transfor-mations asit is shown in Fig.3. Theoverall kinetic constant k decreasesstronglyatthesetemperaturesbecausetherutilephase haslowerphotocatalyticactivity.Nevertheless,atatemperature of620◦CthereisacriticalincreaseinkAaswellasinkAS.Unlike

the 400◦C samples, this increase occurs in vacuum and in air treatedpowder.Therearefewprocessestakingplaceatthesame timeatT>500◦C,namely:phasetransformation,improvementof crystallinity(crystalgrowth)andoxygenvacanciesformation.By theabovedescribedanalysisitispossibletoseparatetheeffect of losses in the adsorption ability (decrease in specific surface area) from the electronic processes (hole action) and to show thattheprocesseswhich dependontheelectron–holecatalytic activityincreasetheirefficiencies(kASgrowinguponannealing).

In addition,thespecifickinetic constant kA doesnot changeat

650<T<700◦C in vacuumand 670<T<700◦C in air becauseof two concurrent processes, namely, oxygenvacancies formation and losses in specific area (see Table 1 and Fig. 8). Contrarily, kAS strongly increasesin thistemperature intervalshowingthe

efficiency of the induced electron trapping mechanism by Ti3+

sites(Fig.9).

Fourth,asitcanbeseenfromFig.7andTable1,theformation of poresis more effective during annealing in air than in vac-uum.Thesizedistributionoftheporesisapproximatelythesame inboth cases.However,thephotocatalyticactivity,represented throughtheoverallkineticconstant kand thespecificconstant kA, of vacuum treated samples is higher than that of samples

treatedinair(fortemperaturesupto600◦C).Itmeansthatthe poreswithsizesintheintervalof1.4–4nmdonothave signifi-cantinfluenceonthephotocatalyticactivitiesoftheTiO2powder

samples.

Thereis somecontradiction in theabove mentioned litera-tureabouttheexistence[10]ornon-existence[17]ofsynergism betweentheanataseandrutilephases.Additionally,Hurumetal. [31]observedthetimedependenceintheESRsignalscomingfrom therutileandanataseinaqueousP25slurryaftertheUV illumina-tionwasswitchedoff.Inthistimedependence,theESRsignalfrom therutilephasewasdecreasedand thesignalfromtheanatase phasewasincreasedatthesametime.Itwasinterpretedinterms oftheexistenceofanataseelectrontrappingsitesthatcanonlybe populatedbyelectrontransferfromtherutiletotheanatasephase. Thus,accordingtotheauthors,therutilephaseactsasanantenna toimprovethephotoactivity[31].However,inmostofthecases, theanataseandrutileparticlesrepresentseparatenanocrystals,so thatthedirectelectrontransferacrossrutile/anataseborderwas notconfirmedyetandthereisnoextensionofthephotoactivity intovisiblewavelengths.In[10],aparticularcasewasconsidered, namely,relativelybigrutileparticles(smallspecificsurfacearea) arephotocatalyticallyactiveandcoveredbysmallanatase parti-cles(bigspecificsurfacearea).Therefore,anenhancementinthe photocatalyticactivitycanarisefromanadsorptionabilityofthe

anataseparticles.Inthiswork,itwasconfirmedthatthepurerutile phasehasamuchloweractivitythantheanatasephaseina Fenari-moldecomposition.Sucheffectwasearlierobservedforthinfilms forthesampleswithapproximatelythesamesurfacearea[32]. Thisgivesanopportunitytoestimatethephotocatalyticactivityof anatasephaseseparately.

5. Conclusions

AnnealingoftheDegussaP25powdersinvacuumandinairat differenttemperatureshavebeenusedtostudytheinfluenceof oxygenvacanciesonthephotocatalyticactivityofthesamples.It wasshownthatthephotocatalyticactivityofthesamplescanbe significantlyincreasedbyannealinginvacuum.Thewhole tem-peratureintervalofannealingbetween25and750◦Cshouldbe dividedintotwozones:onezoneupto500◦Cand anotherone higherthan500◦C.ForT<500◦Ctheincreaseinthephotocatalytic activitiesforthesamplesannealedinvacuum(maximumat400◦C) isindependentonchangesinthespecificsurfacearea.Itcanbe explainedbytheabilityofoxygenvacancies(orTi3+sites)toact

ascentresthatpreventtheelectron–holerecombinationand to increasetheefficiencyofthephotocatalyst.Itwasalsoshownthat oxygenandcarboncontainingspeciesadsorbedonthesurfaceor createdin theDegussatechnologicalprocessofsynthesis ofthe powderplayanimportantroleinphotocatalysis.Suchaspecies scavengephoto-excitedelectronsandalsopreventthe recombina-tion.WhenT>500◦C,theprocessesofphasetransformation,the crystalgrowthandthedecreaseinthespecificsurfaceareaacts simultaneously.However,itwaspossibletoshowthatthespecific kineticconstantoftheanatasephase(kAS)increaseswithhigher

annealingtemperatures.Thismeansthattheelectron–hole mech-anismofthedecompositionoforganics(Fenarimol) isstillvery effective.

Acknowledgements

TheauthorsaregratefultoFundac¸ãoparaaCiênciaeTecnologia (FCT)Portugalforthefinancialsupportgivenintheframeworkof thedevelopmentofscientificcentresCIQAandCCMARatAlgarve UniversityandtoFCTprojectPest-OE/CTM/LA0024/2013.

TheauthorsaregratefultoProf.MartinKnupferoftheLeibnitz InstitutfürWerkstoffkunde,Dresden.

References

[1]A.I.Lisebigler,G.Lu,J.T.YatesJr.,Chem.Rev.95(1995)735–758. [2]R.W.Matthews,J.Catal.113(1988)549–555.

[3]U.Diebold,Surf.Sci.Rep.48(2003)53–229. [4]A.N.Banerjee,Nanotech.Sci.Appl.4(2011)35–65.

[5]M.Ramamoorthy,D.Vanderbilt,R.D.King-Smith,Phys.Rev.B49(1994)16721. [6]M.Lazzeri,A.Vittadini,A.Selloni,Phys.Rev.B63(2001)155409.

[7]M.Lazzeri,A.Vittadini,A.Selloni,Phys.Rev.B65(2002)199901.

[8]M.V.Ganduglia-Pirovano,A.Hofmann, J. Sauer,Surf. Sci. Rep.62(2007) 219–270.

[9]R.R.Bacsa,J.Kiwi,Appl.Catal.B16(1998)19–29.

[10]T.Ohno,K.Tokieda,S.Higashida,M.Matsumura,Appl.Catal.A244(2003) 383–391.

[11]S.Bakardjieva,J. ˇSubrt,V. ˇStengl,M.J.Dianez,M.J.Sayagues,Appl.Catal.B58 (2005)193–202.

[12]K.Suriye,P.Praserthdam,B.Jongsomjit,Appl.Surf.Sci.53(2007)3849–3855. [13]T.Xia,Y.Zhang,J.Murowchick,X.Chen,Catal.Today225(2014)2–9. [14]J.F.Porter,Yu-G.Li,C.K.Chan,J.Mater.Sci.34(1999)1523–1531. [15]J.C.Yu,J.Lin,D.Lo,S.K.Lam,Langmuir16(2000)7304–7308.

[16]N.R.C.FernandesMachado,V.S.Santana,Catal.Today107–108(2005)595–601. [17]B.Ohtani,O.O.Prieto-Mahaney,D.Li,R.Abe,J.Photochem.Photobiol.A216

(2010)179–182.

[18]V.Bessergenev,Mater.Res.Bull.44(2009)1722–1728.

[19]J.Rodriguez-Carvajal,AnintroductiontotheprogramFullProf2000, Laborato-rieLéonBrillouin(CEA–CNRS)CEA/Saclay,France.

[20]L.B.McCusker,R.B.VonDreele,D.E.Cox,D.Louer,P.Scardi,J.Appl.Crystallogr. 32(1999)36–50.

(11)

[21]A.Garbout,S.Bouattor,A.M.BotelhodoRego,A.M.Ferraria,A.W.Kolsi,J.Cryst. Growth304(2007)374–382.

[22]V.G.Bessergenev,R.J.F.Pereira,M.C.Mateus,I.V.Khmelinskii,E.Burkel,R.C. Nicula,Int.J.Photoenergy5(2003)99–105.

[23]G. Leofanti,M.Padovan,G.Tozzola,B. Venturelli,Catal.Today41(1998) 207–219.

[24]KennethSing,Colloid.Surf.A187(2001)3–9.

[25]C.Charles,A.SorrellDorian,H.Hanaor,J.Mater.Sci.46(2011)855–874. [26]K.Meyer,P.Lorenz,B.Böhl-Kuhn,P.Klobes,Cryst.Res.Technol.29(1994)

903–930.

[27]B.Huber,H.Gnaser,C.Ziegler,Surf.Sci.566–568(2004)419.

[28]R.Amade,P.Heitjans,S.Indris,M.Finger,A.Haeger,D.Hess,Phys.Chem.Chem. Phys.8(2006)777–782.

[29]R.Amade,P.Heitjans,S.Indris,M.Finger,A.Haeger,D.Hesse,J.Photochem. Photobiol.A207(2009)231–235.

[30]L.-B.Xiong,J.-L.Lin,B.Yang,Y.Yu,J.Nanomater.2012(2012)1–13. [31]D.C.Hurum,A.G.Agrios,K.A.Gray,J.Phys.Chem.B107(2003)4545–4549. [32]V.G.Bessergenev,R.J.F.Pereira,M.C.Mateus,I.V.Khmelinskii,D.A.Vasconcelos,

R.Nicula,E.Burkel,A.M.BotelhodoRego,A.I.Saprykin,ThinSolidFilms503 (2006)29–30.

Imagem

Fig. 1. TEM image of the Degussa P25 powder sample annealed at 200 ◦ C, during 4 h.
Fig. 2. Rietveld analysis of the X-ray powder diffraction from Degussa P25 sample annealed in vacuum at 400 ◦ C during 4 h
Fig. 3. Anatase/rutile ratio in dependence on annealing temperature in vacuum and in air.
Fig. 5. Adsorption branches of N2-adsorption measurements at 77 K.
+4

Referências

Documentos relacionados

It can be concluded that the phytochemical investigation of the aerial parts of Grammosciadium platycarpum has demonstrated that this plant is a good source

It can be concluded from the results of the present study that the growth performance of broilers may be improved by increasing digestible lysine levels, allowing reducing

From our results, it can be concluded that there is no clear relation between feedback quality, length of reports, and review time, yet some tendencies can be identified: length and

Neste estudo considera-se que uma das preocupações mundiais da atualidade passa pelo facto da emissão de dióxido de carbono (CO 2 ) na atmosfera ter vindo a aumentar

In view of the behavior of this sample, it can be concluded that: (1) the burden of caring was attenuated in elderly caregivers; (2) for a significant group there is an

From the results of the studies, it can be concluded that there were two situations: (1) independent of surgical restructuring, patients with ACL injuries present characteristics

Este artigo propôs-se a apresentar resultados da pesquisa cujo objetivo geral foi: analisar como as estratégias de leitura utilizadas em sala de aula multisseriada de 1º e 2º ano

termos da confecção dos alimentos “(…) ele (psicólogo) disse, não precisa tirar da mão da criança comida resta saber é como é que deve usar os temperos: não abusar do sal,