• Nenhum resultado encontrado

The effects of two abundant ant species on soil nutrients and seedling recruitment in Brazilian Atlantic Forest

N/A
N/A
Protected

Academic year: 2021

Share "The effects of two abundant ant species on soil nutrients and seedling recruitment in Brazilian Atlantic Forest"

Copied!
6
0
0

Texto

(1)

REVISTA

BRASILEIRA

DE

Entomologia

AJournalonInsectDiversityandEvolution

w w w . r b e n t o m o l o g i a . c o m

Biology,

Ecology

and

Diversity

The

effects

of

two

abundant

ant

species

on

soil

nutrients

and

seedling

recruitment

in

Brazilian

Atlantic

Forest

Fábio

Souto

Almeida

a,∗

,

Luciana

Elizalde

b

,

Leticia

Maria

Souto

Silva

c

,

Jarbas

Marc¸

al

Queiroz

d

aUniversidadeFederalRuraldoRiodeJaneiro,InstitutoTrêsRios,DepartamentodeCiênciasdoMeioAmbiente,TrêsRios,RJ,Brazil bGrupoLIHO,LaboratorioEcotono,INIBIOMA-CONICET,UNCOMA,Bariloche,Argentina

cUniversidadeFederaldeUberlândia(UFU),DepartamentodeBiologia,MG,Brazil

dUniversidadeFederalRuraldoRiodeJaneiro,IF,DepartamentodeCiênciasAmbientais,Seropédica,RJ,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received30December2018 Accepted5August2019 Availableonline14August2019 AssociateEditor:RicardoSolar Keywords: Clidemia Communitystructure Ecosystemengineers Insurancehypothesis Miconia

a

b

s

t

r

a

c

t

Antscaninfluencesoilfertilityandthespatialdistributionofseeds,withpossibleeffectsonseedling recruitment.TheantspeciesPachycondylastriataFr.Smith,1858andOdontomachuschelifer(Latreille, 1802)co-occurinmanyforestareasintheNeotropics.Weassessedsoilfertilityandseedbankstructure insoilsamplescloseanddistant(control)fromantnestsinforestfragments.Wealsoassessedtherichness andabundanceofseedlingsonnestsandcontrolsites.Insoilsamplesfromantnests,theconcentration ofphosphorusandpotassiumwererespectively55.6%and36%higherthanincontrolsites.Aluminium was11–15%lowerinsoilsamplesfromantnests.Inthegreenhouse,soilsfromantnestshadhigherplant abundanceandspeciesrichness,butthesamespeciescompositionincomparisonwithcontrolsites. AlthoughmoreplantsemergedfromsoilsamplesofO.chelifernests,inthefield,thedensityandrichness ofseedlingsweresimilarforthetwoantspeciesstudied.Seedlingsinthenestsiteswere,onaverage, 1.8timesmoreabundantand1.6timesricherinspeciesthanincontrolsites.Ourresultsshowedthat antspeciescanplayakeyroleinseedlingrecruitmentinforestfragments,whereotheranimalswith equivalentandpositiveeffects,suchasmammals,aremissing.

©2019SociedadeBrasileiradeEntomologia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Seeddispersalandtheavailabilityofsuitablesitesforseedling

germinationandgrowthaffecttheseedlingrecruitmentprocess

(LeckandParker,2008).Theavailabilityofsuitablesitesdepends onseveralabioticfactors,suchastemperature,light,water,andsoil nutrientconcentration(Bruna,2002;Salinas-Pebaetal.,2014),as wellasbioticfactors,suchasseedpredators,herbivores,pathogens, andsoilbioturbators(AugspurgerandKelly,1984;Brussaard,1997; Benitez-Malvidoetal.,1999;ZamoraandMatias,2014).Many

ani-malsmoveseedsfromparentplantsorsoilsurfacetobettersites

for germinationand toseed banks (Chambers and MacMahon,

1994).Insoilseedbanks,viableseedsremainburiedandprotected

frompredatorsforsometime,waitingforfavourableconditions

togerminate(EscobarandCardoso,2015).Therefore,thedigging

andburrowingactivitiesofanimalsthatusefruitsandseeds,such

∗ Correspondingauthor.

E-mails:fbioalmeida@yahoo.com.br(F.S.Almeida),luelizalde@gmail.com (L.Elizalde),leticiamariasouto@hotmail.com(L.M.Silva),jarquiz@gmail.com (J.M.Queiroz).

mammalsandants,canbepositiveforplantrecruitmentthrough

theaccumulationandprotectionofseedsinseedbanks(O’Grady

etal.,2013;PiresandGaletti,2013).

Theantsareabundantorganismsintropicalforests(Fittkauand Klinge, 1973)and can directlyand indirectly affecttheprocess

ofseedlingrecruitment,thus,contributingtoforestsuccessional

dynamics (Folgarait, 1998).By carrying fruitsand seeds tothe

nests,antsactasimportantseeddispersers(PassosandOliveira,

2004),improvingthemovementofseedstosuitableandprotected

sites.Antscanalsoaffectthephysicalstructureandchemical com-positionofsoils(Farji-BrenerandWerenkraut,2017).Duringthe

constructionofnests,alargeamountof soilparticlesismoved,

alteringsoilphysicalstructureandformingbioporesthatincrease waterinfiltrationrates(LobryDeBruynandConacher,1994).There isevidencethatthesoilnearantnestshasahighernutrient

con-centrationthanadjacentsoils(Farji-BrenerandGhermandi,2000;

Cammeraatetal.,2002;Folgaraitetal.,2002;PassosandOliveira, 2002,2004).Thisincreaseinsoilfertilityisprobablyduetothe behaviourofantscarryingplantmaterialtothenest(Briese,1982). Thus,theeffectsofantsonsoilcharacteristicsandplantcommunity

mayvaryaccordingtofoodpreferences,nestpopulation

character-istics,andneststructure,whichvaryamongantspecies.

https://doi.org/10.1016/j.rbe.2019.08.001

0085-5626/©2019SociedadeBrasileiradeEntomologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

PachycondylastriataFr.Smith,1858andOdontomachuschelifer

(Latreille,1802)areabundantandecologicallyimportantspecies

inNeotropicalforests(Almeidaetal.,2013;AlmeidaandQueiroz,

2015).They have similar body sizes (head width: ca. 2.7mm;

Almeidaetal.,2013).Pachycondylastriatamakesnestscomposed

ofseveralshallowchambers,whereasO.chelifermakesdeepnests

(Bottcheretal.,2016).Althoughbothantspeciesareclassifiedas ground-dwellinggeneralistpredators(Grocetal.,2013),O. che-liferhasagreaterpropensitytointeractwithfruits(Bottcheretal., 2016).Bothspeciescantransportwholefruitsortheirfleshy

por-tionstothenest and discardseeds intact(Passosand Oliveira,

2002;PizoandOliveira,2000).ThematurenestsofO.chelifer

usu-allyshowsalargernumberofindividualsthanthoseofP.striata

(Medeiros1997;Guimarãesetal.,2018),whichcanresultinmore activityoftransportationofanimalandplantpartstothenestsof O.chelifer.

In the present study, we tested two hypotheses about the

relationshipamongants,plants,andsoilcompositioninforest frag-mentsofAtlanticForest,south-easternBrazil.(1)Soilfertilityand

speciesabundanceand richnessof seedandseedlingbanksare

higheronneststhaninadjacentareas.(2)Soilfertilityandplant

community variables are higheron nestsof O. chelifer than on

thoseofP.striata,duetodifferencesinfoodpreferencesandcolony characteristics.Toinvestigatethesehypotheses,weassessed infor-mationonsoilfertility,soilseedbank,andseedlingdensityinareas closetoanddistantfromnestsofP.striataandO.chelifer.

Materialsandmethods

Sitedescriptions

Thestudyplotswerelocatedinthreeareasofsemi-deciduous

tropicalforestnearthecityofVassouras,stateofRiodeJaneiro, south-easternBrazil.Thefirstplotwaslocatedina6haforest frag-ment(22◦2741S;43◦3857W);thesecondhadanareaof36ha (22◦273S;43◦3840W),andthethird,780ha(22◦2711S; 43◦3947W).Nativeforestscorrespondtoapproximately28%of thestudyregion(Pereiraetal.,2017).Theaveragetemperatureis

18◦Cinthecoldestmonthand23◦Cinthewarmestmonth.The

averageannualrainfallis1280mm(Francelinoetal.,2012).The averagealtitudeis600ma.s.l.,andtheregionalclimateisclassified asCWa,accordingtotheKöppensystem(Alvaresetal.,2013).The mainsoiltypeintheregionisHaplicCambisol(Pereiraetal.,2017). Datacollection

Weselectedtenmaturenests(i.e.,withaconsiderableamount

ofsoilexcavatedoutsideandhighantactivity)ofeachantspecies (O.cheliferand P.striata)in each ofthethree forestfragments.

Wecollectedsoilsamplestomeasuresoilchemicalpropertiesand

makeagerminationexperiment,andrecordedseedlingdensityand

richnessinapaireddesign,comparingnestswithcontrolsites10m distantfromthenest.

Soilchemicalanalysis

Ineach nestorcontrolsite (10mdistantfromthenest),we

collectedsixsubsamplesof5cmindiameterand10cmindepth

(193cm3),extractedwitha hollowmetallicstructure.Then, we

transferredthreesubsamplestoplasticbagsinthefieldandtook

themtothelaboratoryforchemicalanalysis.WemeasuredsoilpH,

theconcentrationofavailableAl,Ca,K,Mg, andP,and the

per-centageoforganiccarbonandsaturationwithbases(V%),whichis

consideredaproxyforsoilfertility(Fialhoetal.,2006),following EMBRAPA(1997).

Seedbankandgerminationexperiment

Tostudytherelationshipbetweenantsandsoilseedbank,the

remainingthreesubsamplescollectedfromnestsofO.cheliferand

P.striata,andtheirrespectivecontrolsites,werecombinedand

spreadonplastictraysarrangedatrandominagreenhouse.The

traycontainingnestsoilwasplacedbesidethetraywithsoilfrom itscontrolsite.Inthegreenhouse,wemonitored120samplesfor14

consecutiveweeks.Duringthisperiod,werecordedspecies

abun-danceandrichnessoftheplantsgerminatedpersample.Everyten

days,werandomlychangedthepositionofthetraysonthebenchof

thegreenhouse.Tofacilitateplantidentification,wetransplanted

someindividualstolargerpots,andmonitoredtheirdevelopment

there.Wealsocomparedgerminatedplantswithspecimensofthe

localherbarium(HerbariumoftheDepartmentofBotanyofthe

FederalRuralUniversityofRiodeJaneiro).

Seedlingcommunity

We recordedseedlingdensity and richness(5–30cm tall)in

50×50-cmplotsplacedoverthenestsofthetwoantspeciesand

theirrespectivepairedcontrolsites(N=10foreachantspeciesper forestfragment).

Monitoringantactivity

Antactivityisimportantbecausemoreactivityimpliesmore

seedscomingtothenest,resultingindifferencesbetweennests.We observedfor10minthenumberofantsattractedtobiscuit/sardine

baitsinthemorning(9:00–12:00)andafternoon(13:00–16:00)in

thesamemarkednests.Thebaitsweresetat15cmfromthenest

entrance.Weusedthemeannumberofantsfoundinthemorning

andafternoonasanestimationofantactivityinthesamplednests. Statisticalanalyses

Asourdatahaveanestedstructure(i.e.,thesoilfromnestsand controlsiteswassampledinpairsandreplicatedinthreedifferent forestsites),weusedmixed-effectsmodels.Webuiltatotalof12

models,changingthedependentvariablebutmaintainingthesame

independentvariablesandtherandomstructure.Theindependent

variablesweresoiltype(nestorcontrol),antspecies(P.striataorO. chelifer),theirinteraction,andantactivity.Weincludeddependent variablesrelatedtosoilchemistryandplantcommunity.Forthesoil

chemistry,weusedaluminiumconcentration,soilpH,percentage

ofsaturationwithbases,calcium,magnesium,phosphorus,

potas-sium,andorganiccarbonconcentrationasdependentvariablesin

separatemodels.Weusedplantspeciesrichnessandabundance

ofseedlingstotesttheeffectofantnestsonseedlingsandthesoil

seedbank(inthefield),aswellasforthesoilseedbank

(green-houseexperiment).Logarithmicorsquare-roottransformationsof

dependentvariableswereusedwhennecessarytonormalizemodel

residuals.

Therandomstructureincludedsoiltype(nestorcontrol),nested

withinforestfragments.ThemodelselectionfollowedZuuretal.

(2009),i.e.,westartedwithamodelinwhichthefixedcomponent containedalltheexplanatoryvariablestofindtheoptimalstructure

oftherandomcomponent.Incasewefoundtheoptimalrandom

structure,weselectedthefixed-effectcomponentsinthemodel,

usinglikelihoodratiotests(Zuuretal.,2009).

Foranalysingspeciescompositionofthegerminatedseedsinthe

greenhouseexperiment,weusedPERMANOVA,asimplemented

intheAdonisroutineoftheveganlibrary(Oksanenetal.,2013), accordingtosoiltype(nestvscontrol)orantspecies(O.chelifervs P.striata),separatelyforeachforestfragment.Wealsoanalysedthe

(3)

Table1

ResultsofmixedeffectmodelsforsoilchemicalcompositionandtheplantcommunityparametersinthesamplesofPachycondylastriataandOdontomachuschelifernestsas wellascontrolsites;†Controlsoilisthereference;*Odontomachusisthereference.

Nestvscontrolsoil Antspecies* Antactivity

Dependentvariable Transformation used

Intercept Parameter L.Ratio P-value Parameter L.Ratio P-value Parameter L.Ratio P-value

Aluminium none 1.72 −0.19 4.92 0.03 — — >0.05 — — >0.05 Magnesium sqrt 1.06 0.14 6.44 0.01 — — >0.05 — — >0.05 Calcium log 0.28 0.07 7.67 0.006 — — >0.05 — — >0.05 %basesaturation(V) sqrt 5.03 — — >0.05 — — >0.05 — — >0.05 Phosphorous log 0.79 0.11 8.08 0.005 — — >0.05 — — >0.05 Potassium log 1.67 0.1 13.9 <0.001 — — >0.05 — — >0.05 pH log 0.54 — — >0.05 — — >0.05 — — >0.05 Organiccarbon sqrt 1.6 — — >0.05 — — >0.05 — — >0.05

Seedlingrichness log 0.83 0.17 50.01 <0.001 — — >0.05 — — >0.05

Seedlingabundance log 9.97 2.44 32.33 <0.001 — — >0.05 0.2 12.07 <0.001

Seedrichness sqrt 1.86 0.3 11.42 <0.001 — — >0.05 — — >0.05

Seedabundance log 0.81 0.15 8.65 0.003 −0.11 5.23 0.02 — — >0.05

antnestsandcontrolsitesinthegreenhouseexperimentusinga Chi-squaretest.

Statisticalanalysesandgraphicswerecarriedoutinthe statis-ticalsoftwareR(RDevelopmentCoreTeam,v.3.3.1)usingnlme, vegan,andggplot2packages.

Results

Samples from ant nests had different chemical properties, exceptsoilpH,percentageofsaturationwithbases,andorganic carbonpercentage(Table1).Theconcentrationofcalcium,

mag-nesium,phosphorus,andpotassiumwerehigherinantnestsoils

thanincontrolsites.Aluminiumcontent,though,wassignificantly

higherincontrolsites(Table1,Figs.1and2).Theconcentrationof

phosphorusandmagnesiumwere64%and32%higher,respectively,

inO.cheliferneststhanincontrolsites.Potassiumandmagnesium

were36%and30%higher,respectively,inP.striataneststhanin

controlsites.Ontheotherhand,aluminiumwas15%and11%lower,

respectively,inO.cheliferandP.striataneststhanincontrolsites.

Differencesbetweenantspeciesintheconcentrationofchemical

elementswerenotstatisticallysignificant(Table1).Differencesin antactivitybetweenP.striataandO.cheliferwerenotstatistically

significant(Wilcoxonranksumtest;W=399.5;P=0.573).

Theanalysisof theseed bankin antnests andcontrol sites

resultedinthegerminationof980seedsof46plantspecies.We

countedatotalof509seedlings,withaminimumof1anda

maxi-mumof23persample.Seedlingspeciesrichnesspersamplevaried

from1to6.Themedianseedlingabundanceandrichnesswere,

respectively,66%and50%higherinantneststhanincontrolsites.

However,differencesinseedlingabundanceandrichnessbetween

nestsofthetwoantspecieswerenotstatisticallysignificant.We

foundapositiveandsignificantrelationshipbetweenantactivity

andseedlingabundance,butnotforspeciesrichness(Table1).

SeedlingabundanceinP.striatanestswas59%higherthanin

controlsites,and inO. chelifernests,it was29%higherthan in

controlsites.Plantspecies richnessand numberof germinating

plantsweresignificantlyhigherinantnestsoils(Table1). Differ-encesbetweenantspecieswerenotstatisticallysignificantforplant speciesrichness,butweresignificantforabundance,duetoahigher

abundanceofgerminatedseedsinsamplesfromnestsofO.chelifer

(Table1,Fig.2).

Plantspeciescomposition,analysedwitha PERMANOVA,did

notdifferbetweennestandcontrolsoilorantspeciesinthethree

forestfragments(P>0.05).Amongthesevenmostcommonplant

speciesrecordedintheseedbank(80%ofseedlings),onlyonewas

significantlymorefrequentinsamplesfromcontrolsites,whereas

threepredominatedinsamplesfromantnests(Chi-squaredtest;

Table2).

Discussion

Wefoundstrongsupporttoourhypothesisthatposes

differ-encesonthesoilcharacteristicsand plantcommunity between

nest andcontrol sites.However,we only foundpartialsupport

toourhypothesisposingthatthesedifferenceswouldbe

depen-dentonantspecies.Soilcharacteristicsweresimilarinnestsof

O.cheliferandP.striata,withahigherconcentrationofcalcium,

magnesium,phosphorus,andpotassium,andalower

concentra-tionofaluminiumthanincontrolsites.Inaddition,theabundance

andrichnessofseedlingswerehigheronantneststhanin

con-trolsites,andsimilarforbothantspecies,accordingtothedata

collectedinthefield.Plantrichnesswassimilarinnestsofboth

antspecies,accordingtodataobtainedfromtheseedbank.

How-ever,corroboratingoursecondhypothesis,wefounddifferencesin

seedbankabundancebetweenantspecies.SamplesfromO.

che-lifernestsshowedsignificantly moreseedlings emerging inthe

greenhouseexperimentthansamplesfromP.striatanests.

How-ever,plantspeciesrichnessandcompositionintheseedbankdid

notdifferbetweensoilsamplesfromthetwoantspecies.

Antstransporttotheirnestchambersanimalandplantparts

(leaves,flowers,fruits,andseeds)thatwillincreasesoilfertility

oncetheydecompose(Cammeraatetal.,2002;Moutinhoetal.,

2003;Farji-BrenerandWerenkraut,2017).Moreover,physicaland

chemical effects emerging fromantcolony activitiescan

accel-eratelitter decomposition insidechambers (Wanget al.,2017).

Therefore,althoughwedonothavespecificinformationon

nest-siteselectionbythespeciesofourstudysystem,weassumethat

thedifferencesinsoilparametersclosetonestsresultfromsoil

bioturbationand foodaccumulation inside themcaused by ant

activities.Theconcentrationofaluminium candecreasein nest

soilsbythereleaseoforganicacidsbyplantmaterialsinsidenest

chambers(Madureiraetal.,2013).Despitedifferencesamongant

species, chemical characteristics of nest soil samples were not

speciesdependent.Therefore,thesedatadonotcorroborateour

secondhypothesis.However,itispossiblethatsoilsamplingatonly onedepthpreventedthedetectionofdifferencesinspecieseffects (Wangetal.,2017).

We foundhigher abundanceand diversity of plants in seed

banksamplesfromantnests,butplantspeciescompositionwas

similarinsoilsamplescloseanddistantfromantnests.Thefact

thatplantspeciescompositiondidnotdiffersuggeststhatboth

antspeciescollectfruitsandseedsaccordingtotheavailability

(4)

Odontomachus Pachycondyla

a

b

c

d

e

3 2 1 0 5 4 3 2 1 40 30 20 10 4 3 2 1 125 100 75 50 25 Control Nest Control Nest Control Nest Control Nest

Control Nest Control Nest

Control Nest

Control Nest

Control Nest

Control Nest

Fig.1. Chemicalelementsinsoilsamplesfromantnestsandcontrolsites. Con-centrationof(a)Aluminium,(b)Calcium,(c)Phosphorus,(d)Magnesium,and(E) Potassium.Al,Ca,andMgaregiveninCmolc/Kg,whereasPandKaregiveninmg/Kg. Solidhorizontalblacklinesintheboxesindicatethemedianvalues;thewhiskers representthesmallestandlargestnon-outlierobservations;dotsrepresentoutlying datapoints.

way(HorvitzandBeattie,1980;King,1977;Farji-BrenerandSilva, 1996).

Clidemiahirta(L.) D.Donand MiconiacalvescensDC.

(Melas-tomataceae),twoofthemostabundantspeciesinthegreenhouse

experiment, had higher frequencies in samples fromantnests.

Clidemia hirtais zoochoric,important for birds, and commonly

foundin earlysuccessionforests(Leitaoet al.,2010).The high

numberofgerminatedseedsofM.calvescensinthegreenhouse

experimentis relatedtothehighabundanceofitsdiasporesin

thehabitatsstudied(pers.obs.)andtheirusualcollectionbyant

Odontomachus Pachycondyla 20 15 10 5 0 6 4 2 30 20 10 0 10.0 7.5 5.0 2.5 0.0

Control Nest Control Nest

Control Nest Control Nest

Control Control

Control

Nest Nest

Nest Control Nest

a

b

c

d

Fig.2. Seedlingabundance(a)andrichness(b)onnestsitesandcontrolsites;seed bankabundance(c)andrichness(d)inthegreenhouseexperiment.Solidhorizontal blacklinesintheboxesindicatethemedianvalues;thewhiskersrepresentthe smallestandlargestnon-outlierobservations;dotsrepresentoutlyingdatapoints.

species(DallingandWirth,1998;Farji-BrenerandMedina,2000;

Christianinietal.,2007).Theonlyplantspeciesthatshowedan

oppositepatterninnestandcontrolsites,withalowerabundance

nearnestsoil,wasPanicumpilosumSW,anon-forestgrassspecies. WesuggestthatP.pilosumseedsarelessattractivebecauseoftheir

smallsizeincomparisonwithotherseeds,andthelackoffleshy

tissue,whichseemstobepreferredbybothantspecies(Pizoand

Oliveira,2000).ItisalsopossiblethatthelownumberofP. pilo-sumplantsinnestsamplesisrelatedtoallelopathiceffectsofother seedsinthesoilofantnests,asitwasalreadydescribedforanother speciesofPanicum(Martinsetal.,2006).

(5)

Table2

Mostcommonplantspeciesandnumberofseedsgerminatingfromsamplestakenfromnests(N)ofOdontomachuschelifer(Latreille)andPachycondylastriataFr.(N)or controlsites(C).*ProbabilitiesfortheChi-squaretestoftheplantspeciesfrequenciesinant-nestvscontrolsites.

Taxa O.chelifer P.striata Total P*

N C N C

MiconiacalvescensDC. 80 57 58 25 220 0.0001

PanicumpilosumSW 46 73 29 45 193 0.0019

Clidemiahirta(L.)D.Don 51 34 47 26 158 0.0025

MikanialanuginosaDC 20 12 18 11 61 0.0547

PiptocarphabrasilianaCass. 22 14 16 6 58 0.0181

CecropiapachystachyaTrec. 13 8 16 10 47 0.1086

CaseariasylvestrisSwartz 11 10 16 7 44 0.1317

Thehigherdensityanddiversityofseedlingsemerginginsoil samplesfromantnestsinthegreenhouseexperimentisno guaran-teeofhigherseedlingrecruitmentcomparedtositeswithoutnests inforestfragments.Density-dependentmortalityfactorscouldact onnestareasandreduceseedlingrecruitment(Alvarez-Loayzaand Terborgh,2011).However,inthefield,seedlingsinthenestsites

were,onaverage,1.8timesmoreabundantand1.6timesricher

inspeciesthancontrolsites.Therefore,evenifdensity-dependent

mortalityfactorswereoperating,theywerenotenoughtoreduce

thenumberofseedlingsinnestareastothesamelevelofcontrol

sites.Besides,seedlingsurvivalinnestareasmaybehigherdueto betterconditionsofantnestsoils,e.g.,highersoilfertility.

Antnestsmayalsoimprovethereceptionandtransmissionof

waterfromthesoilsurfacetothesubsoilforplantusage(Lobryde BruynandConacher,1994).Thisisparticularlyrelevantinforest

fragmentswhere poorsoilconditions,incombinationwithhigh

temperatures,reducedrought toleranceof seedlings(Zambrano

etal.,2014).Seedlingscanalsobenefitfromantprotectionagainst naturalenemies(PassosandOliveira,2004).

InadditiontosomenichedifferencesbetweenO.cheliferand

P.striata,suchasnestarchitecture,characteristicsofcoloniesand feedingstrategies(Bottcheretal.,2016),theonlysignificant

dif-ferencebetweenantspecieswasthehigherabundanceofplants

germinatinginsoilsamplesfromO.chelifernests.Thisresultmay

beduetothehigheruseoffruitsbyO.chelifer,asdemonstrated

byBottcheretal.(2016).Despitethat,fielddatadidnotconfirm

ahigher abundanceof seedlingsonO.chelifer nests,suggesting

thatdensity-dependentmortalitymayoccur.Therefore,ourresults

indicatethatthespecies studiedmaybefunctionallysimilarto

forestecosystems.DuetothehighabundanceofO.cheliferandP.

striatainforestfragments(AlmeidaandQueiroz,2015),the

popu-lationdynamicsofthetwospeciesmaybecoupledbycompetition

(MedeirosandOliveira,2009).Hence,iftheyhavesimilarfunctional

roles,thedecreaseinonespeciescanbefunctionallycompensated

forbyanincreaseintheother.Thiscompensationeffectis

pre-dictedbythe“insurancehypothesis”,whichlinksbiodiversityto

ecosystemstability(YachiandLoreau,1999).

Smallandlargemammalsdisperseseedsofspeciesofthegenus

Miconia(MagnussonandSanaiotti,1987;Groenendijketal.,1996).

Mammalsare important for seedlingrecruitment becausethey

buryseeds(PiresandGaletti,2013),protectingthemagainstseed

predators.Besides,somemammalspeciespromotesoilmovement

andcontributetoitsfertility(Clarketal.,2018),buttheycanbe absentfromsmallforestfragments(Redford,1992;Turner,1996).

Theabsenceofmammalsfromforestfragments,asisthecaseof

thefragmentsstudied(A.Pires,unpublisheddata),canaffectplant

recruitment.Wesuggestthatinthisscenario,plantrecruitment

canbehighlyinfluencedbyants,suchasO.cheliferandP.striata,

whichareabundantandcanprotecttheseedsfrompredationby

takingtheminsideorneartheirnests.Theymayalsofacilitateplant

growthduetoimprovedsoilconditions.In theforestfragments

studied,O.cheliferandP.striataarethemostfrequentantspecies removingseedsfromtheforestfloor(Almeidaetal.,2013).Dueto

theirwidespreadoccurrenceinNeotropicalforests,O.cheliferandP.

striatamayhaveastronginfluenceonplantcommunity,notonly

inrelativelywell-preservedtropicalforests(PassosandOliveira, 2002,2004),butalsoinforestfragmentswiththeabsenceofother

animalspecieswithsimilarecologicalroles,butmorevulnerable

tohabitatfragmentation.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

ToEveraldoZonta(DepartamentodeSolos/UFRRJ),for

provid-ingthechemicalanalysisof soilsamples,andtoMSc.Marilena

Conde(Departamento de Biologia Vegetal/UFRRJ)for assistance

inplantidentification.CNPqandFAPERJfundedourstudy

(pro-cesses471061/2008-5andE-26/112.121/2008,respectively).FSA,

LE, and JMQ thanks, respectively, CAPES, CONICET (Argentina)

andFAPERJ(proc.E-26/101.472/2010).WethankAlejandro

Farji-Brener,AlexanderChristianini,GabrielaPirk,andtwoanonymous

reviewersfortheirvaluablecommentsonanearlierversionofthe

manuscript. ¨ThisstudywasfinancedinpartbytheCoordenac¸ão

deAperfeic¸oamentodePessoaldeNívelSuperior-Brasil(CAPES)

-FinanceCode001”.

References

Almeida,F.S.,Queiroz,J.M.,2015.Formigasponeromorfascomoengenheirasde ecossistemas:impactossobreabiologia,estruturaefertilidadedossolos.In: Delabie,J.H.C.,Feitosa,R.M.,Serrão,J.E.,Mariano,C.S.F.,Majer,J.D.(Eds.),As FormigasPoneromorfasDoBrasil.Editus,Ilhéus,pp.437–446.

Almeida,F.S.,Mayhé-Nunes,A.J.,Queiroz,J.M.,2013.Theimportanceof ponero-morph ants for seed dispersal in altered environments. Sociobiology 60, 229–235,http://dx.doi.org/10.13102/sociobiology.v60i3.229-235.

Alvares,C.A.,Stape,J.L.,Sentelhas,P.C.,DeMoraes,G.,Leonardo,J.,Sparovek,G., 2013.Koppen’sclimateclassificationmapforBrazil.Meteorol.Z.22,711–728, http://dx.doi.org/10.1127/0941-2948/2013/0507.

Alvarez-Loayza,P.,Terborgh,J.,2011.FatesofseedlingcarpetsinanAmazonian floodplainforest:intra-cohortcompetitionorattackbyenemies?J.Ecol.99, 1045–1054,http://dx.doi.org/10.1111/j.1365-2745.2011.01835.x.

Augspurger,C.K.,Kelly,C.K.,1984.Pathogenmortalityoftropicaltreeseedlings -experimentalstudiesoftheeffectsofdispersaldistance,seedlingdensity,and lightconditions.Oecologia61,211–217,http://dx.doi.org/10.1007/BF00396763. Benitez-Malvido, J., Garc´ia-Guzmán, G., Kossmann-Ferraz, I.D., 1999. Leaf-fungal incidence and herbivory on tree seedlings in tropical rain-forest fragments: an experimental study. Biol. Conserv. 91, 143–150, http://dx.doi.org/10.1016/S0006-3207(99)00090-7.

Bottcher,C.,Peixoto,P.E.,Silva,W.R.,Pizo,M.A.,2016.Driversofspatialvariation intheroleofantsassecondaryseeddispersers.Environ.Entomol.45,930–937, http://dx.doi.org/10.1093/ee/nvw058.

Briese,D.T.,1982.Theeffectofantsonthesoilofasemi-aridsaltbushhabitat.Ins. Soc.29,375–386,http://dx.doi.org/10.1007/BF02228765.

Bruna, E., 2002. Effects of forest fragmentation on Heliconia acuminate seedling recruitment in central Amazonia. Oecologia 132, 235–243, http://dx.doi.org/10.1007/s00442-002-0956-y.

Brussaard,L.,1997. Biodiversityand ecosystemfunctioninginsoil.Ambio26, 563–570.

Cammeraat, L.H., Willott, S.J., Compton, S.G., Incoll, L.D., 2002. The effects of ants‘nest on the physical, chemical and hydrological

(6)

properties of a rangeland soil in semi-arid Spain. Geoderma 105, 1–20, http://dx.doi.org/10.1016/S0016-7061(01)00085-4.

Chambers,J.C.,Macmahon,J.A.,1994.Adayinthelifeofaseed:movementsand fatesofseedsandtheirimplicationsfornaturalandmanagedsystems.Annu. Rev.Ecol.S.25,263–292.

Christianini, A.V., Mayhe-Nunes, A.J., Oliveira, P.S., 2007. The role of ants in the removal of non-myrmecochorous diaspores and seed germination in a neotropical savanna. J. Trop. Ecol. 23, 343–351, http://dx.doi.org/10.1017/S0266467407004087.

Clark,K.L.,Branch,L.C.,Farrington,J.,2018.Bioturbationbymammalsandfire inter-acttoalterecosystem-levelnutrientdynamicsinlongleafpineforests.PLoSOne 13,e0201137,http://dx.doi.org/10.1371/journal.pone.0201137.

Dalling, J.W., Wirth, R., 1998. Dispersal of Miconia argentea seeds by the leaf-cutting ant Atta colombica. J. Trop. Ecol. 14, 705–710, http://dx.doi.org/10.1017/S0266467498000492.

EMBRAPA-EmpresaBrasileiradePesquisaAgropecuária,1997.Servic¸oNacional delevantamentoeconservac¸ãodesolos.In:ManualDeMétodosDeAnáliseDe Solo.EMBRAPA,RiodeJaneiro.

Escobar,E.D.F.,Cardoso,V.J.M.,2015.Longevityofseedsandsoilseedbankofthe CerradotreeMiconiachartacea(Melastomataceae).SeedSci.Res.25,386–394, http://dx.doi.org/10.1017/S0960258515000173.

Farji-Brener,A.G.,Ghermandi,L.,2000.Influenceofnestsofleaf-cuttingantsonplant speciesdiversityinroadvergesofNorthernPatagonia.J.Veg.Sci.11,453–460, http://dx.doi.org/10.2307/3236638.

Farji-Brener, A.G., Medina, C.A., 2000. The importance of where to dump the refuse: seed bank and fine roots in nests of the leaf-cutting ants Atta cephalotes and Atta colombica. Biotropica 32, 120–126, http://dx.doi.org/10.1111/j.1744-7429.2000.tb00454.x.

Farji-Brener, A.G., Silva, J.F., 1996. Leaf cutter ants (Atta laevigata) aid to the establishment success of Tapirira velutinifolia (Anacar-diaceae) seedlings in a parkland savanna. J. Trop. Ecol. 12, 163–168, http://dx.doi.org/10.1017/S0266467400009378.

Farji-Brener, A.G.,Werenkraut,V., 2017. Theeffectsof antnests onsoil fer-tilityandplantperformance: ameta-analysis. J.Anim. Ecol.86, 866–877, http://dx.doi.org/10.1111/1365-2656.12672.

Fialho,J.S.,Gomes,V.F.F.,Oliveira,T.S.,Silva-Júnior,J.M.T.,2006.Indicadoresda qual-idadedosoloemáreassobvegetac¸ãonaturalecultivodebananeirasnaChapada doApodi-CE.Rev.Ciênc.Agron.37,250–257.

Fittkau, E.J., Klinge, H., 1973. On biomass and trophic structure of the Central Amazonian rain forest ecosystem. Biotropica 5, 2–14, http://dx.doi.org/10.2307/2989676.

Folgarait, P.F., 1998. Ant biodiversity and its relationship to ecosys-tem functioning: a review. Biodivers. Conserv. 7, 1221–1244, http://dx.doi.org/10.1023/A:1008891901953.

Folgarait, P.J., Perelman, S., Gorosito, N., Pizzio, R., Fernandez, J., 2002. Effects of Camponotus punctulatus ants on plant community composi-tion and soil properties acrossland-use histories. Plant Ecol. 163, 1–13, http://dx.doi.org/10.1023/A:1020323813841.

Francelino, M.R., Rezende, E.M.C., Silva, L.D.B., 2012. Proposta para zoneamento ambiental de plantio de eucalipto. Cerne 18, 275–283, http://dx.doi.org/10.1590/S0104-77602012000200012.

Groc,S.,Delabie,J.H.C.,Fernández,F.,Leponce,M.,Orivel,J.,Silvestre,R.,Vasconcelos, H.L.,Dejean,A.,2013.Leaf-litterantcommunities(Hymenoptera:formicidae) inapristineGuianeserainforest:stablefunctionalstructureversushighspecies turnover.Myrmecol.News19,43–51.

Groenendijk,J.P.,Bouman,F.,Cleef,A.M.,1996.Anexploratorystudy onseed morphologyofMiconiaruiz&Pavon(Melastomataceae),withtaxonomicand ecologicalimplications.ActaBot.Neerl.45,323–344.

Guimarães,I.C.,Pereira,M.C.,Batista,N.R.,Rodrigues,C.A.P.,AntonialliJúnior,W.F., 2018.ThecomplexnestarchitectureofthePonerinaeantOdontomachus che-lifer.PLoSOne13,e0189896,http://dx.doi.org/10.1371/journal.pone.0189896. Horvitz,C.C.,Beattie,A.J.,1980.AntdispersalofCalatheamarantaceaeseedsby car-nivorousponerines(Formicidae)inatropicalrain-forest.Am.J.Bot.67,321–326, http://dx.doi.org/10.2307/2442342.

King,T.J.,1977. Plant ecologyof ant-hillsin calcareousgrasslands.1. Patterns ofspeciesinrelationtoant-hillsinsouthernEngland.J.Ecol.65,235–256, http://dx.doi.org/10.2307/2259077.

Leck,M.,Parker,T.(Eds.),2008.SeedlingEcologyandEvolution.Cambridge Univer-sityPress,NewYork.

Leitao,F.H.M.,Marques,M.C.,Ceccon,E.,2010.Youngrestoredforestsincrease seedlingrecruitmentinabandonedpasturesintheSouthernAtlanticrainforest. Rev.Biol.Trop.58,1271–1282.

LobryDeBruyn,L.A.,Conacher,A.J.,1994.Theeffectofantbioporesonwater infiltrationinsoilsinundisturbedbushlandandinfarmlandinasemi-arid environment.Pedobiologia38,193–207.

Madureira, M.S., Schoereder, J.H., Teixeira, M.C., Sobrinho, T.G., 2013. Why does Atta robusta (Formicidae) not change soil features around their nests as other leaf-cutting ants do? Soil Biol. Biochem. 57, 916–918, http://dx.doi.org/10.1016/j.soilbio.2012.11.005.

Magnusson, W.E., Sanaiotti, T.M., 1987. Dispersal of Miconia seeds by de rat Bolomys lasiurus. J. Trop. Ecol. 3, 277–278, http://dx.doi.org/10.1017/S0266467400002169.

Martins, D.,Martins,C.C., Costa,N.V., 2006.Potencial alelopático desoluc¸ões desolocultivadocomBrachiaria brizantha:efeitossobreagerminac¸ãode gramíneasforrageiraseplantasdaninhasdepastagens.PlantaDaninha24, 61–70,http://dx.doi.org/10.1590/S0100-83582006000100008.

Medeiros,F.N.S.,Oliveira,P.S.,2009.Season-dependentforagingpatterns:casestudy ofaneotropicalforest-dwellingant(pachycondylastriata;Ponerinae).In:Jarau, S.,Hrncir,M.(Eds.),FoodExploitationbySocialInsects:Ecological,Behavioral, andTheoreticalApproaches.CRCPress,NewYork,pp.81–95.

Medeiros,F.N.S.,1997.EcologiacomportamentaldaformigaPachycondylastriata Fr.Smith(Formicidade:Ponerinae)emumaflorestadosudestedoBrasil.Tese (MestradoemCiênciasBiológicas),UniversidadeEstadualdeCampinas. Moutinho, P., Nepstad, D.C., Davidson, E.A., 2003.

Influ-ence of leaf-cutting ant nests on secondary forest growth and soil properties in Amazonia. Ecology 84, 1265–1276, http://dx.doi.org/10.1890/0012-9658(2003)084[1265:IOLANO]2.0.CO;2. O’Grady,A.,Breen,J.,Harrington,T.J.,Courtney,R.,2013.Theseedbankinsoil

fromthenestsofgrasslandantsinauniquelimestonegrasslandcommunityin Ireland.Ecol.Eng.61,58–64,http://dx.doi.org/10.1016/j.ecoleng.2013.09.011. Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara,

R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Wagner, H., http://CRAN.R-project.org/package=vegan,2013.

Passos,L.,Oliveira,P.S.,2002.AntsaffectthedistributionandperformanceofClusia criuvaseedlings,aprimarilybird-dispersedrainforesttree.J.Ecol.90,517–528, http://dx.doi.org/10.1046/j.1365-2745.2002.00687.x.

Passos, L., Oliveira, P.S., 2004. Interactions between ants and fruits of Guapira opposita (Nyctaginaceae) in a Brazilian sand plain rain for-est: ant effects on seeds and seedling. Oecologia 139, 376–382, http://dx.doi.org/10.1007/s00442-004-1531-5.

Pereira,M.P.S.,Francelino,M.R.,Queiroz,J.M.,2017.Acoberturaflorestalem pais-agensdomédiovaledoRioParaíbadosul.Floresta&Ambiente24,1–11, http://dx.doi.org/10.1590/2179-8087.134115.

Pires,A.,Galetti,M.,2013.TheagoutiDasyproctaleporina(Rodentia:dasyproctidae) asseeddisperserofthepalmAstrocaryumaculeatissimum.Mastozool.Neotrop. 19,147–153.

Pizo,M.A.,Oliveira,P.S.,2000.TheuseoffruitsandseedsbyantsintheAtlantic forestofsoutheastBrazil.Biotropica32,851–861.

Redford,K.H.,1992.Theemptyforest.BioScience42,412–422.

Salinas-Peba,L.,Parra-Tabla,V.,Campo,J.,Munguía-Rosas,M.A.,2014.Survivaland growthofdominanttreeseedlingsinseasonallytropicaldryforestsofYucatan: siteandfertilizationeffects.J.PlantEcol.7,470–479.

Turner,I.M.,1996.Specieslossinfragmentsoftropicalrainforest:areviewofthe evidence.J.Anim.Ecol.33,200–209,http://dx.doi.org/10.2307/2404743. Wang,S.,Wang,H.,Li,J.,Zhang,Z.,2017.Antscanexertadiverseeffectonsoilcarbon

andnitrogenpoolsinaXishuangbannatropicalforest.SoilBiol.Biochem.113, 45–52,http://dx.doi.org/10.1016/j.soilbio.2017.05.027.

Yachi,S.,Loreau,M.,1999.Biodiversityandecosystemproductivityinafluctuating environment:theinsurancehypothesis.Proc.Nati.Acad.Sci.96,1463–1468. Zambrano, J., Coates, R., Howe, H.F., 2014. Effects of forest

fragmen-tation on the recruitment success of the tropical tree Poulsenia armata at Los Tuxtlas, Veracruz, Mexico. J. Trop. Ecol. 30, 209–218, http://dx.doi.org/10.1017/S0266467414000108.

Zamora,R.,Matias,L.,2014.Seeddispersers,seedpredators,andbrowsersact synergisticallyasbioticfiltersinamosaiclandscape.PLoSOne9,e107385, http://dx.doi.org/10.1371/journal.pone.0107385.

Zuur,A.,Ieno,E.N.,Walker,N.,Saveliev,A.A.,Smith,G.M.,2009.MixedEffectsModels andExtensionsinEcologyWithR,StatisticsforBiologyandHealth. Springer-Verlag,NewYork.

Referências

Documentos relacionados

Para determinar o teor em água, a fonte emite neutrões, quer a partir da superfície do terreno (“transmissão indireta”), quer a partir do interior do mesmo

Os modelos desenvolvidos por Kable &amp; Jeffcry (19RO), Skilakakis (1981) c Milgroom &amp; Fry (19RR), ('onfirmam o resultado obtido, visto que, quanto maior a cfiráda do

O Brasil concordou em empenhar todos os seus esforços no sentido de aumentar ao máximo possível a produção de raízes que contenham rotenona (timbó), para isso permitiu

Na hepatite B, as enzimas hepáticas têm valores menores tanto para quem toma quanto para os que não tomam café comparados ao vírus C, porém os dados foram estatisticamente

Y éstas han sido todas las actividades presentadas y trabajadas en el taller supramencionado; por algunas tuvimos que pasar “en volandas” debido a la escasez de tiempo destinado a

O método foi aplicado para especiação de As em 640 amostras de arroz branco polido, parboilizado polido e integral, as quais foram coletadas em diferentes mesorregiões

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

Caso o supermercado possuísse todo o tipo de produtos, no momento da introdução no ERP da quantidade de armazenamento pretendida para cada artigo semi-acabado,