• Nenhum resultado encontrado

Braz. j. . vol.82 número2

N/A
N/A
Protected

Academic year: 2018

Share "Braz. j. . vol.82 número2"

Copied!
8
0
0

Texto

(1)

www.bjorl.org

Brazilian

Journal

of

OTORHINOLARYNGOLOGY

ORIGINAL

ARTICLE

Analysis

of

electrically

evoked

compound

action

potential

of

the

auditory

nerve

in

children

with

bilateral

cochlear

implants

Fernanda

Ferreira

Caldas,

Carolina

Costa

Cardoso,

Monique

Antunes

de

Souza

Chelminski

Barreto,

Marina

Santos

Teixeira,

Anacléia

Melo

da

Silva

Hilgenberg,

Lucieny

Silva

Martins

Serra,

Fayez

Bahmad

Junior

PostgraduatePrograminHealthSciences,UniversidadedeBrasília(UnB),Brasília,DF,Brazil

Received31May2014;accepted24December2014 Availableonline10December2015

KEYWORDS Child;

Cochlearnerve; Cochlearimplant; Evokedpotentials

Abstract

Introduction:Thecochlearimplantdevicehasthecapacitytomeasuretheelectricallyevoked compound action potentialoftheauditory nerve.Theneural responsetelemetryisused in ordertomeasuretheelectricallyevokedcompoundactionpotentialoftheauditorynerve.

Objective: Toanalyzetheelectricallyevokedcompoundactionpotential,throughtheneural responsetelemetry,inchildrenwithbilateralcochlearimplants.

Methods:Thisisananalytical,prospective,longitudinal,historicalcohortstudy.Sixchildren, aged1---4years,withbilateralcochlearimplantwereassessedatfivedifferentintervalsduring theirfirstyearofcochlearimplantuse.

Results:Thereweresignificantdifferencesinfollow-uptime(p=0.0082)andelectrodeposition (p=0.0019)intheT-NRTmeasure.Therewasasignificantdifferenceintheinteractionbetween timeoffollow-upandelectrodeposition(p=0.0143)whenmeasuringtheN1-P1waveamplitude betweenthethreeelectrodesateachtimeoffollow-up.

Conclusion: The electrically evoked compound action potential measurement using neural responsetelemetryinchildrenwithbilateralcochlearimplantsduringthefirstyearof follow-upwaseffective indemonstratingthesynchronizedbilateraldevelopmentoftheperipheral auditorypathwaysinthestudiedpopulation.

© 2015 Associac¸ão Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).

Please citethisarticleas:Caldas FF,Cardoso CC,Barreto MASC,Teixeira MS,HilgenbergAMS,SerraLSM, etal. Analysis of elec-tricallyevokedcompoundactionpotentialoftheauditorynerveinchildrenwithbilateralcochlearimplants.BrazJOtorhinolaryngol. 2016;82:123---30.

Correspondingauthor.

E-mail:fayezbjr@gmail.com(F.BahmadJr.). http://dx.doi.org/10.1016/j.bjorl.2014.12.013

(2)

PALAVRAS-CHAVE Crianc¸a;

Nervococlear; Implantecoclear; Potenciaisevocados

Análisedopotencialdeac¸ãocompostodonervoauditivoevocadoeletricamenteem

crianc¸asusuáriasdeimplantecoclearbilateral

Resumo

Introduc¸ão:O implantecoclear tem a capacidade de medir opotencial de ac¸ãocomposto eletricamenteevocadodonervoauditivo(ECAP).Paraestaverificac¸ãoutiliza-seumamedida chamadatelemetriaderespostasneurais.

Objetivo:Analisar opotencial de ac¸ão compostoevocadoeletricamente, pormeioda neu-rotelemetriaderespostasneurais,emcrianc¸asusuáriasdeimplantecoclearbilateral.

Método: Trata-sedeumestudoanalítico,prospectivo,decoortehistóricalongitudinal.Foram recrutadasseiscrianc¸as,comidadesentrede1-4anos,usuáriasdeimplantecoclearbilateral. Estascrianc¸asforamavaliadasemcincomomentosduranteoprimeiroanodeusodoimplante coclear.

Resultados: Houvediferenc¸asignificativanotempodeacompanhamento(p=0,0082)eposic¸ão doeletrodo(p=0,0019)namedidadeT-NRT.Houvediferenc¸asignificativanainterac¸ãoentre tempo deacompanhamentoe posic¸ãodo eletrodo(p=0,0143)namedidadaamplitudedas ondasN1-P1entreostrêseletrodosacadatempodeacompanhamento.

Conclusão:Amensurac¸ãodoECAPpormeiodaNRTnascrianc¸ascomimplantecoclearbilateral duranteoprimeiro ano deacompanhamentofoi uma medidaimportantepara apresentaro desenvolvimentobilateral davia auditivaperiféricadeforma sincronizadanestapopulac¸ão estudada.

© 2015 Associac¸ão Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Publi-cado por Elsevier Editora Ltda. Este é um artigo Open Access sob a licença CC BY (https://creativecommons.org/licenses/by/4.0/deed.pt).

Introduction

The cochlear implant (CI) device is widely accepted and

has been considered one of the most important

thera-peutic options for patients with severe and/or profound bilateral sensorineural hearing loss, in cases whodid not achievesatisfactory auditoryperception benefitswiththe useofindividualsoundamplificationdevice(ISAD).TheCIs havebeen indicatedat progressivelyyounger agesdue to advancesinearlyaudiologicaldiagnosisandnew technolo-giesintheCIdevices.1

Overthelastdecades,bilateral CIsurgerybegantobe

performed, a procedure that can be performed

simulta-neouslyorsequentially.Thesimultaneoustechniqueisused whenthepatientreceivesthetwointernalcomponentsina singlesurgicalprocedure,andthesequentialone,whenthe patientreceivesthetwointernal componentsindifferent surgicalprocedures.

PatientswhorequireaCIhavebeenincreasinglychoosing thebilateralprocedure.Somestudieshaveshownthatthese patients benefit from improved speech in the perception withnoise2andimprovedsoundlocation.3,4

The process known as ‘‘Programming’’ or ‘‘Mapping’’ of the CIspeech processor is performed at regular inter-valspostoperatively.TheMappingprocessaimstodetermine theappropriatedynamicrangeofelectricalstimulationfor each electrodechannel. The dynamic range is the differ-encebetweenthedetectionperceptionthreshold(T-level) andloudness---maximumcomfort(levelC).5

Themeasurementoftheelectrodeimpedancetelemetry canprovideanindicationoftheelectrodeinterfacestatus inthetissues,aswellastheappropriateelectrodefunction. Significantchangesinthesemeasures canbeindicativeof

changes inthe surroundingtissueand/or changesin elec-trodefunction.Initialchangesinelectrodeimpedancecan beexpectedduetophysicalchangesintheelectrode-tissue interface.6

The CI has the capacity to measure the electrically

evoked compound action potential (ECAP) of the

audi-tory nerve. The system applies an electrical pulse to a specific intracochlear electrode and the evoked neural responseis recordedinan adjacent electrode.Ameasure called NeuralResponse Telemetry (NRT)is used to assess this potential. The system elicits a valid neural response and robust recordings. These responses are recorded and returnedtotheprogramming interfacesystem forclinical analysis.7,8

The ECAP providesa relatively direct measurement of theauditorynerveresponseafterelectricalstimulationand itismeasuredincurrentunits(CUs).9TheECAPwaveform

typicallyconsistsof aninitialnegativepeakfollowed bya positivepeak,calledN1andP1,respectively.7,8

The NRT threshold (T-NRT) is defined as the smallest amountofelectriccurrentthatcanevokethese physiologi-calresponses.StudieshaveshownthattheT-NRTmeasured intraoperativelyoratpostoperativeintervalscanbe corre-latedwiththepsychophysicaldetectionofthethreshold(T level)andthemaximumlevelofcomfort(Clevel)inpatients withCIs.Theamplitudeoftheresponse(measuredbetween N1andP1)varieswithincreasingstimulusintensityanditis measuredinmillivolts(␮V).10---12

(3)

Methods

ThestudywasapprovedbytheResearchEthicsCommittee (REC)ofFaculdade deCiênciasdaSaúde,Opinionnumber 571,432/2014.Theparticipants’parentsorguardianssigned thefreeandinformedconsentform(FICF)accepting their participationinthestudy.

This is ananalytical, prospective,longitudinal contem-porarycohortstudy.

Sample

Thestudyincludedsixchildren,fivefemalesandonemale. Agesrangedfrom1to4years.Thechildrenhadcongenital hearinglossand wereNucleus® bilateral cochlearimplant

users (Cochlear Corporation), having been submitted to simultaneous surgery and total electrode insertion. Data wereanalyzed betweenJanuary (2012)andMarch (2014). Participantswithunilateralcochlearimplant,auditory neu-ropathyspectrum disorder(ANSD),partialinsertionof the electrodearrayandthosesubmittedtothesequential tech-niqueduringinternalcomponentsurgerywasexcluded.

Equipment

A speechprocessor, external antenna (coil)with magnet, connectorcablebetweenspeechprocessorandtheexternal antenna,programminginterface---POD(ProgrammingPOD), andthecomputerusedtosendandreceiveneural informa-tionwereusedtoevaluateimpedancetelemetryandneural responses.

Procedure

The impedance telemetryand neural response recordings werecollectedthroughanAutoNRTsystem,usingthe soft-wareCustomSoundEP3.2versiontoperformintraoperative measurementsandCustomSound3.2forpostoperative mea-surements.

TheimpedancetelemetryandNRTwerefirstperformed intheoperatingroom,aftertheinternalcomponent inser-tionandwhile the child wasstillanesthetized,and these proceduresalsocontinuedtobecarriedoutinthe postop-erativeperiod.Duringtheintraoperativeperiod,theneural responseswererecordedinthe22electrodes;however,for theanalysisinthisstudyonlytheelectrodesE1,E11andE22 wereused.Postoperatively,theparticipantswereevaluated atfivemoments(first,third,sixthandtwelfthmonths)after surgery,andtheresponseswererecordedintheelectrodes E1,E11andE22.

The impedances were measured in the MP1

monopo-lar,MP2monopolar,MP1+2monopolarandCommonGround

(CG)modes.Valueswereconsiderednormalwhenbetween 0.7kand30k.Electrodeswithelectricalproblemssuch asshort circuits --- ‘‘short’’ (<0.7k) and open circuits ---‘‘open’’(>30k)werenotselected.

The parameters for ECAP recording were: interpulse

intervalof400␮s,stimulationrate of80Hz withseriesof

25␮s of pulsewidth, the number of presentations varied

between100and200pulsespersecondforamplifiergainsin,

respectively,50dB,thewindowforrecordingwas1600␮s.

Thecurrentlevelofthemaskingnoisewasfixedat10units abovethestimulationlevel.

AllparticipantsreceivedthesameparametersinCI pro-gramminginthepostoperativeperiod.Theparametersused were in accordance with the standardization of Cochlear Corporation:ACE (advancedcombination encoder) speech coding strategy, mode of stimulation MP1+2, stimulation rateof900pulses persecond perchannel,eightmaximas andpulsewidthof25␮s.

For each electrode, the characteristics of the T-NRT

thresholdand peakamplitude of N1-P1 waves were

com-pared between the returns. These measurements were

separatelycomparedfor:therightandleftear,theintraand postoperativeperiodsandelectrodeposition.Electrode01 (E01)wascalledbasal,electrode11(E11)wascalledmiddle andelectrode22(E22)wascalledapical.Thesenominations areinaccordancewiththeirpositionsinthecochlearregion. The ‘‘activation’’ of theCI electrodes occurredwithin onemonthaftertheintraoperativeperiod,whichwouldbe thefirst time thedevice wasactivated,thus sendingthe electricalsignaltotheauditorynervethroughthe22 intra-cochlear electrodes; after this period, the postoperative measurementswerestarted.

Fromeachmeasuredelectrode,onlythevalidresponses wereselected,thatis,theNRTresponseshadtobe identifi-able,eventhoughitisknownthatresponsesareincreasingly lessrobustintheelectricalthreshold.

Theanswerswereanalyzedthroughtheautomatic soft-ware function. The corresponding recording location was chosenfor theelectrodes tobeanalyzedin basal,middle andapicalform(E1,E11andE22electrodes).Whenthiswas notpossible,thatis,whentheseelectrodesdidnotrespond orwhenthechildrenshowedsomediscomfort,theclosest electrodes’responseswerenotconsidered.

Statisticalanalysis

Theresults ofthisstudy wereanalyzedby amixed-effect modelofanalysisofvarianceforrepeatedmeasures.Once themeasurementsofeachindividualwereobtainedinboth ears,inthethreeassessedelectrodesandduringfollow-up, afactorialdesignstructurewasusedinthemodel.

Whentheglobalp-valueofanyfactorwaslessthan0.05, a Bonferroni correction was used to adjust the multiple testedcomparisons.AnalyseswereperformedusingtheSAS 9.3software.

Results

Table1 shows the participants’ characterization. All chil-drenhadprofoundsensorineuralhearingloss,ofidiopathic etiology.

Table 2 shows the mean age of participants at the CI surgeryandthetimeof CIuse(months).Themeanageat surgerywas23.50months(standarddeviation5.43)andthe timeofcochlear implant use was14.67months (standard deviation6.50).

(4)

Table1 Characteristicsofparticipants.

Participants Etiology Typeanddegreeof

hearingloss

AgeatCIsurgery (months)

Cochlearimplant processor

TimeofCIuse (months)

1 Idiopathic Profoundsensorineural 14 CP810 5

2 Idiopathic Profoundsensorineural 22 CP810 12

3 Idiopathic Profoundsensorineural 24 CP810 16

4 Idiopathic Profoundsensorineural 24 CP810 16

5 Idiopathic Profoundsensorineural 27 CP810 14

6 Idiopathic Profoundsensorineural 30 CP810 25

CI,cochlearimplant.

Table2 Meanage(months)atsurgeryandtimeofCIuse.

Variable Mean Standarddeviation

AgeatCIsurgery 23.50 5.43

TimeofCIuse 14.67 6.50

CI,cochlearimplant.

Table3 Analysisofvariancechart.

Factors Fvalue p-value

Ear 3.50 0.1202

Time 4.80 0.0082a

Electrode 12.49 0.0019a

Ear×time 1.31 0.3035

Ear×electrode 0.10 0.9023

Time×electrode 0.66 0.7171

Ear×time×electrode 0.55 0.8086

ap-valuewithBonferroni correction.Statistically significant difference(p<0.05).

thevisualT-NRTandtheamplitudeofN1-P1waves,willbe shown.

T-NRTvisualmeasurement

Initially,weadjustedthemodelofmixed-effectanalysisof variancewithrepeatedmeasures.Weevaluatedthefactors: ear(rightandleft),timeoffollow-upbetween intraopera-tiveandpostoperativeperiodsandpositionofelectrodesin

thecochlea.Allthesemeasureswerealsocorrelatedwith eachother.TheresultsareshowninTable3.

Oncewedetectedsignificantdifferencesinthetimeof follow-up (p=0.0082) and electrode position (p=0.0019), the analysiswascontinued bycomparing themean T-NRT values,separatelyfor each factor,usingmultiple compar-isons two by two between the levelsof each factor with Bonferronicorrection.

Table4shows themeanvaluesandstandarddeviations forthefactors:ear,positionoftheelectrodesinthecochlea andtimeoffollow-upbetweenintraoperativeand postop-erativeperiods.Thesefactorswereassessedseparately.

Fig.1showsthemeanvaluesoftheT-NRTthresholdfor eachear,separately.

Fig.2showsthemeanvaluesforT-NRTmeasuredineach electrode,separately.Toanalyzetheseresults,three elec-trodes were assessedin each ear, at fivedifferent times, duringthefirstyearofCIuse.

Thus,atotalof180measurementswereperformed(60 foreachelectrode).Theresultsobtainedwere51 measure-mentsinbasalelectrodes, 49inmedialelectrodes and55 inapicalelectrodes,totaling155measurements.Itis note-worthythatparticipant1wasassessedonlyuptothefirst threemonths ofCI use,because shehad usedthe device foronly5months,andthus12measurementswerelost(2 in electrode E01, 2 in electrode E011 and 2 in electrode E22). Excluding this measurement in thisparticipant, 168 measurementsremained.Ofthisnumber,13measurements

showedabsenceintheNRTmeasurement.

Table 5 shows multiple comparisons for the electrode factorandp-valueswithBonferronicorrection.

Table4 Mean(currentunits)andstandarddeviationperfactor.

Ear Time Electrode Mean Standarddeviation

Right 174.79 2.51

Left 169.99 2.76

E01 180.49 2.88

E11 182.14 2.73

E22 156.15 2.76

Intra-op 188.64 3.77

1stmpostop 166.03 4.03

3rdmpostop 168.12 3.53

6thmpostop 167.68 3.62

12thmpostop 168.07 4.47

(5)

Ear

N Mean

T-NRT measurement Confidence interval for mean 95%

77

78

0 10 20 30 40 50 60 70 80 90 100110 120 130 140 150 160 170180 174.79

169.99

Right

Left

Figure1 MeanT-NRTvaluesforeachearseparately.

Electrode

01

11

22

0 10 20 30 40 50 60 70 80 90 100 110 120 130140 150 160 170 180190 51

N Mean

T-NRT measurement Confidence interval for mean 95%

180.49

182.14

156.15 49

55

Figure2 MeanT-NRT(currentunits)valuesineachelectrode.

Table5 Multiplecomparisonsfortheelectrodefactor. Multiplecomparisons---electrodefactor p-valuea

E01×E01

---E01×E11 1.0000

E01×E22 0.0060a

E11×E01 1.0000

E11×E11

---E11×E22 0.0036a

E22×E01 0.0060a

E22×E11 0.0036a

E22×E22

a p-value withBonferroni correction.Statisticallysignificant difference(p<0.05).

The meanvalue of T-NRTin electrode E01 was signifi-cantlyhigherthaninelectrodeE22(p=0.0075);themean valueofT-NRTinelectrode11wassignificantlyhigherthan inelectrode22(p=0.0035),whereasthemeanvaluesof T-NRTdidnotdiffersignificantlybetweenelectrodeE01and electrodeE11.

Table6shows multiplecomparisonsfor thetimefactor (p-values)withBonferronicorrection.

The mean value of T-NRT intraoperatively was signif-icantly higher than the mean T-NRT values in the first (p=0.0238) and third (p=0.0203) months of follow-up. There is no significant difference in other comparisons betweentimesoffollow-up(6thmonthand12thmonth).

Fig. 3 shows this significant difference of p-value betweenthe intraoperative periodandthe firstand third monthsoffollow-up.At6monthsand12monthsof follow-up,themeasuredT-NRTvalueswerenotsignificant.

MeasurementoftheN1-P1waveamplitude

IntheresultsoftheN1-P1waveamplitudemeasurements, initiallytheadjustmentofthemodelofmixed-effect analy-sisofvariancewithrepeatedmeasureswascarriedout.We evaluatedthefactors:ear(rightandleft),timeoffollow-up betweenintraoperativeandpostoperativeperiodsand posi-tionofelectrodesinthecochlea.Allthesemeasureswere alsocorrelatedwith each other.The results areshown in Table7.

Onceasignificantdifferencewasdetectedinthe inter-action between time of follow-up and electrode position (p=0.0143), the analysiswascontinuedby comparingthe meanvaluesofN1-P1waveamplitude,betweenthethree

electrodes at each time of follow-up, with the use of

Table6 Multiplecomparisonsforthetimeoffollow-upfactor.

Timefactor Multiplecomparisons---timefactor

Intra-op 1stmpostop 3rdmpostop 6thmpostop 12thmpostop

Intra-op --- 0.0238a 0.0203a 0.0970 0.1056

1stmpostop 0.0238a --- 1.0000 1.0000 1.0000

3rdmpostop 0.0203a 1.0000 --- 1.0000 1.0000

6thmpostop 0.0970 1.0000 1.0000 --- 1.0000

12thmpostop 0.1056 1.0000 1.0000 1.0000

---Intra-op,intraoperative;postop,post-operative;m,months.

(6)

200

190

180

170

160

0 1 2 3

Time (months)

T-NR

T measurement

˝-˝ Lower limit ˝•˝ Mean ˝-˝ Upper limit

4 5 6 7 8 9 10 11 12 13

Figure 3 Difference in T-NRT (current units) between the intraoperativeandthepostoperativefollow-upperiods.

multiple comparisons two by two between the levels of

eachelectrodeateachtime,withBonferronicorrection. Table 8 shows the mean values and the respective standarddeviations foreach electrodeandtime combina-tion.

Table 9shows multiple comparisons betweenthe elec-trodes at each time, adjusted by Bonferroni correction factor.

In the third month of follow-up in the postoperative period,themeanN1-P1waveamplitude(␮V)valuein

elec-trodeE11wassignificantlylowerthanthemeanN1-P1wave amplitudevalueinelectrodeE22(p=0.0285).

Fig.4 shows thissignificance ofthe p-value in the3rd monthoffollow-upbetweenE11andE22.

Discussion

While measuring impedance telemetry during the 12

months,normalvalueswereobserved for alltheassessed electrodes.Thus,itwasnotnecessarytoexcludeany elec-trodeforthemeasurementsusedinthisstudy.Theseresults alsoshowedintegrityofthecochlearimplantinternal com-ponent.ThesedataagreewiththestudybyHughesetal.,6

who reported that this measure provides an appropriate indicationabouttheelectrodeinterfacestatusintissue,as wellastheappropriatefunctionoftheelectrode.

Table7 Analysisofvariancechart.

Factors Fvalue p-value

Ear 1.75 0.2429

Time 3.57 0.0259a

Electrode 1.62 0.2458

Ear×time 0.35 0.8421

Ear×electrode 0.90 0.4387

Time×electrode 3.07 0.0143a

Ear×time×electrode 0.76 0.6380

ap-valuewithBonferroni correction.Statistically significant difference(p<0.05).

Table8 Meanandstandarddeviationforeachcombination oftimeandelectrodeinthemeasurementoftheamplitude ofN1-P1waves(␮V).

Time Electrode Mean Standard

deviation

Intra-op E01 12.7675 9.8181

Intra-op E11 20.6550 9.8181

Intra-op E22 17.3858 9.8181

1rdmpostop E01 23.6229 10.0431

1rdmpostop E11 22.6594 9.9920

1rdmpostop E22 24.1875 9.8181

3rdmpostop E01 17.2277 9.9069

3rdmpostop E11 15.7465 10.0292

3rdmpostop E22 26.2308 9.8181

6thmpostop E01 34.2599 10.8887

6thmpostop E11 31.0511 11.2435

6thmpostop E22 35.3715 10.8859

12thmpostop E01 45.7199 10.8762

12thmpostop E11 45.7500 10.7552

12thmpostop E22 59.2800 10.7552

Intra-op,intraoperative;postop,postoperative;m,months.

T-NRTvisualthreshold

InFig.1, therewasnosignificant differencebetween the ears (p=0.1202) in T-NRT measure and in the measured N1-P1waveamplitude(p=0.2429)(Table7).Thesefindings allowustoinferthatbilateralCIwithsimultaneoussurgical technique, for this study population, was effective for synchronizedneuralstimulationinbothears.The stimula-tionprovided bya cochlear implant issingle,and alarge electricpulsecanpromotegreaterstimulationonneurons fortheauditorynervetorespondtothestimulusinahighly

Table9 Multiplecomparisonsbetweentheelectrodesat eachfollow-upofthemeasurementofamplitudeofN1-P1 waves(␮V).

Multiplecomparisons tvalue p-valuea

Intra-op---E01×E11 −3.12 0.0645 Intra-op---E01×E22 −1.53 1.0000 Intra-op---E11×E22 1.59 1.0000 1stmpost-op---E01×E11 0.37 1.0000 1stmpost-op---E01×E22 0.23 1.0000 1stmpost-op---E11×E22 −0.16 1.0000 3rdmpost-op---E01×E11 1.03 1.0000 3rdmpost-op---E01×E22 −2.49 0.2925 3rdmpost-op---E11×E22 −3.46 0.0285a 6thmpost-op---E01×E11 0.65 1.0000 6thmpost-op---E01×E22 −0.25 1.0000 6thmpost-op---E11×E22 −0.87 1.0000 12thmpost-op---E01×E11 1.06 1.0000 12thmpost-op---E01×E22 −0.33 1.0000 12thmpost-op---E11×E22 −1.43 1.0000

(7)

60.00

01

0 1 2 3 4 5 6 7 8 9 10 11 12 11 22

Electrode

Time (months)

N1-P1 amplitude (µV)

50.00

40.00

30.00

20.00

10.00

Figure4 Meanvalue ofN1-P1wave amplitude(␮V) inthe thirdmonthoffollow-upbetweenE11andE22.

synchronized manner, allowing benefits for children with severehearingloss.13

Gordon et al.14 performed a study with EABR

(Electri-cally EvokedAuditoryBrainstem Response) andconcluded thatthereductionoflatenciesinthewavesmayreflectan increaseinneuralsynchronyoramorerapidnerve conduc-tion in the brain stem promoted by bilateral stimulation versusunilateralstimulation.

The ECAP through the NRT measure only peripherally

assesses the auditory pathway (auditory nerve), but it is importanttoemphasizethatthiselectricalstimulation trig-geredin theauditory pathwayis oneof theprecursorsto makeauditoryinformationeffectivelyarriveattheauditory cortex.10

Fig.2showsthemeanvaluesforT-NRTmeasurementin each electrodeseparately.Postoperatively,absences were observed inthe recordingsof thismeasure,which can be explainedbysomediscomfortduringtheprocedure(4

mea-surements) and the remaining by the absence of neural

responseperse(9measurements,thatis,4inelectrodeE01, 4inelectrodeE11and1inelectrodeE22).Thesedataare similartootherdatafromliterature.15Laietal.16statethat,

over time,the trendof NRTlevelsimprove andgenerally becomestable.Theseresponsestoelectricalstimulationof electrodesshowvariationsaccordingtotheirpositionwithin the cochlea and the density and integrity of the neural population.17

In this study, the mean T-NRT measurement (Table 4) duringtheintraoperative periodwas188.64 CUs,whereas in the postoperativeperiodit was166.03 CUs in the first month; 168.12 CUsin the thirdmonth; 167.68 CUs in the sixthmonth,and171.50CUsinthe12thmonth.Themean valueofT-NRTintheintraoperativeperiodwassignificantly higherthanthemeanT-NRTvaluesinthefirst(p=0.0238) andthird(p=0.0203)monthsoffollow-up.Thereisno sig-nificantdifferenceinothercomparisonsbetweenperiods(6, 9,12months).

However, in the studies of Tanamati et al.,18 Hughes

etal.,6ThaiVanetal.,10andMuhaimeedetal.19therewere

nostatisticallysignificantdifferencesintheT-NRTthreshold duringthefirstyearofdeviceprogramming.Laietal.16also

foundnosignificantdifferencein thismeasureinthefirst 15monthsofdeviceuse.Intheseliteraturefindings,theCI surgerywasperformedwithparticipantsfromdifferentage groups.OnlyinthestudyofTanamatietal.18ayoungerage

atsurgery wasobserved, before3years,but withno sta-tisticalsignificance. The ageat CIsurgery (23.50months) andthebilateralstimulationofthehearingnervecan jus-tifythe significantfindingduringthefirstthreemonthsin ourpopulation.

To justifythe absenceofsignificant correlation after3 months of CI use, it should be considered that the NRT measurement only allows an investigation of the neural responsivenesscapabilityintheperipheralauditorysystem. Thus,onecaninferthatthefirstthreemonthswere essen-tialforthestimulationoftheauditorynerveinthechildren followedinthisstudyandthattheneuralresponseremained inthepresenceofelectrical stimulationafterthisperiod.

The NRT measurement cannot guarantee that the

cogni-tive mechanisms involved in the auditory perception are activated.10

Table 5 shows that the mean value of T-NRT in elec-trode E01 was significantly higher than in electrode E22 (p=0.0075);themeanvalueofT-NRTinelectrodeE11was significantlyhigherthan inelectrodeE22(p=0.0035),and themeanvaluesofT-NRTdidnotdiffersignificantlybetween electrodesE01andE11.

ThesedataaresimilartothosereportedbyDeesetal.,20

Vlahovicet al.21 and Brown et al.,22 whoobserved a

sig-nificant effect between the apical and basal electrodes. Consideringtheliteraturefindingscorrelatedtothepresent

study data, we can assume that chronic stimulation of

thelow-frequencycochlearregionduringthepreoperative periodmayhave contributedtoimproveneuronalsurvival and/orimproveneuronalsynchronyofperipheralneuronsin theapicalportionofthecochlea,orthatperforminghearing rehabilitationpreoperatively,andtheactivationand devel-opmentofthecentralauditorypathwayscontributetothe functionalmaintenanceofspiralganglioncellsintheapical portionofthecochlea.21

N1-P1peakamplitude

InTable 7, the timeof CIuse and the electrodeposition were correlated, and there was a significant difference (p=0.0143)intheN1-P1amplitudewiththesefactors. Gor-donetal.13alsofoundsignificanceintheincreaseoftheN1

peakamplitudeintheECAPandintheVwaveinEABR, dur-ingthetimeofCIuse.Tanamatietal.18evaluatedthefirst

yearofCIuseandfoundthatinallelectrodestherewasan increaseintheN1peakamplitudebetweenthesecondand thirdreturns.

(8)

neurons, and thus a greater number can be recruited to establisharesponsewithsynchrony.13

Table9andFig.4showthat,inthethirdmonthof postop-erativefollow-up,themeanvalueofN1-PIwaveamplitude (␮V) in electrode E11 was significantly lower than the

meanN1-P1waveamplitudeinelectrodeE22(p=0.0285). Therewerenosignificantdifferencesforothercomparisons betweentheelectrodesateachtimeperiod.

Gordon et al.,23 Hughles et al.6 and Vlahovic et al.21

also found higher amplitude of ECAP in the apical

elec-trodes than in the medial and basal electrodes. These

resultssuggestthatelectricalstimulationofthebasal elec-trodesmayinvolveasmallernumberofspiralganglioncells, whencomparedtostimulationintheintermediateorapical electrodes.23 The amplitudes reflect the sum of the

neu-ronactivities,thatis,thenumberofneuronsthatrespond toastimulus,whichinturnindicatebetterpreservationof neuronalfunction.21

Considering thedata shown in this study,we observed thatthe auditorypathways in implantedchildren become more efficient during the first year of cochlear implant use,probablybecausethegroupsofnerves respondfaster and with a greater degree of synchrony. These activity-dependentprocessesareprobablyduetoincreasedsynaptic networks,andperhapstoanincreaseinmyelination.13

Conclusion

Basedontheanalysisofneuralresponsesinsixchildren eval-uatedinthefirstyearofuseofbilateralcochlearimplants, weconcludedthatthemeasurementofECAPbyNRTwasan importantmeasuretoassessthe bilateraldevelopmentof theperipheralauditorypathwayinasynchronizedmanner inthisassessedpopulation.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

References

1.ProfantM,KabatováZ,SimkováL.Fromhearingscreeningto cochlearimplantation:cochlearimplantsinchildrenunder3 yearsofage.ActaOtolaryngol.2008;128:369---72.

2.LitovskyR,ParkinsonA,ArcaroliJ,SammethC.Simultaneous bilateralcochlearimplantationinadults:amulticenterclinical study.EarHear.2006;27:714---31.

3.LitovskyRY,ParkinsonA,ArcaroliJ.Spatialhearingandspeech intelligibility in bilateral cochlear implant users. Ear Hear. 2009;30:419---31.

4.PapsinBC, GordonKA. Bilateralcochlearimplantsshouldbe thestandardforchildrenwithbilateralsensorineuraldeafness. CurrOpinOtolaryngolHeadNeckSurg.2008;16:69---74. 5.Thai-VanH,TruyE,CharasseB,BoutitieF,ChanalJM,Cochard

N, et al. Modeling the relationship between psychophysical perception and electrically evoked compound action poten-tial threshold in young cochlear implant recipients: clinical implications forimplant fitting.ClinNeurophysiol. 2004;115: 2811---24.

6.Hughes ML, Brown CJ, Abbas PJ, Wolaver AA, Gervais JP. ComparisonofEAPthresholdswithMAPlevelsintheNucleus 24cochlearimplant: datafrom children. Ear Hear.2000;21: 164---74.

7.AbbasPJ,BrownCJ,ShallopJK,FirsztJB,HughesML,HongSH, etal.SummaryofresultsusingtheNucleusCI24Mimplantto recordtheelectricallyevokedcompoundactionpotential.Ear Hear.1999;20:45---59.

8.BrownCJ,AbbasPJ,GantzBJ.Preliminaryexperiencewith neu-ralresponsetelemetryintheNucleusCI24Mcochlearimplant. AmJOtol.1998;19:320---7.

9.LaiW.AnNRTcookbook:guidelinesformakingNRT measure-ments.1sted.Zürich:CochlearAG;1999.p.1---44.

10.Thai-VanH,ChanalJM,CoudertC,VeuilletE,TruyE,ColletL. RelationshipbetweenNRTmeasurementsandbehaviorallevels inchildrenwiththeNucleus24cochlearimplantmaychange overtime:preliminary report.IntJPediatrOtorhinolaryngol. 2001;58:153---62.

11.GordonKA,EbingerKA,GildenJE,ShapiroWH.Neuralresponse telemetry in 12- to 24-month-old children. Ann Otol Rhinol LaryngolSuppl.2002;189:42---8.

12.BrownCJ,HughesML,LukB,AbbasPJ,WolaverA,GervaisJ. TherelationshipbetweenEAPandEABRthresholdsandlevels usedtoprogramthenucleus24speechprocessor:datafrom adults.EarHear.2000;21:151---63.

13.GordonKA,PapsinBC,HarrisonRV.Activity-dependent devel-opmentalplasticityoftheauditorybrainsteminchildrenwho usecochlearimplants.EarHear.2003;24:485---90.

14.Gordon KA, Valero J, Hoesel RV, Papsin BC. Abnormal tim-ingdelaysinauditorybrainstemresponsesevokedbybilateral cochlearimplantuseinchildren.OtolNeurotol.2008;29:193---8. 15.SmoorenburgGF,WilleboerC,vanDijkJE.Speechperception inNucleusCI24M cochlearimplantuserswithprocessor sett-ingsbasedonelectrically evokedcompoundaction potential thresholds.AudiolNeurootol.2002;7:335---47.

16.LaiWK,AkistM,AkdasF,DillerN.Longitudinalbehaviourof neuralresponsetelemetry(NRT)dataandclinicalimplications. IntJAudiol.2004;43:252---63.

17.GantzBJ,BrownCJ,AbbasPJ.Intraoperativemeasurementsof electricallyevokedauditorynervecompoundactionpotential. AmJOtol.1994;15:137---44.

18.TanamatiLF,BevilacquaMC,CostaAO.Avaliac¸ãolongitudinal doECAPregistradoemcrianc¸asusuáriasdeimplantecoclear. BrazJOtorhinolaryngol.2009;75:90---6.

19.Muhaimeed HA, Anazy FA, Hamed O, Shubair E. Correlation betweenNRTmeasurementlevelandbehaviorallevelsin pedi-atricscochlearimplantpatients.IntJPediatrOtorhinolaryngol. 2010;74:356---60.

20.Cafarelli-Dees D, Dillier N, LaiWK, Wallenberg EV, Dijk BV, AkdasF,etal.Normativefindingsofelectricallyevokedaction potentialmeasurementsusingtheneuralresponsetelemetryof theNucleusCI24Mcochlearimplantsystem.AudiolNeurootol. 2005;10:105---16.

21.VlahovicS,Sindija B,ArasI,GluncicM,TroticR.Differences betweenelectricallyevokedcompoundactionpotential(ECAP) and behavioral measures in childrenwith cochlear implants operatedintheschoolagevs, operatedinthefirst yearsof life.IntJPediatrOtorhinolaryngol.2012;76:731---9.

22.BrownCJ,AbbasPJ,EtlerCP,O’BrienS,OlesonJJ.Effectsof long-termuseofacochlearimplantontheelectricallyevoked compoundactionpotential.JAmAcadAudiol.2010;21:5---15. 23.GordonKA,EbingerKA,GildenJE,ShapiroWH.Neuralresponse

Imagem

Table 6 shows multiple comparisons for the time factor (p-values) with Bonferroni correction.
Figure 4 Mean value of N1-P1 wave amplitude (␮V) in the third month of follow-up between E11 and E22.

Referências

Documentos relacionados

Studies show that about 80% of patients achieve plasma VLs of less than 50 copies/mL after one year of treatment and that viral suppression is maintained over time,

Além do fator populacional, outros três fatores foram importantes para o crescimento espacial de Breu Branco: o preço da terra, a topografia da área de expansão e a

Transient directional solidification experiments were carried out with three commercial 5052 alloys containing 2.4wt.%, 2.6wt.% and 3.2wt.% Mg with a view to determining

At the same time, the compound action potential of the electrically evoked auditory nerve (ECAP) or neural response in cochlear implant users can objectively demons- trate changes

Children under 1 year of age with si- multaneous bilateral cochlear implants behave like normal hearing listeners at 4 years of age, with better use of hear- ing in quiet and in

Conclusion: Changes in the characteristics of cortical auditory evoked potentials can be ob- served in children who receive cochlear implants; these changes are related to the age

ESRT, electrically evoked stapedius reflex threshold; ECAP, electrically evoked compound action potential of the auditory nerve; BAEP, brainstem auditory electrically evoked

A cirurgia virtual guiada se mostra uma ferramenta valiosa para desafios clínicos de reconstruções maxilares e mandibulares, onde o cirurgião-dentista, por meio da sua