• Nenhum resultado encontrado

Optical, electrical and electrochemical evaluation of sputtered platinum counter electrodes for dye sensitized solar cells

N/A
N/A
Protected

Academic year: 2021

Share "Optical, electrical and electrochemical evaluation of sputtered platinum counter electrodes for dye sensitized solar cells"

Copied!
6
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Applied

Surface

Science

j o ur na l ho me pa g e :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

Optical,

electrical

and

electrochemical

evaluation

of

sputtered

platinum

counter

electrodes

for

dye

sensitized

solar

cells

R.S.

Moraes

a

,

E.

Saito

b

,

D.M.G.

Leite

a

,

M.

Massi

a,b

,

A.S.

da

Silva

Sobrinho

a

aTechnologicalInstituteofAeronautics(ITA),PhysicsDepartment,SãoJosédosCampos,SP,Brazil bFederalUniversityofSãoPaulo-ICT,SãoJosédosCampos,SP,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received14August2015 Receivedinrevisedform 18November2015 Accepted15December2015 Availableonline17December2015 Keywords:

Energyconversion Solarenergy

DSSCcounterelectrode Platinumcatalyticthinfilm

a

b

s

t

r

a

c

t

SinceGrätzelandO’Reganstartedin1991,dye-sensitizedsolarcells(DSSC)havebeenextensivelystudied aroundtheworld.Inadditiontoincreasingefficiency,theircharacteristicssuchaslowcostmaterialsand inexpensivemanufacturingprocessesareattractivefororganicsolarcells.SeveralpartsofDSSCdevices arebeingresearchedsuchassemiconductorengineering,lowcostcounterelectrodes,electrolytes,and dyes.Inthiswork,platinum(Pt)thinfilmsweredepositedbysputteringtechniquetoproducecounter electrodesforDSSC.Thefilmswerecharacterizedbyprofilometry,elipsometry,four-pointprobesheet resistance,spectrophotometry,andelectrochemicalimpedancespectroscopy.Theelectroderesponse wasalsocomparedtothatbuiltfromacommercialplatinumsolution.Theresultsallowustodetermine theminimumPtfilmthicknessnecessarytoachievearelevantreductionofthesheetresistanceand chargetransferresistance,whichpreserveasignificantelectrodetransparency.The22nmand24.8nm thickfilmscombinedlowchargetransferresistanceandgoodtransparency.The122nmPtfilmpresented thelowestchargetransferresistance.

©2015ElsevierB.V.Allrightsreserved.

1. Introduction

Theenergydemandisachallengeforthefutureinallcountries. Theprogressanddevelopmentheavilydependonenergy. Photo-voltaiccellsforsolarenergyconversionisasustainablesolutionfor independencefromfossilfuelswithouttheirintrinsicfingerprint

[1–3].

Historically,thebeginningofsolarenergyconversionstarted experimentallyinBell’slaboratory[4].Sincethen,thistechnology has been continuouslydeveloped to reach high values of effi-ciency,butitshighmanufacturingcostsandchallengingfabrication processareissuesthataffectthedisseminationofthiskindof tech-nology.However,aconstantincreaseinefficiencyofdifferentkinds ofsolarcellshaschangedthisscenario.Inrecentyears,the develop-mentofdyesensitizedsolarcells(DSSC)developedbyGratzeland O’Reganhasbeenanimportantapparatusforenergyconversion

[5].

The DSSC operates through different working mechanisms comparedtoconventionalsiliconsolarcells.Comparing conduc-tionmechanismsinsilicon-based solarcells, thesemiconductor assumesthetaskoflightabsorptionaswellaschargetransport. In dye-sensitizedsolarcells, both thesetasksoccurindifferent materials.Dyemoleculesabsorblightandinjectelectronsintothe conductionbandofthesemiconductor,thattransportschargesto

thecounterelectrode[6,7].TheschematicrepresentationofDSSC solarcellsispresentedinFig.1.

Adye-sensitized solarcellinitiallyoperates bythe photoex-citationofadyeadsorbedonasemiconductor(TiO2,ZnO)[8,9], frequentlycalledphotoanode.Thedecay oftheexcitedstateof thedyeoccursbyachargeinjectioninaconductionbandofthe semiconductor andthisprocessis supportedbyaredoxshuttle (I3/I−)presentinelectrolyte[10].Specifically,theoxidizeddyeis regeneratedbyiodine,whichresultsindiiodinespecie(I2•−)andat theendadiiodinedisproponation[11].Theredoxshuttleofiodine reactiondirectlyaffectstheoverallperformanceofthecell.This processcanbecatalyzedbyseveralmaterialsdepositedonto trans-parentconductingoxide(TCO)glasssubstrateatcounterelectrode, suchasplatinum[12–19],carbon[20–23],conductingpolymers

[24–31],metalsconjugatedwithpolymers[32,33],andotherlow

costalternatives[34].Therefore,theperformanceofcounter elec-trodelimitsthemaximumperformanceofDSSCandcanbeaffected byseveralfactorssuchastransparency,conductivity,andcharge transferresistance.Sheetresistanceandchargetransferresistance (Rct)haveimportantrolesinelectricconductionmechanismsof DSSCsolarcells.DecreasedsheetresistanceofthePtfilmscauses lower seriesresistanceofthecell, increasingthefillfactor and consequentlyitsefficiency[16–18].Lowvalues ofcharge trans-ferresistanceindicatefaster chargetransferand canberelated

http://dx.doi.org/10.1016/j.apsusc.2015.12.114

(2)

Fig.1.SchematicofDSC.Adaptedfrom[52].

tothecharacteristicofthecounterelectrode-electrolyteinterface

[15].

Sincethen,severalimprovementshavebeenmadeinallparts ofDSSCsuchasinelectrolyte[35],semiconductors[36],catalysts

[34],dyes[37],processing[38],andsealing.

Theseimprovementsincreasetheperformanceandlifetimeof thesecellsinrelationtoallthecomplexparametersrelatedtoDSSC devicesuchasohmicloss[39],masstransfer[40],andphysicaland electrochemicalkinetics[41].

ThecounterelectrodethatcombinesTCOglassandplatinum catalystfilmisoneofthemostimportantpartsofdye-sensitized solarcells[42].Platinumfilmshavebeenthebestsolutiontothis applicationdue totheirexcellentcatalytic activityandstability

[15].

Aimingtoreducemanufacturingcostsofthecell,magnetron sputteringtechniquecanobtainfilmswithreducedthicknessby controllingthedepositionparameters,theeasiestbeingthe depo-sitiontime.Obtainingtheplatinumcatalystfilmasthinaspossible withoptimizedcatalyticactivityreducescosts.

Toachievethisgoal,abatchofPtfilmswasdepositedbydirect current(DC)magnetronsputteringtechniqueusingdifferent depo-sition timesin order toobtaindifferent film thicknesses.Their properties,includingtransmittance,sheetresistance,and electro-chemicalresponses,wereanalyzedtodeterminethebestcondition forapplicationinDSSCcounter electrode.Theresultswerealso comparedwithatypicalcounterelectrodebuiltfromcommercial platinumpaint.

DCmagnetronsputteringisaversatileandlowcostdeposition techniquewhencomparedwithotherthinfilmdeposition tech-nologies(asMOCVDandMBEforexample).ForthePtfilmsand otherpreciousmetalsfilms,thesputteringtechniqueisalsomore cost-effectivethansimpleevaporationduetothelowPt consump-tion.Despite these low cost benefits,DC magnetron sputtering techniquehassomeimportanttechnologicaladvantages,namely: (i)theabilitytodeposit a widerange of materialsontoa vari-etyofsubstratewithextensiveareas;(ii)productionoffilmswith highpurity(>99.999%)andhighhomogeneity;(iii)easycontrolof thefilmpropertiesbysimplyvaryingthedepositionparameters, includingDCpower,depositiontime,plasmacomposition, work-ingpressure,andsubstratetemperature;(iv)reproducibilityand repeatability.AllthesecharacteristicsmakeDCmagnetron sput-teringa goodchoicetoproducePtthin filmsforapplication in DSSC.

Table1

Parametersofsputteringprocess.

Parameter Value

Target/substratedistance 20mm

DCpower 20W

Argonpressure 1.3×10−2Torr

Depositiontime 3s(Sample1) 6s(Sample2) 10s(Sample3) 30s(Sample4) 150s(Sample5) 300s(Sample6) 2. Experimental

Platinum thin films were deposited onto FTO (commercial TCO22-7fluorinedopedtinoxideobtainedfromSolaronix®)coated

glasssubstrateusingahomemadeplanarmagnetronsputtering system withcylindrical geometry. The cathode with33.78mm (diameter)consistsofhighpurityplatinumtarget(99.99%)placed 20mm from the substrates.Pure argon atmosphere was used.

Table1summarizestheparametersofthesputteringprocess.The

depositiontimeisanexperimentalparameterthatcanbeeasily controlledinthemagnetronsputteringprocessandhasdirecteffect ontheresultingfilmthickness.Theresultsobtainedby sputter-ingtechniquewerecomparedtosimilarelectrodesproducedfrom commercialplatinumpaint(PlatisolTobtainedfromSolaronix®) brushpaintedontoFTO,firedat450◦Catarateof10◦C/min, main-tainingthistemperaturefor10mintoobtainactivatedplatinum film.

The film thicknesses were measured by KLA Tencor P-7 perfilometer and HORIBA UVISEL 2 ellipsometer. To evaluate the relation between thin film properties and electro-catalytic response,theopticalandelectricalpropertieswerecharacterized bytransmittancespectrainthevis–NIRregionbyJASCOV570 spec-trophotometerandbysheetresistancemeasurementsusingJandel RM3000four-probetestunit.

The electro-catalytic response was measured by electro-chemicalimpedance spectroscopy(EIS)performedbycomputer controlled potentiostat (Autolab 302N) with Ag/Ag+ reference electrodeand apureplatinum wireasacounter electrode.The amplitudeofperturbationwas10mVinafrequencyrangefrom 4.5×105Hzto10−1Hzinopencircuitpotentialinafaradaycage. Theimpedance datawerefittedby adaptedRandles equivalent circuit[43].

The electrochemical evaluation of the counter electrodes was performed by a standard commercial electrolyte AN-50(Solaronix®)composedby1,2-dimethyl-3-propylimidazolium iodideandiodineinacetonitrilesolvent.

3. Resultsanddiscussions 3.1. Thicknessandsheetresistance

Thethicknessesoffilmswerecontrolledbythedepositiontime of theprocesses. Table2 presentsthe resultsobtainedby pro-filometryandsheetresistance.Itwasnotpossibletomeasurethe thicknessofsamples1,2,and3byprofilometer,becausetheywere toothin. Tosolvethisproblem,thesethinfilmsweredeposited ontosiliconsubstratesandanalyzedbyellipsometry.Samples4,5, and6(thickerfilms)showmirroraspect,blockingmostofthesolar spectrumthroughoutthecounterelectrode.

Table2 andFig.2showthatsheetresistancedecreaseswith

increased film thickness,reaching a plateau for higher deposi-tiontime,wherethebehaviorofthefilmisclosetotheplatinum bulk. Lowersheet resistance is a desirable property because it

(3)

Table2

Thicknessandsheetresistanceofthesamples.

Depositiontime(s) Thickness(nm) Sheetresistance(/䊐)

3(Sample1) 11.5 54.10 6(Sample2) 17.1 24.83 10(Sample3) 22.0 15.63 30(Sample4) 24.8 2.60 150(Sample5) 122.0 0.78 300(Sample6) 319.0 1.07 Platinumpaint – 7.80

FTO n/a 7.00(solaronixdata)

contributestocollectphotocurrent,reducesseriesresistanceof thecell,andcontributestoincreasefillfactor[16].

Thefilmsdeposited formore than30s(24.8nmthick) have verylowsheetresistancevalues,whicharelowerthanthevalue obtainedfromtheplatinum paintedsampleand similarto val-uescomparedintheliterature[18].Thisresponsewasexpected consideringthehighconductivityofmetallicplatinumandthe par-ticledistributionuniformityofthesputteringtechnique.Sample5, depositedfor150s(122.0nmthick),hadthelowestsheet resis-tance.Samples4and6alsohadlowerresistancethanFTOorthe filmobtainedbyplatinumpaint.

Forthefirstthreesamples(thicknessbelow24nm),thesheet resistancegreatlyincreasedwhenthePtfilmthicknessdecreased. Thisbehaviorwasexpectedandcouldbedirectlyrelatedtotwo mainreasons:(i)shortdepositiontimesaffectedthesheet resis-tance,becauseofthepoisoningeffectinsputteringprocess,wherea thinoxidelayeronthesurfaceofmetallictargetswassputteredand consequentlydepositedontothesubstrateformingthefirstatomic layers,whichaffectedthesheetresistanceofverythinfilms[44]; (ii)thefilmswithdecreasedthicknessaremoresuitablefor dis-continuitythroughthesurface,whichalsogreatlyeffectsthesheet resistancemeasurementswhentheconditionsofsimpleconnected areaofthevanderPauwtheoremisviolated[45].

Theseresultsaboutthicknessandsheetresistancesmustbe cor-relatedtoelectrochemicalresultsinordertoselecttheadequate filmthickness.

3.2. Transmittance

Transmittancemeasurementswereemployedtomeasurethe level of transparency of the films, mainly in visible and near infraredregions,asshowedinFig.3.Animportantissuehereis that conventionalDSSCs mayonly operateunder one-side illu-mination. In this sense, transmittance can desirably contribute tolightaccesstoallphotoanode(andpotencializestheaccessof

Fig.2.Sheetresistancerelationwithfilmsthickness.

Fig.3.TransmittanceofPtthinfilmsdepositedonFTOsubstrates.

photonstoadsorbeddye).Theresultsindicatedthatfilmsdeposited for30–300s(thickerthan24nm)hadlowtransparency,whichcan affectthesolarcellperformance,orevenrestricttheirapplicationas semitransparentwindows.Otherwise,thetransmittanceincreases forsamplesdepositedusingshort-timeprocessesandallowsthe radiationthroughoutthecounterelectrode,increasingthecurrent densityofthecells.

3.3. Electrochemicalimpedancespectroscopy(EIS)

TheEIStechniquewasperformedforallelectrodesandfitted tofindthespecificvalueofchargetransferresistanceofplatinum electrodes.Theelectrochemicalcharacterizationofcounter elec-trodeswasperformedinaconventionalelectrochemicalcellusing Ag/Ag+referenceelectrodeandaplatinummeshascounter elec-trode.Thistechniquecanpreciselyfindcriticalcounterelectrode response,suchaschargetransferresistance(Rct)attheelectrode relativetoaredoxcouple.

Asexpectedinthisexperimentalsetup,thehighfrequencylimit allowsthereductionofthecapacitivecontributionand determina-tionoftheseriesresistanceoftheelectrode.Alongthefrequency range,atmediuminterval,thecontributionofdoublelayer capac-itance and charge transfer resistance can be determined. The diffusionalimpedanceresponsescanbeattributedtomobilityof redoxspeciesatlowfrequencies.Attheendofallmeasurements, theconditionoflinearity,causality,andstabilitywereverifiedby Kramers-Kronigtransform[46].Therefore,thedataconsistencyof EISmeasurementswasvalidated.

Thesample4(24.8nmthick–30s)andsample5(122.0nmthick –150s)presentedthebestcorrelationofseriesresistance,Rctand sheetresistance,whichwasconfirmedbytheliterature[14,17,20]. IntheNyquistplot,presentedinFigs.4and5,showsthe semicir-cle(fromchargetransferresistanceanddoublelayercontribution inparallel)andthediffusionalresponseofredoxspeciesatlow frequencies.

AllexperimentaldatawerefittedwithadaptedRandles equiv-alentcircuit(withaconstantphaseelementmodelingthedouble layercapacitance)[43].Consideringthedistributionofplatinum in this non-uniform substrate, it was expected that all elec-trodes would present a deviation fromideal capacitor. Besides thedeviation,allexponentialfactorvaluesstayednearunityand doublelayercapacitanceintheexpectedrange(20×10−6Fcm2)

[10,47–49].

Thesamplesproducedinaperiodlowerthan30s(thickness lowerthan24nm)presentedhighseriesresistances,evenhigher thanbareFTO.Thisresultagreeswiththehighsheetresistance valuesobtainedbyfourprobemeasurements,anditreinforcesthe hypothesisofthepresenceofapristineoxidelayergrownatthe

(4)

Fig.4.Nyquist(a)andBodeplot(b)ofplatinumelectrodesputteredonFTOofSample5.Theexperimentaldataarerepresentedbysymbolsandthefittedbythecontinuous line.

Fig.5. Nyquist(a)andBodeplot(b)ofplatinumelectrodesputteredonFTOofSample4.Theexperimentaldataarerepresentedbysymbolsandthefitbythecontinuous line.

firstsecondsofthesputteringprocessduetothetargetpoisoning effect[44].

AsconfirmedbyFig.5,sample4hadhigherseriesresistance comparedtosample5,inFig.4.Theseriesresistanceisdetermined byhighfrequencyperturbationbecauseitexcludesthecapacitive responseofelectrode.Table3presentsthecomparisonbetween chargetransferresistance(Rct)andsheetresistanceforsamples 1–6.Itisimportanttonotethesimilarbehaviorbetweenthesetwo electricalproperties,bothdecreasewhenthethinfilmthickness increases.

Fig.6presentstheplotofchargetransferresistanceasa func-tionofdepositiontime,obtainedfromfittingofelectrochemical impedance response with modified Randles equivalent circuit

[43,50].Thetechniqueallowsa reliablequantification ofcharge

transferresistanceofplatinumelectrodeinrelationtoiodineredox coupletobeobtained.

ComparingtheRct resultswithcommercialplatinum(dashed lineinFig.6)28/cm2[51],itispossibletoverifythateventhethin

Table3

Sheetresistanceandchargetransferresistance(Rct)results.

Depositiontime (s) Sheetresistance (/䊐) Chargetransfer resistance(/cm2) 3(Sample1) 54.10 30.72 6(Sample2) 24.83 26.56 10(Sample3) 15.63 27.92 30(Sample4) 2.60 9.63 150(Sample5) 0.78 2.30 300(Sample6) 1.07 6.96

filminsample2haslowerchargetransferresistance.Inaddition, theminimumvalueofchargetransfer(2.3/cm2)andthelowest

sheetresistance(0.78/䊐)arebothfoundforsample5.

Takingintoaccountthesimilarsheetresistance, series resis-tance,andchargetransferresistance,samples4,5,and6presented thebestparameterstoimproverecombinationprocessesatcounter electrode.However,the30ssputteringprocess,whichproducesa 24.8nmfilm(sample4),isthebestselectionconsideringplatinum consumptioninthiswork.

Fig.6. Chargetransferresistancecomparedtodepositiontime(dashedline corre-spondstocommercialplatinumchargetransferresistance).

(5)

4. Conclusions

PlatinumcounterelectrodeswereobtainedbyDCmagnetron sputteringofapureplatinumtargetvaryingonlythedeposition time.Inordertoselectbestsputteringparameterstoobtain opti-mized counter electrodes for DSSC application, the filmswere characterized by profilometry and elipsometry to measure the thicknessofthefilms;fourpointelectricalresistancetoevaluate the sheetresistance; spectrophotometry to evaluatethe trans-parency;andelectrochemicalimpedancespectroscopytoevaluate theelectroderesponsetoiodineredoxcouple.Thefilmsresponses werecomparedtocommercialplatinumpaintcommonlyusedas counterelectrodefordyesolarcells.Forsamplesobtainedby sput-teringforlessthan30s(Sample4),thesheetresistancepresented animpeditivevalue(fromapproximately15–50/䊐)aswellas betteropticaltransmittance.Insamplespreparedfor30,150,and 300s(thicknessequalto24.8,122.0,and319.0nm,respectively) thevaluesofsheetresistancewerebelowsubstrateresistanceand revealedgoodchargetransferefficiency.

Consideringthesetofparametersobtainedfromthisstudy,the 24.8nmthickfilm(obtainedwith30s)hasreducedsheetresistance andchargetransferresistancecomparedtocommercialPtthinfilm (fromthermaldecompositionofsolution),therebyimprovingthe recombinationprocessesatcounterelectrode.Forthenextstepof thiswork,dyesolarcellswillbeassembledwithoptimizedcounter electrodes.

Acknowledgements

TheauthorsacknowledgethefinancialsupportofCAPES/PNPD, CAPES/PVNS,andCNPq(Grant555.686/2010-8)andthePhotonics DivisionofInstituteofAdvancedStudies(EFO-IEAv).

References

[1]S.Chu,A.Majumdar,Opportunitiesandchallengesforasustainableenergy future,Nature488(7411)(2012)294–303.

[2]J.Asafu-Adjaye,Therelationshipbetweenenergyconsumption,energyprices andeconomicgrowth:timeseriesevidencefromAsiandevelopingcountries, EnergyEconomics(2000)615–625.

[3]N.S.Lewis,D.G.Nocera,Poweringtheplanet:chemicalchallengesinsolar energyutilization,ProceedingsoftheNationalAcademyofSciencesofthe UnitedStatesofAmerica103(43)(2006)15729–15735.

[4]D.M.Chapin,C.Fuller,G.Pearson,Solarenergyconvertingapparatus,US Patent2,780,765(1957).

[5]B.O’regan,M.Grätzel,Alow-cost,high-efficiencysolarcellbasedon dye-sensitizedcolloidalTiO2films,Nature353(737)(1991). [6]M.Grätzel,Conversionofsunlighttoelectricpowerbynanocrystalline

dye-sensitizedsolarcells,JournalofPhotochemistryandPhotobiologyA: Chemistry164(1–3)(2004)3–14.

[7]A.7Hagfeldt,G.Boschloo,etal.,Dye-sensitizedsolarcells,ChemicalReviews 110(11)(2010)6595–6663.

[8]D.Jyoti,D.Mohan,etal.,Acriticalreviewonmesoporousphotoanodesfor dye-sensitizedsolarcells,MaterialsScienceForum771(2013)53–69. [9]C.Y.9Jiang,X.W.Sun,etal.,Improveddye-sensitizedsolarcellswitha

ZnO-nanoflowerphotoanode,AppliedPhysicsLetters90(26)(2007)88–91. [10]S.10Yanagida,Y.Yu,etal.,Iodine/iodide-freedye-sensitizedsolarcells,

AccountsofChemicalResearch42(11)(2009)1827–1838.

[11]J.G.11Rowley,B.H.Farnum,etal.,Iodidechemistryindye-sensitizedsolar cells:makingandbreakingI–Ibondsforsolarenergyconversion,Journalof PhysicalChemistryLetters1(20)(2010)3132–3140.

[12]Y.Wang,C.Zhao,etal.,TransparentflexiblePtcounterelectrodesforhigh performancedye-sensitizedsolarcells,JournalofMaterialsChemistry22(41) (2012)22155.

[13]C.-P.Cho,H.-Y.Wu,etal.,Impactsofsputter-depositedplatinumthicknesson theperformanceofdye-sensitizedsolarcells,ElectrochimicaActa107(2013) 488–493.

[14]C.-C.Wang,J.-G.Chen,etal.,Aplatinumfilmwithorganizedporesforthe counterelectrodeindye-sensitizedsolarcells,JournalofPowerSources239 (2013)496–499.

[15]C.Zhao,Y.Shi,etal.,Screen-printedPtcounterelectrodesexhibitinghigh catalyticactivity,ChineseJournalofCatalysis35(2)(2014)2–7.

[16]T.Ma,X.Fang,etal.,Propertiesofseveraltypesofnovelcounterelectrodesfor dye-sensitizedsolarcells,JournalofElectroanalyticalChemistry574(1) (2004)77–83.

[17]X.Fang,T.Ma,etal.,Performancescharacteristicsofdye-sensitizedsolarcells basedoncounterelectrodeswithPtfilmsofdifferentthickness,Journalof PhotochemistryandPhotobiologyA:Chemistry164(1–3)(2004)179–182. [18]X.Fang,T.Ma,etal.,EffectofthethicknessofthePtfilmcoatedonacounter

electrodeontheperformanceofadye-sensitizedsolarcell,Journalof ElectroanalyticalChemistry570(2)(2004)257–263.

[19]S.Yun,L.Wang,etal.,Anewtypeoflow-costcounterelectrodecatalystbased onplatinumnanoparticlesloadedontosiliconcarbide(Pt/SiC)for

dye-sensitizedsolarcells,PhysicalChemistryChemicalPhysics:PCCP15(12) (2013)4286–4290.

[20]Y.Peng,J.Zhong,etal.,Aprintablegrapheneenhancedcompositecounter electrodeforflexibledye-sensitizedsolarcells,NanoEnergy2(2)(2013) 235–240.

[21]G.H.Guai,Q.L.Song,etal.,Graphene-counterelectrodetosignificantlyreduce Ptloadingandenhancechargetransferforhighperformancedye-sensitized solarcell,SolarEnergy86(7)(2012)2041–2048.

[22]Y.Chen,H.Zhang,etal.,Studyoncarbonnanocompositecounterelectrodefor dye-sensitizedsolarcells,JournalofNanomaterials2012(2012).

[23]M.Wu,X.Lin,etal.,Low-costdye-sensitizedsolarcellbasedonninekindsof carboncounterelectrodes,Energy&EnvironmentalScience4(6)(2011)2308. [24]S.Y.Heo,J.K.Koh,etal.,Three-dimensionalconductingpolymerfilmsfor

pt-freecounterelectrodesinquasi-solid-statedye-sensitizedsolarcells, ElectrochimicaActa137(2014)34–40.

[25]J.Kwon,V.Ganapathy,etal.,NanopatternedconductivepolymerfilmsasaPt, TCO-freecounterelectrodeforlow-costdye-sensitizedsolarcells,Nanoscale 5(2013)7838–7843.

[26]X.Fang,T.Ma,etal.,Flexiblecounterelectrodesbasedonmetalsheetand polymerfilmfordye-sensitizedsolarcells,ThinSolidFilms472(2005) 242–245.

[27]K.S.Lee,Y.Lee,etal.,Flexibleandplatinum-freedye-sensitizedsolarcells withconducting-polymer-coatedgraphenecounterelectrodes, ChemSusChem5(2012)379–382.

[28]N.Torabi,A.Behjat,etal.,Dye-sensitizedsolarcellsbasedonporous conjugatedpolymercounterelectrodes,ThinSolidFilms573(2014)112–116. [29]B.Fan,X.Mei,etal.,Conductingpolymer/carbonnanotubecompositeas

counterelectrodeofdye-sensitizedsolarcells,AppliedPhysicsLetters93 (2008)(2008).

[30]X.Zhang,J.Zhang,etal.,Carbon/polymercompositecounter-electrode applicationindye-sensitizedsolarcells,JournalofAppliedPolymerScience 128(2013)75–79.

[31]S.Nagarajan,P.Sudhagar,etal.,APEDOT-reinforcedexfoliatedgraphite compositeasaPt-andTCO-freeflexiblecounterelectrodeforpolymer electrolytedye-sensitizedsolarcells,JournalofMaterialsChemistryA1(4) (2013).

[32]M.Ikegami,K.Miyoshi,etal.,Platinum/titaniumbilayerdepositedon polymerfilmasefficientcounterelectrodesforplasticdye-sensitizedsolar cells,AppliedPhysicsLetters90(2007)(2007)88–91.

[33]J.He,N.W.Duffy,etal.,Conductingpolymerandtitaniumcarbide-based nanocompositesasefficientcounterelectrodesfordye-sensitizedsolarcells, ElectrochimicaActa105(2013)275–281.

[34]T.N.Murakami,M.Grätzel,CounterelectrodesforDSC:applicationof functionalmaterialsascatalysts,InorganicaChimicaActa361(3)(2008) 572–580.

[35]Q.Wang,J.-E.Moser,etal.,Electrochemicalimpedancespectroscopicanalysis ofdye-sensitizedsolarcells,TheJournalofPhysicalChemistryB109(31) (2005)14945–14953.

[36]J.Bisquert,Chemicalcapacitanceofnanostructuredsemiconductors:itsorigin andsignificancefornanocompositesolarcells,PhysicalChemistryChemical Physics5(24)(2003)5360.

[37]A.Mishra,M.K.R.Fischer,etal.,Metal-freeorganicdyesfordye-sensitized solarcells:fromstructure:propertyrelationshipstodesignrules, AngewandteChemie-InternationalEdition48(14)(2009)2474–2499. [38]Q.-B.Meng,K.Takahashi,etal.,Fabricationofanefficientsolid-state

dye-sensitizedsolarcell,Langmuir19(9)(2003)3572–3574.

[39]K.Okada,H.Matsui,etal.,100Mm??100Mmlarge-sizeddyesensitizedsolar cells,JournalofPhotochemistryandPhotobiologyA:Chemistry164(1–3) (2004)193–198.

[40]J.Wu,Z.Lan,etal.,Electrolytesindye-sensitizedsolarcells,ChemicalReviews 115(5)(2015)2136–2173.

[41]B.C.O’Regan,J.R.Durrant,Kineticandenergeticparadigmsfordye-sensitized solarcells:movingfromtheidealtothereal,AccountsofChemicalResearch 42(11)(2009)1799–1808.

[42]J.Kalowekamo,E.Baker,Estimatingthemanufacturingcostofpurelyorganic solarcells,SolarEnergy83(8)(2009)1224–1231.

[43]G.J.Brug,a.Eeden,L.G.vanden,etal.,Theanalysisofelectrodeimpedances complicatedbythepresenceofaconstantphaseelement,Journalof ElectroanalyticalChemistryandInterfacialElectrochemistry176(1–2)(1984) 275–295.

[44]I.Safi,RecentaspectsconcerningDCreactivemagnetronsputteringofthin films:areview,SurfaceandCoatingsTechnology127(2–3)(2000)203–218. [45]S.H.N.Lim,D.R.McKenzie,etal.,VanderPauwmethodformeasuring

resistivityofaplanesamplewithdistantboundaries,ReviewofScientific Instruments80(7)(2009).

[46]B.Boukamp,ANonlinearLeastSquaresFitprocedureforanalysisof immittancedataofelectrochemicalsystems,SolidStateIonics20(1)(1986) 31–44.

(6)

[47]G.Boschloo,A.Hagfeldt,Characteristicsoftheiodide/triiodideredox mediatorindye-sensitizedsolarcells,AccountsofChemicalResearch42(11) (2009)1819–1826.

[48]J.-L.Lan,T.-C.Wei,etal.,Effectsofiodinecontentintheelectrolyteonthe chargetransferandpowerconversionefficiencyofdye-sensitizedsolarcells underlowlightintensities,TheJournalofPhysicalChemistryC116(2012) 25727–25733.

[49]N.Papageorgiou,M.Grätzel,etal.,Ontherelevanceofmasstransportinthin layernanocrystallinephotoelectrochemicalsolarcells,SolarEnergyMaterials andSolarCells44(4)(1996)405–438.

[50]J.E.B.Randles,Kineticsofrapidelectrodereactions,DiscussionsoftheFaraday Society1(1947)11–19.

[51]A.Hauch,A.Georg,Diffusionintheelectrolyteandcharge-transferreactionat theplatinumelectrodeindye-sensitizedsolarcells,ElectrochimicaActa46 (22)(2001)3457–3466.

[52]M.Grätzel,J.R.Durrant,Dye-sensitisedmesoscopicsolarcells,in: NanostructuredandPhotoelectrochemicalSystemsforSolarPhoton Conversion,2008.

Referências

Documentos relacionados

Foram aplicados um questionário sociodemográfico, o Questionário para Avaliação da Síndrome de Burnout no Trabalho (CESQT), o Inventário COPE, a Escala de Trabalho Emocional

jejuni strains isolated from non-human primates during animal management in the Cecal/Fiocruz, RJ, was able to adhere to or invade HeLa cells.. The difference

From Figure 3.9, it can be observed that under solar and UV radiations, the TiO 2 nanostructures grown on Whatman paper (1 M and 30 min synthesis time) had the highest

To proof the retinal origin of the AxEvg the electrodes in left eye were placed as mentioned by Cella at al., whereas, the electrodes in right eye were placed at the conjunctiva

[18] Serviços Farmacêuticos do Centro Hospitalar do Porto E.P.E., “Instrução de trabalho - Elaboração de listagem para verificação e controlo de prazos de validade

De forma a testar o tipo de relação existente entre a satisfação e a lealdade do cliente, temos presente um modelo linear (M1) que representa a relação directa entre as

Il est cependant une figure qui semble vouloir briser cette logique, une figure qui, tout en participant de l’imaginaire cosmique de la révolution, déséquilibre

A presente dissertação foi escrita tendo em mente a necessidade de uma cooperação constante entre a UE e a Federação Russa com o objetivo último de não só