• Nenhum resultado encontrado

Synthesis and characterization of hydrogels from cellulose acetate byesterification crosslinking with EDTA dianhydride.

N/A
N/A
Protected

Academic year: 2021

Share "Synthesis and characterization of hydrogels from cellulose acetate byesterification crosslinking with EDTA dianhydride."

Copied!
9
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Carbohydrate

Polymers

jo u r n al h om ep age :w w w . e l s e v i e r . c o m / l o c a t e / c a r b p o l

Synthesis

and

characterization

of

hydrogels

from

cellulose

acetate

by

esterification

crosslinking

with

EDTA

dianhydride

André

M.

Senna

a,∗

,

Kátia

Monteiro

Novack

a

,

Vagner

R.

Botaro

a,b

aUniversidadeFederaldeOuroPreto,35400-000,OuroPreto,MinasGerais,Brazil

b,UniversidadeFederaldeSãoCarlos,18052-780,Sorocaba,SãoPaulo,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received5March2013

Receivedinrevisedform13May2014

Accepted12August2014

Availableonline19August2014

Keywords: Hydrogel Celluloseacetate EDTAdianhydride Esterificationcrosslinking

a

b

s

t

r

a

c

t

Hydrogels were preparedfrom cellulose acetate with a degreesubstitution (DS) 2.5dissolved in dimethylformamidebyesterificationcrosslinkingwithEthylenediaminetetraaceticdianhydride(EDTAD) catalyzedbytriethylamine.Subsequentconversionoftheunreactedcarboxylgroupstosodium carbox-ylatesbytheadditionofaqueousNaHCO3wasperformedtoenhancethewateraffinityofthegels.The absorbencyoftheproductswasstronglydependentontheamountofEDTADthatwasesterifiedto cellu-loseacetate,andthehighestabsorbencywasobservedforthehydrogelcomposedofapproximately0.36 moleculesofEDTADperrepeatunitofcelluloseacetate.Thehydrogelsweresynthesizedwithdifferent degreesofcrosslinkingandwereanalyzedbyIRspectral(FTIR),nearinfrared(NIR),thermogravimetry analysis(TGandDTG),andcrosslinkdensityevaluationbyFlory-Rehnertheory.Thehydrogelshave syn-thesizedwithmolarratiosEDTAD/OHgroups:[1/1],[1/2],and[0.1/1].Thecapacityforwaterabsorbency wasstudiedandcomparedwiththewaterabsorbencyoftheCA

©2014ElsevierLtd.Allrightsreserved.

1. Introduction

Theapplicationofhydrogelsdatesbackto1960,whenWichterle

andLimintroducedtheuseofhydrophilicnetworksofcross-linked

poly(2-hydroxyethylmethacrylate)assoftcontactlensmaterial.

Hydrogelsareextremelysuitablefora varietyofapplicationsin

thepharmaceuticalandmedicalindustry.Becausetheyare

capa-bleofretaininglargeamountsofwaterandbecauseoftheirsoftand

rubberyconsistence, theyclosely resembleliving tissues.

More-over,theirhighwatercontentalsocontributestotheirexcellent

biocompatibility(Vlierberghe,Dubruel,&Schacht,2011).

Becauseof theincreasing focus onenvironmental problems

associatedwithsyntheticpolymers,thereisanemergingtendency

towardtheuseof naturallyoccurringpolymersinsteadof

syn-thetic ones.Among these natural polymers,cellulose, which is

composedof(1→4)-␤-glucopyranoserepeatingunitsandforms

fibrous structures with high crystallinity, is a prime candidate

asastartingmaterialforbiodegradablesuperabsorbentpolymers

becauseitisthemostabundantbiopolymeronearth(Kono&Fujita,

2012).

∗ Correspondingauthor.Tel.:+5515997346363.

E-mailaddresses:decaosenna@hotmail.com(A.M.Senna),knovak@iceb.ufop.br

(K.M.Novack),vagner@ufscar.br(V.R.Botaro).

Inprinciplecellulosehydrogelscanbepreparedfromacellulose

solutionthroughphysicalcrosslinking.Becausecellulosehasmany

hydroxylgroupswhichcanformahydrogenbondinglinked

net-work.However,celluloseisverydifficulttodissolveincommon

solvents. Recently, newsolvents, suchas

N-methylmorpholine-N-oxide(NMMO),ionicliquids(ILs),andalkali/urea(orthiourea)

aqueoussystemshavebeendevelopedtodissolvecellulose,

provid-inggreatopportunitiesforthepreparationofcellulosehydrogels.

Bacterialcellulose(BC)isalsoastrongcandidateforthe

fabrica-tionofcellulose-based hydrogels,sincecertainbacterialspecies

possessestheabilitytocreatepurecellulosehydrogels(Chang&

Zhang,2011).

Celluloseacetate(CA)isawell-knownderivativeofcellulose

andhasbeenusedinabroadfieldofapplicationssuchasan

adhe-sive, film base in photographyor in separation processes (e.g.,

filtering, reverse osmosis).Cellulose acetate is produced either

by heterogeneous or homogeneous acetylation of cellulose. In

contrasttocellulose,celluloseacetatepossessesamuchless

crys-talline structure and thus exhibits bettersolubility in common

organicsolventssuchasacetone(Botaro&Dantas,2012;Tsioptsias,

Sakellariou,Tsivintzelis,Papadopoulou,&Panayiotou,2010).

Inthisstudy,theattentionisfocusedonEDTADasacroosslinker

inthepreparation ofabsorbentpolymersfromcelluloseacetate

withDS2.5.EDTADhastwoanhydridesinitsstructure,eachof

whichreactsquicklywithcertainfunctionalgroupssuchas

hydro-xylstoundergocrosslinking.Inthereactionofcelluloseacetate

http://dx.doi.org/10.1016/j.carbpol.2014.08.017

(2)

A.M.Sennaetal./CarbohydratePolymers114(2014)260–268 261

withEDTAD,twofree carboxylicacidgroupswereformedwith

simultaneouscrosslinkingofcelluloseacetatechains:hence,the

absorbencyoftheproductisexpectedtobeenhancedin

compar-isonwiththatofcelluloseacetate.Thispaperdescribesadetailed

study of the synthesis of hydrogels fromcellulose acetate and

EDTAD.Inaddition,thewaterabsorptionbehavioroftheproduct

wereinvestigatedtorevealtheformationofanexcellentabsorbent,

whichisdescribedherein.

Thispaperaimsathighlightingthedevelopmentincellulose

acetate-based hydrogels with emphasis onthe synthesis,

char-acterization,and properties.Recent literaturehasbeencitedto

summarizeworkoncellulose-basedhydrogel,but,noreportsin

theliteratureonsynthesisofhydrogelwithcelluloseacetateand

EDTAD.

The hydrogels were analyzed byIR spectral (FTIR),

thermo-gravimetry analysis(TG and DTG),and of thecrosslink density

wasdeterminedfromthedegreeofswellingusingFlory-Rehner

theory.Thehydrogelshave synthesizedwithvaryingdegreesof

crosslinking.

2. Experimental

2.1. Materials

Thecelluloseacetate(CA)withadegreeofsubstitution(DS)2.5

thathasbeenusedinthisstudywasacquiredcommerciallyfrom

theRHODIA®group(CAusedintheproductionofcigarettefilters).

Dimethylformamide(DMF)whichhasbeenusedassolventand

triethylamineasacatalystwereobtainedcommercially,bothwith

apurityof99%.Asampleofcelluloseacetate,withDS 2.44and

averagemolecularweightequalto50.000g/molhasbeenusedasa

standardfortheanalysisindeterminingthedegreeofsubstitution

(DS).ThisCAwassuppliedbySigma–Aldrich®.

CAhasbeenimmersedinethyletheratroomtemperaturefor

1hand30mininethanolandafteritwasdriedinanovenat80◦C

for24h.Thisprocedurehasbeenusedtoremoveimpuritiesfrom

thesurfaceofcelluloseacetate.TheDMFandtriethylaminehave

beenusedasreceived.

2.2. SynthesisofEDTAdianhydride(EDTAD)

TheEDTA(disodiumsalt)(50.0g)wassolubilizedindeionized

water(500mL),andthentheconcentratedHClwasadded

drop-by-dropuntiltotalprecipitationoftheEDTA(tetraacid).Thesolid

obtainedwasfiltered,washedwithethanol95%,diethylether,and

thendriedinanovenfor2hat105◦Candlefttocoolinadesiccator.

TheEDTA(tetraacid)(180g)wassuspendedinanhydrouspyridine

(310mL)andthenaceticanhydride(240mL)wasadded.The

mix-turewasstirredat65◦Cfor24h.ThentheEDTADwasobtainedasa

solidandwasfiltered,washedwithaceticanhydride,diethylether,

driedundervacuum,and storedindesiccators (Karnitz,Gurgel,

Freitas,&Gil,2009).

2.3. HydrogelsSynthesis

TheCAwithDS2.5(20g)wassolubilizedin100mLof

dimethyl-formamide(DMF)atroomtemperatureundervigorousstirringin

mechanicalstirrerat300rpm.TheEDTADwasdissolvedinDMFat

90◦Cunderstrongstirring.AftercompletedissolutionoftheCAand

EDTAD,bothweremixedwithvigorousstirringandwereadded

to4mLoftriethylamine.Thesuddenincreaseinviscosityofthe

systemshowedtheendofthereaction.Thesynthesized

hydro-gelsweretransferredtoaPetridishandremainedfor48htocure

indesiccators.Thegelwasmilledinamixerinaqueousmedium,

filteredanddriedinanovenat75◦Cuptoconstantweight.The

preparationofhydrogelsfromCAwasperformedinhomogeneous

mediumandtriethylamineasanesterificationcatalyst.The

reac-tionmixturebecameincreasinglyviscoussoonafteraddingEDTAD

asacrosslinker,andthemorphologyofmixturegraduallychanged

fromsolutiontogelabout10–20minafterstartingthereaction.

Thehydrogels werepreparedfromCAaccordingtothescheme

presentedinFig.1.

2.4. Determinationofdegreeofsubstitution(DS)accordingto

ASTMD871-96

Atotalof0.5gofcelluloseacetatesampleswasweighed

accu-ratelyandtransferredtoa250mLflask;toeachsample20mLof

75%aqueousethanolwasaddedandthenheatedfor30minat60◦C.

Then20mLof0.5MNaOHsolutionwasaddedtoeachsampleand

againheatedat60◦Cfor15min.Thesameprocedurewasalsodone

foracontrolsystem(notcontainingCA).Theflaskswerestoppered

andallowedtostandatroomtemperaturefor72h.Theexcessalkali

inthesampleandcontrolwastitratedwithHCl(0.5M)using

phe-nolphthaleinasindicator.Anexcessofacidwasadded(1mL)and

thealkaliwereallowedtodiffusefromtheregeneratedcellulose

overnight.Thedisappearanceofthepinkcolorindicatedcomplete

neutralizationofthealkali.Thesmallexcessofacidwasthenback

titratedwithsodiumhydroxide toaphenolphthaleinend point

(untilthesolutionhadacquiredfaintpinkcolor)(Shaikh,Pandare,

Nair,&Varma,2009).

2.5. Fouriertransforminfraredspectroscopy(FTIR)and

thermogravimetricanalysis(TGA)

TheFTIRspectrumwasobtainedaftergrindingthesampleinto

apowderandmixingwithKBrpowder.Thepowdermixturewas

compressed intoa transparentdisk and scanned from4000 to

500cm−1 usingtheaverageof32scans.TheThermogravimetric

analysis (TGand DTG) was performedin a synthetic air

atmo-sphere(78%ofnitrogenand22%ofoxygen)withaheatingrampof

20◦C/minandmaximumtemperatureof900◦C.

2.6. NIRspectroscopy

NIRspectrawereobtainedfromtheCA,GEDTA12,pure

cellu-lose,and EDTAacidin powderin cuvetteswithafront surface

window with32mmdiameter anda depthof 10mm,ona UV

3600UV–vis–NIRspectrophotometer(SHIMADZU®),witha

spec-tral bandwidthof 10nm, 2nm data interval, and 50 scans per

spectrum. TheNIR spectrawereobtainedin diffusereflectance

mode,andafterwardsconvertedtoapparentabsorbance(A),using

theformulaA=−logR.

2.7. Determinationofcrosslinkingdensity

Determination of percentage swelling: The hydrogel was

immersedin selectedsolvents:chloroform[ı=9,3 (cal/cm3)1/2],

acetone[ı=9,9(cal/cm3)1/2],ethylacetate[ı=9,05(cal/cm3)1/2],

ethanol[ı=26,2(cal/cm3)1/2],diethylether[ı=7,4(cal/cm3)1/2],

water[ı=23,4(cal/cm3)1/2],andbenzene[ı=9,2(cal/cm3)1/2],ıis

solubilityparameter.

Determinationofpercentageswellingwasdetermined

accord-ingtoASTM,1979andASTM1239-55.Afterequilibriumtheswollen

samplesweredriedinthermobalance.Thepercentageofswelling

wascalculatedusingEq.(1).

S%=



(W−W0)

W0



×100, (1)

where:S%isthepercentageofswelling,Wisthefinalweight,

(3)

Fig.1. ReactionofEDTAdianhydride(EDTAD)andcelluloseacetate(DS2.5)inDMF/Triethylamine.Esterificationcrosslinkingandgraftingoccursimultaneously.

2.8. Determinationoftotalamountofcrosslinkerinthehydrogels

Inthisprocedure,thetetrasodiumEDTAwhichwasproduced

bythealkalinehydrolysiswastitratedwitha standardsolution

ofCaCl2.0.5gofhydrogelssampleswasweighedaccuratelyand

transferredtoa250mLflask;toeachsample,20mLof75%aqueous

ethanolwasaddedandthenheatedfor30minat60◦C.Then20mL

of0.5MNaOHsolutionwasaddedtoeachsampleandagainheated

at60◦Cfor15mL/min.Thesameprocedurewasalsodonefora

con-trolsystem(notcontaininghydrogels).Theflaskswerestoppered

andallowedtostandatroomtemperaturefor72h.Thesolutions

werefiltered,transferredinto100mLvolumetricflaskand

com-pleteduptothemarkwithdistilledwater;10mLwastransferredto

Erlenmeyersflasksandadded10mLofammoniacalbufferpH∼10

andindicatorEriochromeblack.Thensamplesweretitratedwith

standardsolutionof0.01MCaCl2 totheendpoint(colorchange

bluetoburgundy).

ThistitrationallowedtheweightofEDTAinthepolymeric

net-worktobemeasured. The percentage ofEDTA crosslinked and

graftedin thehydrogelsample couldbedeterminedusingEqs.

(2–4):(2)EEDTA=ET−Acetyl,

%Cr=



EEDTA mmEDTA



−1



×100, (3) %Gr=(100−%Cr), (4)

where EEDTA is the amount of ester formed by EDTAD and

AC(inmmol), ET is thetotal amount of ester (acetate,

EDTAD-crosslinkedandEDTAD-grafted)inmmol,Acetylistheamountof

acetylinmmol(resultsobtainedfromthedegreeofsubstitution

ofCA), %Cris thepercentage ofEDTAD-crosslinked, mmEDTAis

theconcentrationofEDTAinhydrogelsinmmoland%Gristhe

percentageofEDTAD-grafted.

2.9. Determinationofthewaterabsorbency

The hydrogels were immersed in distilled water at 25 and

(4)

A.M.Sennaetal./CarbohydratePolymers114(2014)260–268 263

undervacuum.Thedeterminationofpercentageofabsorptionwas

performedwithathermobalanceprogramedwithheatingupto

105◦C.Tocalculatethepercentageofabsorptionofwaterwasused

Eq.(1).Absorbencymeasurementsweretakenforthreesamples

ofeachproduct,andtheaverageofthethreevalueswasplotted

againsttheabsorbencytime.

3. Resultsanddiscussion

3.1. Determinationofdegreeofsubstitution(DS)accordingto

ASTMD871-96

Thedegreeofsubstitution(DS)oftheCAwasconfirmed.The

supplierhasindicatedDS2.5andtheresultfoundwas2.56±0.03.

3.2. Hydrogelssynthesis

Esterificationwasallowedtoproceedatroomtemperaturefor

48h(cure), and then thereaction productwas triturated.

Sub-sequentconversionoftheunreactedcarboxylgroupstosodium

carboxylatesintheproductbytheadditionofaqueousNaHCO3

wasperformedtoenhancethewateraffinity.Finally,theproduct

waspurified,washedwithdistilledwaterandethanol,dried,and

thenscreenedthrougha60meshsievetoobtainawhitegranular

product.Samplesofhydrogelsthatwereusedinthedetermination

crosslinkingdensity,byFTIRandTG/DTGwerenotneutralizedwith

NaHCO3.

3.3. FTIRanalysis

Followingthecrosslinkingesterificationreactionof cellulose

acetate(DS2.5)withEDTAD,theobtainedproductshowed

sev-eralnewabsorptionbandsintheFTIRspectrum,inadditiontothe

originalpeaksfrompurecelluloseacetate,asshowninFig.2.The

increaseintheabsorptionbandat1755cm−1wasassignedtothe

C Ostretchingvibrationofthecarboxylicacid(EDTAacid),and

theabsorptionappearingat1643cm−1 wasassignedtotheC O

asymmetricstretchingvibrationofthecarboxylicacid.Formation

ofthecarboxylicacidintheproductswasalsoconfirmedbythe

typicalabsorptionat1385cm−1,arisingfromthecarbonyl

symmet-ricstretchingvibration(Silverstein,Bassler,&Morril,2005).The

IRanalysisindicatesthatthehydroxylgroupofcelluloseacetate

(DS2.5)mayhaveesterifiedwithEDTAD,resultinginthe

forma-tionofcarboxylicacidaswellascrosslinkingbetweenthecellulose

acetatechains.TheresultsofFTIRcorroboratewithresultsobtained

byKono&Fujita,(2012).

Fig.3.

3.4. NIRspectroscopy

Themain differences betweenthe spectraof purecellulose,

GEDTA11, EDTAacid, and CAare in theabsorbancies at

wave-lengthsto1932,1723,and1427nm(Langkilde&Svantesson,1995).

At1932nm(characteristicfor(RCOOR1)andROHvibrations),the

explanationforthehigher absorbanceoftheCA,isthe

proxim-ityofthepolymericchainsdue thehydrogenbonding between

thefreeOHgroupsoftheCA,intheGEDTA11thechainsof

cel-luloseacetatearefartherapartduetothepresenceofcrosslinkand

theformationofathree-dimensionalnetwork.Thus,thenumber

ofrepeatingunitsofCA(acetylatedcellobiose)issmallerinthe

GEDTA11.Table2showsthatthegreaterthedegreeof

crosslink-ing,thesmallerthepercentageofrepeatingunitsofCApercm3,this

explainsthehigherabsorbanceoftheCA.Becauseeachrepeating

unitoftheCA(DS2.5)hasfiveacetategroups(esters)andasshown

inFig.1,onediesterisformedduringcrosslinkingofEDTADand

CA.Thustheamountofestersislessperunitvolume,which

con-tributedtolowerabsorbance.Anothercontributiontothedecrease

inabsorbanceat1932nm,istheconsumptionoftheOHgroupsof

theACinthecrosslinkingesterification.

In1723nm(characteristicforCH2 vibrations)theabsorbance

washigherintheGEDTA11.BecauseforeachcrosslinkedEDTAD

therearesixCH2groups,whileineachrepeatingunitofCAthere

aretwoCH2groups,sohigherabsorbanceinGEDTA11.In1427nm

(characteristicforcombinationsofCHandCH2vibrations)thelarge

amountofCHgroupsintheCAcontributedtothehigherabsorbance

(Workman,2000).Thepurecellulosewasusedtoinvestigate

over-lapsinthespectrum.Itwasfoundpossibletodistinguishstructural

differencesbetweenCAandGEDTA11byspectraNIR.Throughthe

NIRspectrawaspossibletoobtainadditionalinformationsabout

thestructureofhydrogels.

3.5. TGandDTG

Celluloseacetateisdegradedinthreesteps.Thefirststepfrom

theroomtemperature(25◦C)to330◦Crepresentsthevolatilization

ofthevolatilematter,and/ortheevaporationofresidualabsorbed

water. Thesecondstepstartsat330◦C andends at500◦C, and

representsthemainthermaldegradationofthecelluloseacetate

chains.Thethirdstepstartsat500◦C,andrepresentsthe

carboniza-tionoftheproductstoash.Theresultsofthermaldegradationof

celluloseacetatecorroborateresultsobtainedbyHanna(Hanna,

Basta,El-Saied,&Abadir,1999).

Aftersynthesis reactionshaveformedcarboxylicacidgroups

derivedfromEDTA-tetraacetic(EDTAacid)inthecrosslink.The

TGandDTGcurvesshowthatthehydrogelislessthermallystable

thantheCA.ThiseventmayberelatedtotheC Nbondpresentin

thecrosslinkinginthehydrogels.TheFig.4(E)showsthattheC N

bondhaslowerbindingenergy,andthusisdegradedintolower

temperatures.

ThethermalstabilityofEDTAismuchlowerthanAC,thus,the

inclusionofEDTAD-graftedandEDTAD-crosslinkedinthepolymer

networkmakesaproportionatedecreaseinthethermalstabilityof

thehydrogel.BecausetheCApresentslinearchainswhichprovide

agreatextentofformationofhydrogenbondsconferringthermal

stabilityofthepolymer.Theinclusionofcrosslinkcausesthe

phys-icalseparationoftheCAchainsandconsequentlythedecreasein

theintermolecularinteractionswithalargedecreaseinthethermal

stabilityofthehydrogel.

3.6. Determinationofcrosslinkingdensity

TheFlory-Rehnertheorystemsfromthecombinationthe

Flory-Hugginstheoryforpolymersolventwiththetheoryofstatistical

mechanicsofthefreeenergyvariationcausedbyswelling.The

fol-lowingequationisrelatedtocrosslinkdensityinsystemswhere

theymovesimultaneouslyandatthesamespeed(“affine

defor-mation”)duringtheswellingofthesample.

v

=−



ln(1−Vr)+Vr+V2r] V1(V1r/3−V2r)



, (5)

where:=Crosslinkdensitywhich corresponds tothe

effec-tive number of chainsper unit volume (=/Mc)Eq. (6),  is

thedensityofthepolymerandMcis averagemolecularweight

betweencrosslink).Vr=reducedvolume (samplevolumebefore

swelling/samplevolumeafterswelling).=parameterof

polymer-solventinteraction.V1=molarvolumeofthepuresolvent.

Inthemethodofswelling intheequilibrium,thepolymeris

immersedinsolventsselectedwitharangeofvaluesofsolubility

parameter.Thevalueofthesolubilityparameterofthepolymeris

(5)

Fig.2.FTIRspectraofGEDTA11andcelluloseacetate(A)andGEDTA0.11andcelluloseacetate(B).

ismaximized.Thedegreeofswelling intheequilibriumis

rep-resented by the parameter Q. The parameter Q is determined

experimentallybytherelation:

Q=(m−m0)

m0× ,

(7)

where“mo”istheweightofdrypolymer,“m”istheweightof

swollenpolymerandthesolventdensity.

Theparameterofinteractionpolymer-solvent,canbe

decom-posedintocomponentsof entropy(s)and enthalpy(h),as a

measureofenergyfree.Thus:

=s+h, (8)

h= (ı1−ı2)

2

RT , (9)

whereRisthegasconstant,Tisabsolutetemperature,ı1andı2is

thesolubilityparameterofthesolventandpolymerrespectively.

Inconditionsofmaximumswelling,thecontributionofhis

min-imalandthevalueoftheinteractionparameterisalmostequal

totheentropycontribution.Theliteraturehasusedthevalueof

0.34fors(Blanks&Prausnitz,1964;Dudek&Bueche,1964).The

crosslinkingdensity()andthecorrespondingaveragemolecular

weightbetweencrosslinkingpoints(Mc)werecalculatedbyEq.(5)

and(6).

To investigate the correlation between the percentage of

swelling(%S)andMcwassynthesizedahydrogelwithcrosslink

density



=1.19×10−6, Mc=1.1×106, and density 1.308g/cm3.

Thishydrogelwassynthesizedonlytocollecttheresultsofswelling

intheequilibriumandplotagraphwiththeresultsofthe

hydro-gelspresentedinthiswork,becausethiswaytheinvestigationof

(6)

A.M.Sennaetal./CarbohydratePolymers114(2014)260–268 265

Fig.3. NIRspectraofpurecellulose,CA,EDTAacid,andGEDTA11intheregion1900–1300nm.

Table1

ResultsobtainedbyFlory-Rehnertheory.

Resultsofthedeterminationofcrosslinking

Gel GEDTA11 GEDTA12 GEDTA0.11

Percentageofabsorptionintheequilibrium 1142 2450 6800

Maximumswellingintheequilibrium,Q(cm3/g) 12.1 26.0 72.0

Reducedvolume,Vr 0,0581 0,0205 0,0106

Densityofgel,(g/cm3) 1.368 1.332 1.297

Solubilityparameterofthegel,ı2 12.1 12.1 12.1

Interactionparameterpolymer-solvent, 0.34 0.34 0.34

Densitycrosslink,(g/cm3). 1.6×10−5 4.4×10−6 8.2×10−7

Averagemolecularweightbetweencrosslink,Mc 8.2×104 3.1×105 1.6×106

(7)

Fig.4.TGofcelluloseacetateandEDTAacid(A),DTGofcelluloseacetateandEDTAacid(B),TGofcelluloseacetateandGEDTA11(C),TGofcelluloseacetate,EDTAacidand GEDTA11(D),averagebondenthalpies(E).

Thehydrogelspresentedhigherswellingindimethylformamide

(Fig.5A).TheFig.5BshowsthatthecorrelationbetweenS%andMc

isverygood.Thus, themethodusedtodeterminethecrosslink

densityinthehydrogelsisaccurate.

Fig.6.

3.7. Determinationoftotalamountofcrosslinkeragentinthe

hydrogels

Fortheelucidationofthestructuralfeaturesofeach gel,the

(8)

A.M.Sennaetal./CarbohydratePolymers114(2014)260–268 267

Fig.5.Valuationofthepercentageofswelling(S%)tothehydrogelsindifferentsolvents(4A).Correlationbetweenthepercentageofswelling(S%)andMc(5B).

(9)

Table2

ReactionconditionsandresultsoftheesterificationcrosslinkingofcelluloseacetatewithEDTAD.

Gel WCAa nCAb %CAc AT1(mmol/cm3)d AT2(g/cm3)e A.EDTAf %Crg %Grh nEDTAI

GEDTA11 1.144 0.0021 83.6 0,7663 0.224 4.61×1020 98.26 1.74 0.36

GEDTA12 1.256 0.0024 94.3 0.2593 0.076 1.56×1020 98.39 1.61 0.11

GEDTA0.11 1.281 0.0024 98.8 0.0553 0,016 3.3×1019 98.54 1.46 0.02

aGramsofCApercm3ofgel.

b Molofrepeatunit.

c PercentageofCA.

d mmolofEDTApercm3ofgel.

eGramsofEDTApercm3ofgel.

f NumberofEDTAmoleculespercm3ofhydrogel.

gPercentagesofthecrosslinkedEDTAmoleculesintotalesterifiedEDTAineachgel.

h PercentagesofthegraftedEDTAmoleculesintotalesterifiedEDTAineachgel.

I NumberofEDTAmoleculesperrepeatunitofCA.

ofcrosslinked-EDTADand grafted-EDTAD(%Crand%Gr,

respec-tively)weredeterminedbythetitrationmethodfortheestimation

ofthetotalamountofestercontents.In1cm3ofthehydrogel,it

wassupposedthattherewasXmmolofcrosslinkedEDTADand

YmmolofgraftedEDTAD.AsshowninFig.1,onediesterandtwo

carboxylicacidgroupsareformedduringcrosslinking,whereasthe

graftreactionresultedintheformationofoneesterandthree

car-boxylicacidgroups.InComparingtheresultsinTable2withresults

obtainedbyKonoandFujita(2012)ispossibletoconcludethatthe

resultsofpercentageofEDTAD-crosslinkedandthepercentageof

EDTAD-graftedaresimilar.

Toobtaintheresultsshown inTable2 titration results, and

thedensityofthehydrogels(Table1)wereused.Thefollowing

equationswereusedtoobtaintheresultsofTable2.

[WCA=(−AT2)], (10)



nCA= WCA M1RU



, (11)



%CA=



WCA



×100



, (12)



AT1=



mmolEDTASV



, (13)



AT2=



weightSVEDTA(g)



, (14)

M1RU=molarweightofrepeatunit(534.5g/mol),=densityof

hydrogel(g/cm3),SV=samplevolume(cm3).

3.8. Determinationofthewaterabsorbency

Potentiometrictitrationwasperformedin1cm3 ofGEDTA11

with100mLofdistilledwatertofindthepHvaluethatallofthe

carboxylicacidgroupsareneutralizedcompletely.Thevaluefound

was8.5,thisvaluewasusedasareferenceintheneutralizationin

thehydrogelsusedintestingwaterabsorbency.

Thewaterabsorbencyisdependentonthetemperatureandalso

theamountofcarboxylategroupsinthehydrogels.Incomparison

betweenhydrogelsandCA;wasconcludedthatthehydrogelsare

morehydrophilicthantheCAandthusabsorbmorewater.Withthe

increaseofcarboxylategroupsinthehydrogels,theioniccharacter

alongthepolymerchainincreases.Withincreasingtemperature,

increasesthediffusionofwater intothehydrogeland thusthe

absorptionofwaterincreases.

4. Conclusion

The hydrogels were prepared from cellulose acetate (DS

2.5)viasimple esterification crosslinking of EDTADunder mild

conditions. Simultaneous crosslinking and grafting of EDTAD

occurredbytheformationofdiesterandmonoesterlinkages.The

characterizationsperformedbythetechniquesofTGandDTG,FTIR

anddeterminationofcrosslinkdensityprovedtobeeffectivein

characterizationofhydrogels.Thehydrogelswereproducedwith

rawmaterialsoflowcost,throughasimpleprocedureatroom

tem-peratureandthehydrogelsarederivedfromcellulose,whichisa

renewableresource.

Acknowledgements

The authors thank thefinancial supportfrom the following

BrazilianGovernmentAgency:ConselhoNacionalde

Desenvolvi-mentoCientíficoeTecnológico-CNPq,Rhodia®Group(France)by

supplyingthecellulose acetate.Theauthorsarealsogratefulat

UniversidadeFederaldeSãoCarlos-Sorocaba-SP.

References

AmericanSocietyforTestingandMaterials-ASTM(1979),AnnualBookofStandard,

ASTM1239-55,p.175.

AmericanSocietyforTestingandMaterials-ASTM,D471(1979).AnnualBookof

Standard,p.104.

Blanks,R.F.,&Prausnitz,J.M.(1964).Thermodynamicsofpolymersolubilityinpolar

andnonpolarsystems.JournalofIndustrialandEngineeringChemistry,3,1–8.

Botaro,V.R.,&Dantas,P.A.(2012).Synthesisandcharacterizationofanew

cellu-loseacetate-propionategel:Crosslinkingdensitydetermination.OpenJournalof PolymerChemistry,2,144–151.

Chang,C.,&Lina,Z.(2011).Cellulose-basedhydrogels:Presentstatusandapplication

prospects.CarbohydratePolymers,84,40–53.

Dudek,T.,&Bueche,F.(1964).Polymer-solventinteractionparameterandcreepof

ethylene–propylenerubber.RubberChemistryTechnology.,37,894–903.

Hanna,A.A.,Basta,A.H.,El-Saied,H.,&Abadir,I.F.(1999).Thermalproperties

ofcelluloseacetateanditscomplexeswithsometransitionmetals.Polymer DegradationandStability.,63,293–296.

Karnitz,J.O.,Gurgel,L.V.A.,Freitas,R.P.,&Gil,L.F.(2009).AdsorptionofCu(II),

Cd(II),andPb(II)fromaqueoussinglemetalsolutionsbymercerizedcellulose andmercerizedsugarcanebagassechemicallymodifiedwithEDTAdianhydride (EDTAD).CarbohydratePolymers,77,643–650.

Kono,H.,&Fujita,S.(2012).Biodegradablesuperabsorbenthydrogelsderivedfrom

cellulosebyesterificationcrosslinkingwith1,2,3,4-butanetetracarboxylic dian-hydrides.CarbohydratePolymers,87,2582–2588.

Langkilde,F.W.,&Svantesson,A.(1995).Identificationofcelluloseswith

Fourier-Transform(FT)mid-Infrared,FT-Ramanandnear-infraredspectrometry.Journal ofPharmaceuticalandBiomedicalAnalysis,13,409–414.

Shaikh,H.M.,Pandare,K.V.,Nair,G.,&Varma,A.J.(2009).Utilizationof

sugar-canebagassecelluloseforproducingcelluloseacetates:Noveluseofresidual hemicelluloseasplasticizer.CarbohydratePolymers,76,23–29.

Silverstein,R.M.,Bassler,G.C.,&Morril,T.C.(2005).Carboxylicacidandamines.

SpectrometricIdentificationofOrganicCompounds,7,96–102.

Tsioptsias,C.,Sakellariou,K.G.,Tsivintzelis,I.,Papadopoulou,L.,&Panayiotou,C.

(2010).Preparationandcharacterizationofcelluloseacetate-Fe2O3composite

nanofibrousmaterials.CarbohydratePolymers,81,925–930.

Vlierberghe,S.V.,Dubruel,P.,&Schacht,E.(2011).Biopolymer-basedhydrogelsas

scaffoldsfortissueengineeringapplications:Areview.Biomacromolecules,12, 1387–1408.

Workman,J.(2000)..Handbookoforganiccompounds:NIR,IR,Raman,andUV–vis

Referências

Documentos relacionados

Despercebido: não visto, não notado, não observado, ignorado.. Não me passou despercebido

Universidade Estadual da Paraíba, Campina Grande, 2016. Nas últimas décadas temos vivido uma grande mudança no mercado de trabalho numa visão geral. As micro e pequenas empresas

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

Na hepatite B, as enzimas hepáticas têm valores menores tanto para quem toma quanto para os que não tomam café comparados ao vírus C, porém os dados foram estatisticamente

Uma análise interessante do papel do professor nos contextos online é a apresentada por Salmon (2000). Baseando-se no estudo das interacções entre estudantes e professores ao

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

Material e Método Foram entrevistadas 413 pessoas do Município de Santa Maria, Estado do Rio Grande do Sul, Brasil, sobre o consumo de medicamentos no último mês.. Resultados