• Nenhum resultado encontrado

Reversible electrokinetic adsorption barriers for the removal of atrazine and oxyfluorfen from spiked soils

N/A
N/A
Protected

Academic year: 2021

Share "Reversible electrokinetic adsorption barriers for the removal of atrazine and oxyfluorfen from spiked soils"

Copied!
8
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Journal

of

Hazardous

Materials

jou rn a l h om ep ag e :w w w . e l s e v i e r . c o m / l o c a t e / j h a z m a t

Reversible

electrokinetic

adsorption

barriers

for

the

removal

of

atrazine

and

oxyfluorfen

from

spiked

soils

E.

Vieira

dos

Santos

a

,

C.

Sáez

b

,

P.

Ca ˜

nizares

b

,

C.A.

Martínez-Huitle

c

,

M.A.

Rodrigo

b,∗ aSchoolofScienceandTechnology,FederalUniversityofRioGrandedoNorte,CampusUniversitario,59078-970Natal,Brazil

bDepartmentofChemicalEngineering,EnriqueCostaBuilding,CampusUniversitarios/n,13071CiudadReal,Spain cInstituteofChemistry,FederalUniversityofRioGrandedoNorte,CampusUniversitario,59078-970Natal,Brazil

h

i

g

h

l

i

g

h

t

s

•REKABtechnologyefficientlyremovesatrazineandoxyfluorfenfromsoil.

•SynergisticinteractionbetweenelectrokineticsandGACpermeablereactivebarrier.

•Significantcarbonbed-adsorptionmechanismforatrazineandoxyfluorfen.

•VolatilizationofherbicidesispreventedintheREKABtechnology.

•ReversiblechangesinthepolaritycontrolavoidextremepHvalues.

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received26July2016 Receivedinrevisedform 23September2016 Accepted14October2016 Availableonline17October2016 Keywords:

Electrokinetic REKAB Soilremediation Permeablereactivebarrier Atrazine

Oxyfluorfen

a

b

s

t

r

a

c

t

Thisstudydemonstratestheapplicationofreversibleelectrokineticadsorptionbarrier(REKAB)

tech-nologytosoilsspikedwithlow-solubilitypollutants.Apermeablereactivebarrier(PRB)ofgranular

activatedcarbon(GAC)wasplacedbetweentheanodeandcathodeofanelectrokinetic(EK)soil

remedi-ationbench-scalesetupwiththeaimofenhancingtheremovaloftwolow-solubilityherbicides(atrazine

andoxyfluorfen)usingasurfactantsolution(sodiumdodecylsulfate)astheflushingfluid.This

innova-tivestudyfocusedonevaluatingtheinteractionbetweentheEKsystemandtheGAC-PRB,attempting

toobtaininsightsintotheprimarymechanismsinvolved.Theobtainedresultshighlightedthe

success-fultreatmentofatrazineandoxyfluorfenincontaminatedsoils.Theresultsobtainedfromthetestsafter

15daysoftreatmentwerecomparedwiththoseobtainedusingthemoreconventionalelectrokineticsoil

flushing(EKSF)technology,andveryimportantdifferenceswereobserved.Althoughbothtechnologies

areefficientforremovingtheherbicidesfromsoils,REKABoutperformsEKSF.Afterthe15-daytreatment

tests,onlyapproximately10%ofatrazineandoxyfluorfenremainedinthesoil,andadsorptionontothe

GACbedwasanimportantremovalmechanism(15–17%ofherbicideretained).Theevaporationlosesin

REKABwerelowerthanthoseobtainedinEKSF(45–50%comparedto60–65%).

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Overthepastdecades,concernsabouttheapplicationof herbi-cideshavebeenincreasing,particularlyabouttheireffectsonthe environment[24].Currently,theuseofherbicidesisverycommon inmostagriculturalregionsoftheworld,providinggreat advan-tagesrelated toimprovedcropproduction.Consequently, since themid-1940s,theindustrialproductionoforganicherbicideshas continuouslyincreased, and even now it continues to

progres-∗ Correspondingauthor.

E-mailaddress:manuel.rodrigo@uclm.es(M.A.Rodrigo).

sivelyincrease.Thenegativeenvironmentalimpactofherbicides is related towater and soilcontamination, which hasreceived a considerableamountof attentionfromthescientific commu-nity[23,10,9,5,7,26].Fromanenvironmentalperspective,avery interestingclassificationofherbicidesisrelatedtotheirsolubility. Low-solubilityherbicidesaretypicallyformulatedasemulsionsto favourtheirapplication.Thetransportpropertiesofsuchherbicides when theybecomepollutants stronglydepend onthematrices used in the commercialformulation. Among thelow-solubility herbicides,there aretwo thatare ofparticularinterest andare the focusof this manuscript:oxyfluorfen and atrazine. Oxyflu-orfen(2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl) benzene)isadiphenyl-etherherbicidethatisusedforbroad

spec-http://dx.doi.org/10.1016/j.jhazmat.2016.10.032 0304-3894/©2016ElsevierB.V.Allrightsreserved.

(2)

and grassy weeds [15]. This herbicide has low water solu-bility (0.1mg/dm−3 at 22◦C), low vapour pressure (0.026mPa at 25◦C), high Koc (log Koc=3.46–4.13) and high Kow (log Kow=4.86). Atrazine (1-chloro-3-ethylamino-5-isopropylamino-2,4,6-triazine) is characterized by a low biodegradability, long half-life,lowvapourpressure(0.0385mPaat25◦C)andlow sol-ubilityinwater(33mgdm−3 at22◦C)[14,20],andbecauseofits hazardousness,itwasbannedintheEuropeanUnion,althoughit remainsinuseinmanyothercountriesaroundtheworld.

Oneoftheworsttypesofeventsrelatedtothepollutioncaused bytheseherbicidesisassociatedwithaccidental leakage,which maybecomeamajorsourceofdiffusepollution.Toprevent seri-ousenvironmentalproblemsunderaccidentaldischargesofthese species,itisveryimportanttotakerapidactionsagainstaccidental dischargesofhazardousspeciesusingefficienttechnologiesthat helptorapidlyremediatethesoil[22].Electrokinetic(EK) remedi-ationintegratedwithpermeablereactivebarriers(PRBs)hasbeen investigatedbyseveralauthorsinrecentyears[21,2,3,31,16],and thistechnologyappearstobeaverypromisingalternative.This technologicalapproach wasimplemented primarilybecauseEK alsoenablestheuseofPRBinlow-permeabilitysoils[11].Thus, whena PRBis coupledwithEKremediation, theflow of pollu-tantsthroughthePRBisnotprovidedbythetransportdrivenby thehydraulicgradientofgroundwater;rather,itisdrivenbythe electro-osmoticflowofsoilporefluid,electromigrationor elec-trophoresis(particularly inlow-permeability soils)[6,30,13].As thecontaminatedgroundwaterpassesthroughthePRB, contam-inantsmaybedegradedor sequesteredand cleangroundwater exitsthePRB.Thereactivematerialscommonlyconsideredinclude reductionsusingelementalmetals,adsorptionwithporous high-surface-areamaterials,ionexchangewithresin-basedmaterials, biological degradation, limestone, c¸hydroxyapatite, active car-bonand zeolites[11].Theuseofinexpensivereactivematerials aspermeablebarriers,suchas granularactivatedcarbon(GAC), shouldcontributetowardsimprovingthecosteffectivenessofthe combinedtreatmentandincreasingenvironmentalsustainability

[12].Consequently,PRBshavebeenextensivelyproposedforthe remediationofinorganicand organicpollutantsingroundwater

[28,30,13,8].

RegardingtheuseofEK-PRBwithherbicides,afirstexperience intheapplicationofthecombinationofEKSFwithadsorption bar-rierswasreportedfortheremovaloftrichlorophenol(notexactlya herbicidebuthighlyrelatedtothesetoxicpollutantsfroma chemi-calperspective)fromspikedsoils[25],whereitshighefficiencyand easyperformanceweredemonstrated.Anotherinteresting expe-riencecamefromtheuseofbiobarriersintheremovalofdiesel, whereitwasconcludedthattheapplicationofpolarityreversal allowsforconsiderablybetterperformance[16,18,19].The advan-tagesofreversiblechangesinpolaritywerealsonotedbymany otherauthors[1].Thereversiblechangesinpolarityhelpto sup-pressacidificationandbasificationofthecontaminatedsoilinthe closevicinityoftheelectrodes’surfacesandpreventsthedepletion ofionicspecies.Thisfactisofspecialrelevanceincombinations ofEKSFwithbiologicalbarriersbecausenon-reversibleprocesses leadtotheexhaustionofnutrientsinsoil.

Todate,nostudiesontheremovalofatrazineandoxyfluorfen fromsoilbyEK-PRBcouplinghavebeenreported.Consequently, theauthorsofthepresentworkconsideredthatitwouldbe inter-estingtoinvestigatethefeasibilityofcouplingEKSFandGAC-PRBto removeatrazineandoxyfluorfenfromlow-permeabilitysoilusing aninnovativeprocesscalledreversibleelectrokineticadsorption barrier(REKAB)technology.Forthesettingofthisprocess,the pre-viousexperienceofourgroup,gainedinthedevelopmentofeasier technologiessuchasEKcombinedwithnonreversibleadsorption permeablebarriersandbiobarriershasbeenused.Inthiscontext,

fromclaysoilsusingelectrokineticallyassistedsoilflushing(with sodiumdodecylsulfate(SDS)astheflushingsolution)coupledwith aPRBconsistingofbedsofGACandtoassesstheinfluenceofthe electricfieldontheefficiencyofthistechnology.

2. Materialsandmethods

2.1. Chemicals

Kaolinite, provided by Manuel Riesgo Chemical Products (Madrid,Spain),wasusedasamodelofclaysoil[17].Atrazineand oxyfluorfen(Sigma-Aldrich),wereofanalyticalgradeandusedas received.HPLC-gradeacetonitrile(Sigma-Aldrich,Spain)wasused asthemobilephaseinhigh-performanceliquidchromatography (HPLC)analyses.Hexaneandethylacetate(Sigma-Aldrich,Spain) wereusedassolventsfortheextractionofliquidandsolid sam-ples.Granularactivatedcarbon(granulesizeof1.25–3.15nm)was purchasedfromPanreac(Spain).Graphiteelectrodes(100.0cm2)

providedbyCarbosystem(Madrid,Spain)wereusedasthe elec-trodematerial.

2.2. Experimentalprocedure

Thebenchsetupusedinthisworkwasconstructedfrom trans-parentmethacrylateanddividedintosevencompartments(Fig.1)

[29].

Thecentralcompartmentwitha lengthof20cmwasloaded with herbicide-polluted soil and an active carbon PRB, which wasmanuallycompactedandseparatedfromtheelectrode com-partmentsbya0.5mmnylonmesh.Oneofthesecompartments containedtheanode,andtheothercontainedthecathode.Each electrode compartment was connected to additional compart-ments to collect theliquid overflowing from the wells that is transportedduetotheEKprocesses.Theexperimentswere per-formedinpotentiostaticmode,i.e.,settingavoltageof1.0Vcm−1. Thedurationoftheexperimentswas15days,whichislongenough toprovideaclearoverviewofthemainprocessoccurringinthe soilandshortenoughtoavoidthedepletionofherbicides(thiswas intentionallysoughttoevaluatetheremovalmechanisms).

BecausethecarbonPRBareaswereplacedinanintermediate sectionoftheinstallation,farawayfromtheelectrodes,itwas nec-essarytouseasurfactanttopromotethetransportoftheatrazine andoxyfluorfen.Aflushing fluidthatconsistedofaSDS surfac-tantsolution(1000mgdm−3)wasusedasthesolubilizingagent. BecauseSDSisananionicsurfactant,thesuperficialchargeofthe atrazine-SDSoroxyfluorfen-SDSmicellesisexpectedtobe nega-tive[27,4],andconsequently,theyareexpectedtobetransported fromthecathodiczonetowardstheanodiccompartment,withthe atrazineand oxyfluorfenbeingadsorbedwhen passingthrough thecarbonPRB.Thepolarityoftheelectricfieldappliedbetween theelectrodeswasreversedonceaday(valueselectedarbitrarily), andthisperiodicchangewillhelptoexplainthezig-zagchanges observedinthepHvaluesoftheelectrolytescontainedinthewells throughouttheexperiment.

Themodelsoilwasspikedwith960mLofherbicideaqueous solutions (100mgdm−3)until aninitialpollutantconcentration of 30mg per kg of soil was obtained. In the case of atrazine andoxyfluorfensolutions,SDSwasusedasthesolubilizingagent (1000mgdm−3).Theinitialtargetmoisturelevelofthesoilwas 30%.Thepollutedsoilwasmanuallycompactedinanattemptto avoidtheformationofheterogeneitiesinthesoil,whichmayresult inpreferentialpathsforfluidtransport. Thelevelsof theanode wellsweremaintainedusinga levelregulationloop.Waterwas pumpeddailyfromthecathodewellandelectroosmoticflux(Jeo)

(3)

Fig.1.(a)ExperimentalsetupusedtostudytheREKABprocessand(b)samplingpointforpostmortemanalysis.

wasestimatedbyequation1,whereVisthevolumeofwater recov-ered(cm3),tisthetime(d)andSisthesectionofthesoil(cm2).

Evaporationlosswasestimatedbymassbalance. Jeo=

dV dt 1

S (1)

Electricalcurrent,temperature,pH,andpollutantconcentration intheelectrolytecompartmentsweremonitoreddaily.Moreover, attheendoftheexperiments,anin-depthsectionedanalysisof thecompletesoilsectionandofthePRBusedwereperformed(see

Fig.1b).Thishelpstoestimatetheamountofpesticidetransported byelectromigrationandelectroosmosis,andretainedinthePRB. Theamountofpesticidetransferredtoatmospherewasestimated bymassbalance.

2.3. Adsorptionequilibria

Tobetterunderstandtheremovalofatrazineandoxyfluorfenby REKAB,adsorptionequilibriumisotherms(25◦C)wereobtainedby conductingseveralbatchtestsusingagitatedvessels(0.25L)with 0.1Lsolutionsof100mgL−1atrazineandoxyfluorfenand increas-ingamounts(2–100mgL−1)ofactivatedcarbonuntilequilibrium wasreached.Areactiontimeof24h(asestablishedby prelimi-narykinetictests)wasusedforsubsequentequilibriumtests.After thespecifiedtime,thesampleswerefilteredthrough0.45␮m cel-luloseacetatesyringemembranefiltersandanalysedbyHPLCas discussedinSection2.5.ThesolutionpHwasnotadjustedtokeep theequilibriumsystemssimple,limitingtheeffectsofionsfrom acidorbaseaddition,andbecausetheimpactofthesolutionpHon theuptakeofatrazineoroxyfluorfenwasconsideredtobe insignif-icant.

2.4. Analyticaltechniques

Moisture measurements were performed gravimetrically by dryingthesoilsamplesin anovenfor24hat105◦C. To deter-minethepHandconductivityofthesoilsamples,thestandard

method(E.P.A.-9045C,1995)forsaturatedsoilwasused.ThepH measurementswereperformedusingaWTWinoLabpHmeter. Conductivity wasmeasuredusing a GLP 31 conductivitymeter (CrisolInstruments,Spain).Allthesamples(pre-andpost-mortem) werefilteredthrough0.45␮mnylonfilterspriortoanalysis.The atrazineandoxyfluorfenconcentrationsintheliquidsampleswere determined daily usinga liquid-liquid(L-L) extractionmethod. Theatrazineandoxyfluorfenconcentrationsweredeterminedby HPLCusinganAgilent1100(AgilentTechnologies,PaloAlto, Cal-ifornia,EEUU)equippedwithaUVdetectoranda150×3.0mm Gemini5LC18110acolumn(Phenomenex,Ref.00F-4435-YYO), withacetonitrile/water(45:55V/V)ataflowrateof0.3cm3min−1

as themobile phase and at 223nmfor atrazineand with ace-tonitrile/water(70:30V/V)ataflowrateof0.25cm3min−1asthe

mobilephaseandat220nmforoxyfluorfen.Thetotalorganic car-bon(TOC)concentrationwasmonitoredusingaMultiN/C3100 AnalytikJenaanalyser.Thesoiltemperaturewasmonitoredusing aDigitalSoilthermometer.

3. Resultsanddiscussion

Inthiswork,toevaluatetheperformanceoftheREKABprocess, two testswereconducted,onefor each modelherbicidetested (atrazine andoxyfluorfen).Alloperating conditionswere main-tainedconstantinthetwotests.

PartaofFig.2presentsinformationaboutthechangesinthe appliedelectriccurrentasaconsequenceoftheapplicationofthe REKABprocesstobothspikedsoils.Duringthe15-daydurationof thetests,thecurrentintensityprogressivelyincreased10%, show-ingvaluesslightlyover4mAcm−2.Thisincreasecanbeassociated withasmallincreaseintheconductivityofthewellsandinthe moistureofthesoil(discussedafterwards),andhence,tothe result-inglowerohmicloses.PartbofFig.2focusesonthevariationsin pHandconductivityobtainedinthewells.AsinParta,thereare noconsiderabledifferencesbetweenthetwotests(eachofthem withdifferentherbicides),clearlyindicatingtherobustnessofthe

(4)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 2 4 6 8 10 12 14 0 5 10 15

Co

nd

ucti

v

ity

/

uS

cm

-1

pH

/ units

Time /

days

0 1 2 3 4 5 0 5 10 15

Cur

rent

d

ensity

/

mA

cm

-2

Time /

days

Fig.2.Changesinthemainoperatingparametersduringtheremediationofthesoilbyelectroremediationpoweredbyapowersupplyat20Vcm−1forbothpesticides.

Atrazine(fullsymbols)andoxyfluorfen(emptysymbols)(a)currentdensity(䊏,䊐).(b)anodiccompartmentpH(䊏,䊐),cathodiccompartmentpH(䊉,),anodicreservoir conductivity(,♦),andcathodicreservoirconductivity(,).

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4

pH/ Units

Position

0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 1 2 3 4

Co

nductivity

/

mS

cm

-1

Position

Barrier Barrier

a)

b)

Fig.3.(a)pHmapand(b)conductivitymapofthesoilaftertheremediationtestforatrazine(fullsymbols)andoxyfluorfen(emptysymbols)remediation.Upperright position(䊉,),upperleftposition(䊏,䊐),bottomrightposition(,♦)andbottomleftposition(,)ofthesoilaftertheremediationtest.

resultsobtainedinthiswork.Notethatthepolarityofthe elec-tricfieldappliedbetweentheelectrodeswasreversedonceaday (timespanforthepolarityreversalwasarbitrarilyselected),and thisperiodicchangehelpstoexplainthezig-zagchangesobserved inthepHvaluesoftheelectrolytescontainedinthewells through-outtheexperiment.Consequently,italsohelpstodemonstratethat nopHgradientswereformedinthesoilbetweentheelectrodes (becauseofthedailyneutralization).Notethatabuffersolutionwas notaddedtotheelectrolyteduringthetests;theonlystrategythat wasappliedtoregulatethepHwasthedailyreversalofthe polar-ity.Asshowninthisfigure,thepHintheanodicandcathodicwells doesnottendtoextremevaluesasistheexpectedtrendinEKSF processes;rather,ittendstomoreneutralvalueswithintherange of7–11.Typically,asingleEKprocessgeneratesanacidicfrontin theanodicwellandabasicfrontinthecathodicwellasa conse-quenceof(i)theproductionofprotons(duringwateroxidation) andhydroxylanions(duringwaterreduction)intheanodeand cathodewells,respectively,asshowninequations2(anode)and 3(cathode),and(ii)thetransportofH+andOHionsbythe

elec-tromigrationphenomenon.Hence,polarityreversalcontributesto betterEKremediationperformancebypreventingtheoccurrence ofextremepHchangesinregionsofthesoilclosetheelectrode wells.Thisisapositiveaspectbecauseaccordingtotheliterature,

[23,30,13]controllingthepHattheanodeandcathodeappearsto resultinfavourablesoilpHfordesorptionandelectro-osmoticflux

2H2O →O2(gas)+4H+(aq)+4e−E◦ = −1.229V (2)

4H2O+4e−→ 2H2(gas)+4OH−(aq)E◦ = −0.828V (3)

Regardingtheconductivity,aslightincreaseinboththeanolyte andcatholytewasobservedduringbothREKABtests,indicating thationsareremovedfromthesoilandtransportedtothewells. Thisincreaseinconductivityisprimarilyduetothe electromigra-tionofionstowardstheanodicandcathodicwellsandduetothe productionofprotonsandhydroxylionsduringwateroxidation andreduction,respectively.Asaconsequenceofthefirstprocess, thereisadecreaseintheconductivityofthesoil.Thetransport oftheSDSaddedtofavourthemobilityoftheherbicidesisalso expectedtohaveaninfluenceonthechangesintheconductivity.

Fig.3presentsa3-DmapofthepHandconductivitydistribution attheendofthetests(post-mortemanalysis).Thefirstimportant aspecttonoteistheverysimilarbehavioursofbothtests.Likewise, notethatdespitethesignificanceoftheprocessesoccurringinthe electrodes,bothparametersaremaintainedalmostconstantinthe soilanddispersionisverylow.

(5)

0 0.01 0.02 0.03 0.04 0.05 0.06 0 2 4 6 8 10 12 14 16

Flow

ra

tes

/cm

3

cm

-2

d

-1

Times

/ da

ys

0 5 10 15 20 25 30 35 40 45 0 1 2 3 4

Mo

istu

re

/ %

Position

Barrier

a)

b)

Fig.4. Timecourseoftheelectroosmoticflux(䊏,䊐)andevaporationflux(䊉,)monitoredduringtheremediationprocess.Moisturemapofthesoilfollowingtheremediation test.Upperrightposition(䊉,),upperleftposition(䊏,䊐),bottomrightposition(,♦)andbottomleftposition(,)ofthesoilaftertheremediationtest.Atrazine(full symbols)andoxyfluorfen(emptysymbols).

Table1

Comparisonofsteady-statepH,conductivityandmoistureobtainedafterapplying15-daylongremediationtest(EKSF[29]orREKAB)tosoilspikedwithatrazine(ATZ)and oxyfluorfen(OXY).

EKSF(ATZ) EKSF(OXY) REKAB(ATZ) REKAB(OXY)

J(Am−2) 2.87 3.41 4.71 4.59 Moisture(%) 25.55 32.82 33.99 34.99 pHanode/cathode 1.98/14.55 2.04/14.01 8.59/10.00 7.95/11.00 Conductivity(␮Scm−1)anode/cathode 6417/18942 5326/9389 1154/915 569/769 Post-mortempH 7.63 7.74 8.08 7.91 Post-mortemConductivity(␮Scm−1) 157.90 183.90 238.5 241.04

Flowrateadded(cm3h−1) 3.6 7.3 4.7 4.5

FlowratecollectedEK(cm3h−1) 3.2 4.5 4.1 4.2

Fig.4showsthetransientchangesofthefluxesandthe mois-turemapattheendofthetests.Theelectroosmoticflowrates(fluid addedtotheelectrodeactingastheanode)increaseoverthetests toavalueintherangeof0.04–0.05cm3cm−2d−1.Moreover,the

waterevaporationfluxesaremaintainedapproximatelyconstantat avaluecloseto0.01cm3cm−2d−1.Accordingtopartb,the

electro-osmoticfluxeshelptomaintainthemoistureinthesoilatvalues over30%(initialvalueset)despitetheevaporationbecausethereis nomoistureprofileintheanode-cathodedirectionandtheaxial dispersionislow. Again,thereproducibilitybetweenbothtests isaclearindicatoroftherobustnessofthemethodologyusedto evaluatetheREKABprocessatthebenchscale.

ToobtainmoreinformationabouttheperformanceoftheREKAB processintheremovaloflow-solubilitypollutants,Table1 com-paresthemainchangesobservedduringtheREKABtestswiththose obtainedinapreviousstudyinwhichtheremovalofatrazineand oxyfluorfenusing EKSFwasevaluated [29]withsimilar operat-ingparameters.ComparisonofthepHinthesteady-statevalues obtainedin theREKABand intheEKSFindicatesthat thereare importantdifferencesbetweenbothEKconfigurations,withmore extremepHvaluesinthecaseoftheEKSFtechnologywithboth herbicides.Aclearinfluenceoftheacidicandalkalinefronts com-pletelymovingthesoilmatrixisobservedinthepH.Adecrease inthe pHvaluesis generallyobserved in thesectionsnearthe anode,andasignificantincreaseisobservedinthesectionsnear thecathode.However,aspreviouslyexplained,withthe applica-tionofREKAB,thesemoreextremepHvaluesarenotachieved, andinthiscase,itcanbeinferredthatthepolarityreversal con-tributestoefficientperformance.NotethatthecombinationofEK withPRBisoccasionallyconsideredforeliminatingtheobstruction

ofthePRBsystemcausedbymineralprecipitationorobstruction ofactivesites[1].

Regarding conductivity, during the two tests, significant changeswereobservedintheelectrolytecontainedinthewells. ThesechangesaremoreimportantintheEKSFwithoutpolarity reversalthanintheREKABprocess,andtheyareconsistentwiththe fluctuationsobservedinthesoilintheEKSF,withhigheraxial dis-persionsintheproximityoftheelectrodewells.Thisbehaviourcan clearlybeattributedtothetransportofionicspeciesandthe fluc-tuationsinthepHvalues.ComparingthevaluesobtainedinREKAB withthoseobtainedinEKSF,theconductivityvalueishigherinthe processstudiedinthiswork.Thishighervaluecanbeexplained becauseincontrasttoEKSF,theperiodicreversalofthepolarity preventsthewashingupofionscontainedinthesoil.Thisisalso observedbycomparingtheconductivityoftheelectrolytes con-tainedinthewells,whichissignificantlyhigherinthecaseofEKSF. However,inthiscase,notonlythetransportofionsbutalsothe moreextremechangesinthepHshouldbetakeninto considera-tion.

Regardingthemoistureof thesoil,noimportantdifferences were observed between the two processes, despite the large changesin thevalues oftheflowrates,in whichthedifference (associatedwithevaporation)ishigherfortheREKABapproach.

Fig.5showstheconcentrationofherbicidesmeasuredinboth electrode wellsduring thetestsand the3-D mapof the pollu-tantdistributionattheendofthetests.Regardingthepollutant distribution,partashowstheconcentrationmapofatrazineand oxyfluorfeninthetests.Asshown,after15days oftreatment,a decreaseintheconcentrationofpesticidesremaininginthesoil isregistereduntiltheconcentrationislowerthan5mgperkgof soil,andbothpollutants,atrazineandoxyfluorfen,wereefficiently

(6)

0 5 10 15 20 25 30 0 1 2 3 4

po

llutant

/

mg

K

g

so il -1

Position

0 5 10 15 20 25 30 0 2 4 6 8 10 12 14 16

po

llutant

/

mg

L

-1

Times / days

a)

b)

Fig.5.(a)Concentrationmapofthesoilaftertheremediationtestforbothatrazine(fullsymbols)andoxyfluorfen(emptysymbols).Upperrightposition(䊉,),upper leftposition(䊏,䊐),bottomrightposition(,♦)andbottomleftposition(,)ofthesoilaftertheremediationtest.(*)initialconcentrationofpollutants.(b)Changesin theconcentrationsofatrazine(fullsymbols)andoxyfluorfen(emptysymbols)thatarriveattheelectrodewellsduringtheremediationtest.Concentrationintheanodic chamber(䊏,䊐),concentrationinthecathodicchamber(䊉,).

Fig.6.Adsorptionisothermsof()atrazineand(䊏)oxyfluorfenontotheactivated carbonused.Experimentalconditions:batchtestsusingagitatedvessels(0.25L) with0.1Lsolutionsof100mgL−1atrazineandoxyfluorfenandincreasingamounts

(2–100mgL−1)ofactivatedcarbonduring24huntilequilibrium.

removed,achievingapproximately90%removalduringthe treat-mentofsoil.Thesignificantlyhighconcentrationsofatrazineand oxyfluorfeninthecentralregionofthesoilafterthetreatmentcan beattributedtothepresenceofGAC-PRB.Regardingtheherbicide collectedintheelectrodewells(partb),notethatthedailychange intheelectrodepolarityallowsbothwellstoactaseithertheanode orthecathodedependingontheday.Thefinalconcentrationsof atrazineandoxyfluorfencollectedintheelectrodewellsarevery low,whichmeansthatpolarityreversalisnotaverygoodoption forefficientEKtransport.Thisobservationwasalsonotedwiththe conductivity.However,itwasnotthemainremovalmechanism soughtwiththeREKABprocess;rather,thisprocessutilizedthe adsorptionofthepollutantintheactivatedcarbonbedplacedin thesoilcolumn.

ThedifferentadsorptioncapabilitiesofGACtowardsatrazine andoxyfluorfencanbeeasilyunderstoodbyexaminingthe adsorp-tionisotherms(Fig.6),whichwereestimatedfortheconcentration rangeofinterestbymixingsolutionscontaining100mgdm−3 of herbicideanddifferentamountsofactivatedcarbon.Asshown,the adsorptioncapacityoftheactivatedcarbonisnotsaturatedforthe concentrationrangetested,andtheadsorptioncapacityof oxyflu-orfenishigherthanthatofatrazine,whichisconsistentwiththe resultsobtainedintheREKAB process.Likewise,itisconfirmed

Fig.7. Averageprofilesofthepesticidesattheendoftests.Atrazine(,䊉)and Oxyfluorfen(,).Reversibleelectrokineticadsorptionbarrier(REKAB):empty points;electrokineticsoilflushing(EKSF):fullpoints.

thatactivatedcarboniseffectivefortheremovalofbothherbicides, despitetheirlowsolubility.

Fig.7comparestheaverageconcentrationprofileinthesoilafter 15daysoftreatmentintheremovalofthetwoherbicidesbyREKAB andEKSF.Similaritiesbetweenthebehavioursforbothpesticides werealsoobservedduringtheapplicationoftheEKSFprocess,and itisveryinterestingtocomparetheprofilesofpesticidesinsoilafter theapplicationofthetworemediationtechnologiesbecauseitmay helptounderstandthetransportmechanism,andhence,itcould beusedtooptimizetheremoval.InthecaseoftheREKABprocess, theherbicideconcentrationprofilesafterthetestsaremore simi-lar,clearlyindicatingthatabetterremovalofatrazineisachieved, whichisincontrasttothebetterremovalofoxyfluorfenobserved inthecaseofEKSF.Thisbehaviourcanbeexplainedbythemore efficientadsorptionindicatedbytheadsorptionisotherms.

Insummary,themechanismsfortheremovalofherbicidesin bothtechnologiesareverydifferent.Thepercentagesofherbicides removedbythedifferentmechanismsandtheherbicides remain-inginthesoilafter15daysoftreatmentareshowninFig.8.This figurecomparestheresultsfortheremovaloftheherbicidesinthis workwiththoseofapreviousworkfocusedonatrazineand oxyflu-orfenusingthesametechnologyandexperimentaldevice[29].In

(7)

0%

20%

40%

60%

80%

100%

REKAB oxyfluorfen REKAB atrazine EKSF oxyfluorfen EKSF atrazine

removal pesticide/ %

adsorption evaporated transport cathode transport anode remaining soil

Fig.8.Averageprofilesoftheherbicidesattheendoftests.

thecaseofatrazineandoxyfluorfen,theirremovalissignificantly favouredwhenthesepollutantsaremobilizedbyelectromigration andelectro-osmoticfluxes.

Despite being similar herbicides, this figure highlights the importanceofbench-scalestudiesforunderstandingthe perfor-manceofEKsoilremediationtechnologies.Evenfortwoherbicides thatareinsolubleinwater,themassbalanceindicatesthatremoval stronglydependsontheadsorptionandvolatilityproperties.Even whentheevaporationphenomenonappearstobeimportantduring thesoiltreatment,theevaporatedfractionsdonotdependonthe herbicidecontainedinthesoilbutratheronlyonthe characteris-ticsofthesoil.Notethatthistypeofphenomenonnaturallyoccurs, andconsideringthisphenomenon,innovativealternativesforsoil remediationcanbeapplied.Theseexperimentsareinprogress,and theirresultswillbereportedindetailinaseparatepaperinthenear future.

4. Conclusions

Fromthiswork,thefollowingconclusionscanbedrawn:

-REKABis anefficienttechnologyfortheremovalofnon-polar herbicidesfromsoils.

-The combination of EKSF withadsorption-PRB technology in shortperiods(15days)appearstobeaninnovativealternative todepollutesoils.

-ThereareimportantdifferencesbetweenREKABandEKSF.The adsorptionofpesticideontoactivatedcarbonprevents evapora-tion.

-Atrazineandoxyfluorfenareefficientlytransportedinthe com-binedREKABtechnologybyelectromigrationandelectro-osmotic processes.

-PolarityreversalhasapositiveeffectonregulatingthepHandon preventingthewashingupofthesaltscontainedinthesoil.

Acknowledgements

TheauthorsacknowledgefinancialsupportfromtheEUand Spanish Government through the MINECO Project CTM2013-45612-R.FinancialsupportfromtheNationalCouncilforScientific andTechnologicalDevelopment–Brazil(CNPq–446846/2014-7) isgratefullyacknowledged.

References

[1]C.Cameselle,K.R.Reddy,Effectsofperiodicelectricpotentialandelectrolyte recirculationonelectrochemicalremediationofcontaminantmixturesin clayeysoils,WaterAirSoilPollut.224(2013)1–13.

[2]J.-H.Choi,Y.-H.Kim,S.J.Choi,Reductivedechlorinationandbiodegradationof 2,4,6-trichlorophenolusingsequentialpermeablereactivebarriers: laboratorystudies,Chemosphere67(2007)1551–1557.

[3]H.I.Chung,M.Lee,Anewmethodforremedialtreatmentofcontaminated clayeysoilsbyelectrokineticscoupledwithpermeablereactivebarriers, Electrochim.Acta52(2007)3427–3431.

[4]E.V.dosSantos,C.Saez,C.A.Martinez-Huitle,P.Canizares,M.AndresRodrigo, Removalofoxyfluorfenfromex-situsoilwashingfluidsusingelectrolysis withdiamondanodes,J.Environ.Manage.171(2016)260–266.

[5]C.T.Eason,A.Fairweather,S.Ogilvie,H.Blackie,A.Miller,Areviewofrecent non-targettoxicitytestingofvertebratepesticides:establishinggeneric guidelines,N.Z.J.Zool.40(2013)226–235.

[6]V.Ferri,S.Ferro,C.A.Martinez-Huitle,A.DeBattisti,Electrokineticextraction ofsurfactantsandheavymetalsfromsewagesludge,Electrochim.Acta54 (2009)2108–2118.

[7]T.Frische,J.Bachmann,D.Frein,T.Juffernholz,A.Kehrer,A.Klein,G.Maack,F. Stock,H.C.Stolzenberg,C.Thierbach,S.Walter-Rohde,Identification, assessmentandmanagementofendocrinedisruptorsinwildlifeintheEU substancelegislation-discussionpaperfromtheGermanFederalEnvironment Agency(UBA),Toxicol.Lett.223(2013)306–309.

[8]Y.Garcia,C.Ruiz,E.Mena,J.Villasenor,P.Canizares,M.A.Rodrigo,Removalof nitratesfromspikedclaysoilsbycouplingelectrokineticandpermeable reactivebarriertechnologies,J.Chem.Technol.Biotechnol.90(2015) 1719–1726.

[9]H.I.Gomes,C.Dias-Ferreira,A.B.Ribeiro,Electrokineticremediationof organochlorinesinsoil:enhancementtechniquesandintegrationwithother remediationtechnologies,Chemosphere87(2012)1077–1090.

[10]A.Grube,D.Donaldson,T.Kiely,L.Wu,PesticidesIndustrySalesandUsage. 2006and2007MarketEstimates,UnitedStatesEnvironmentalProtection Agency,2007,Availableat:www.epa.gov/opp00001/pestsales/07pestsales/ marketestimates2007.pdf.

[11]J.J.Hayes,D.L.Marcus,Designofapermeablereactivebarrierinsitu remediationsystem,Vermontsite,in:J.C.Evans(Ed.),InSituRemediationof theGeoenvironment,AmericanSocietyofCivilEngineers,Minneapolis,MN, 1997,pp.56–67.

[12]T.Huang,D.Li,K.Liu,Y.Zhang,HeavymetalremovalfromMSWIflyashby electrokineticremediationcoupledwithapermeableactivatedcharcoal reactivebarrier,Sci.Rep.5(2015)15412.

[13]Z.Li,S.Yuan,J.Wan,H.Long,M.Tong,Acombinationofelectrokineticsand Pd/FePRBfortheremediationofpentachlorophenol-contaminatedsoil,J. Contam.Hydrol.124(2011)99–107.

[14]G.R.P.Malpass,D.W.Miwa,S.A.S.Machado,P.Olivi,A.J.Motheo,Oxidationof thepesticideatrazineatDSA(R)electrodes,J.Hazard.Mater.137(2006) 565–572.

[15]N.Mantzos,A.Karakitsou,D.Hela,G.Patakioutas,E.Leneti,I.Konstantinou, Persistenceofoxyfluorfeninsoil,runoffwater,sedimentandplantsofa sunflowercultivation,Sci.TotalEnviron.472(2014)767–777.

[16]E.Mena,C.Ruiz,J.Villasenor,M.A.Rodrigo,P.Canizares,Biologicalpermeable reactivebarrierscoupledwithelectrokineticsoilflushingforthetreatmentof diesel-pollutedclaysoil,J.Hazard.Mater.283(2015)131–139.

[17]E.Mena,J.Villasenor,P.Canizares,M.A.Rodrigo,Influenceofsoiltextureon theelectrokinetictransportofdiesel-degradingmicroorganisms,J.Environ. Sci.HealthA46(2011)914–919.

[18]E.Mena,J.Villasenor,P.Canizares,M.A.Rodrigo,Effectofelectricfieldonthe performanceofsoilelectro-bioremediationwithaperiodicpolarityreversal strategy,Chemosphere146(2016)300–307.

[19]E.Mena,J.Villasenor,P.Canizares,M.A.Rodrigo,Influenceofelectricfieldon theremediationofpollutedsoilusingabiobarrierassisted

electro-bioremediationprocess,Electrochim.Acta190(2016)294–304. [20]N.Oturan,E.Brillas,M.A.Oturan,Unprecedentedtotalmineralizationof atrazineandcyanuricacidbyanodicoxidationandelectro-Fentonwitha boron-dopeddiamondanode,Environ.Chem.Lett.10(2012)165–170. [21]P.L.Palmer,PermeableTreatmentBarriers.InSituTreatmentTechnology,

LewisPublishers,BocaRaton,2001,pp.459–482.

[22]M.Pazos,E.Rosales,T.Alcantara,J.Gomez,M.A.Sanroman,Decontamination ofsoilscontainingPAHsbyelectroremediation:areview,J.Hazard.Mater. 177(2010)1–11.

[23]A.B.Ribeiro,J.M.Rodriguez-Maroto,E.P.Mateus,H.Gomes,Removalof organiccontaminantsfromsoilsbyanelectrokineticprocess:thecaseof atrazine.Experimentalandmodeling,Chemosphere59(2005)1229–1239. [24]M.A.Rodrigo,N.Oturan,M.A.Oturan,Electrochemicallyassistedremediation

ofpesticidesinsoilsandwater:areview,Chem.Rev.114(2014)8720–8745. [25]C.Ruiz,E.Mena,P.Canizares,J.Villasenor,M.A.Rodrigo,Removalof

2,4,6-trichlorophenolfromspikedclaysoilsbyelectrokineticsoilflushing assistedwithgranularactivatedcarbonpermeablereactivebarrier,Ind.Eng. Chem.Res.53(2014)840–846.

[26]K.R.Ryberg,R.J.Gilliom,Trendsinpesticideconcentrationsanduseformajor riversoftheUnitedStates,Sci.TotalEnviron.538(2015)431–444. [27]E.V.D.Santos,C.Sáez,C.A.Martínez-Huitle,P.Ca ˜nizares,M.A.Rodrigo,The

(8)

(2015)26–29.

[28]M.M.Scherer,S.Richter,R.L.Valentine,P.J.J.Alvarez,Chemistryand microbiologyofpermeablereactivebarriersforinsitugroundwatercleanup, Crit.Rev.Microbiol.26(2000)221–264.

[29]E.VieiradosSantos,F.Souza,C.Saez,P.Ca ˜nizares,M.R.V.Lanza,C.A. Martinez-Huitle,M.A.Rodrigo,Applicationofelectrokineticsoilflushingto fourherbicides:acomparison,Chemosphere153(2016)205–211.

hexachlorobenzene-contaminatedsoilbysurfactant-enhanced electrokineticscoupledwithmicroscalePd/FePRB,J.Hazard.Mater.184 (2010)184–190.

[31]C.Weng,Coupledelectrokinetics-permeablereactivebarriers,in:K.R.Reddy, C.Cameselle(Eds.),ElectrochemicalRemediationTechnologiesforPolluted Soils,SedimentsandGroundwater,JohnWiley&Sons,Inc.,Hoboken,New Jersey,2009,pp.483–503.

Referências

Documentos relacionados

Ao Dr Oliver Duenisch pelos contatos feitos e orientação de língua estrangeira Ao Dr Agenor Maccari pela ajuda na viabilização da área do experimento de campo Ao Dr Rudi Arno

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

The limestone caves in South Korea include a variety of speleothems such as soda straw, stalactite, stalagmite, column, curtain (and bacon sheet), cave coral,

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

Despercebido: não visto, não notado, não observado, ignorado.. Não me passou despercebido

Caso utilizado em neonato (recém-nascido), deverá ser utilizado para reconstituição do produto apenas água para injeção e o frasco do diluente não deve ser

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,