• Nenhum resultado encontrado

Multiparasitismo em brânquias de Metynnis lippincottianus da área de proteção ambiental do rio Curiaú, Amazônia Oriental

N/A
N/A
Protected

Academic year: 2021

Share "Multiparasitismo em brânquias de Metynnis lippincottianus da área de proteção ambiental do rio Curiaú, Amazônia Oriental"

Copied!
8
0
0

Texto

(1)

Multiparasitism in gills of Metynnis lippincottianus from the environmental

protection area of Curiaú river, Eastern Amazon

Multiparasitismo em brânquias de Metynnis lippincottianus da área

de proteção ambiental do rio Curiaú, Amazônia Oriental

Abthyllane Amaral de Carvalho

1

Roger Leomar da Silva Ferreira

1

Priscila Gomes de Araújo

1

Márcio Charles da Silva Negrão

2

Marcela Nunes Videira

3*

ISSNe 1678-4596

INTRODUCTION

The high ichthyological diversity of

Amazon has been a subject of study for researchers

(TAVARES et al., 2018; DE ANDRADE et al., 2018;

ZATTI et al., 2018; BITTENCOURT et al., 2014),

but still many issues are need to be studied and

understood. (MOREIRA et al., 2010). This geographic

area also encompasses ecosystems that are vital for

maintaining the surrounding environment, such as

floodplain forests (BATISTA et al., 2015). In the state

of Amapá, floodplain forests are the second largest

ecosystem in the state, occupy 4.8% of the territory

while the rainforest occupies approximately 70% of

the state of the Amapá. Since this area is a suitable

habitat for many native species (QUEIROZ et al,

1Laboratório de Morfofisiologia e Sanidade Animal, Programa de Pós-graduação em Ciências Ambientais, Universidade Federal do Amapá

(UNIFAP), Macapá, AP, Brasil.

2Laboratório de Morfofisiologia de Sanidade Animal, Programa de Pós-graduação em Biodiversidade Tropical, Universidade Federal do

Amapá (UNIFAP), Macapá, AP, Brasil.

3Laboratório de Morfofisiologia de Sanidade Animal, Programa de Pós-graduação em Ciências Ambientais, Universidade do Estado do Amapá

(UEAP), Campus I, 68900-070, Macapá, AP, Brasil. E-mail: marcela.videira@ueap.edu.br. *Corresponding author.

ABSTRACT: The high fish diversity of the Amazon has been the subject of study for several research projects because of the importance

of its ecosystems. The Environmental Protection Area of the Curiaú River is composed of permanent and temporary lakes within the floodplain forests, favoring a rich diversity of fish species. Pratinha. (Metynnis lippincottianus) is an ornamental fish, widely distributed throughout Brazil and French Guiana. Fish parasites may reflect the environmental quality, as well as the habits of their host. Considering the importance of understanding and contributing to the expansion of studies on fish parasites, the present study aimed to investigate the gills of Metynnis lippincottianus from the Curiaú River basin in the municipality of Macapá (Eastern Amazon). A total of 200 specimens of Metynnis lippincottianus from the Curiaú River were examined and 89% of the analyzed fish were parasitized by metacercariae, Dactylogyridae gen. sp., Piscinoodinium pillulare, Trichodina sp., Henneguya sp., and Myxobolus sp. Despite this high parasitic load, body conditions were not affected. This is the first documented incidence of a species belonging to the Phylum Cnidaria: Myxozoa in Metynnis lippincottianus.

Key words: ornamental fish, parasitic fauna, infection.

RESUMO: A alta diversidade ictiológica da Amazônia tem sido fonte de estudo de diversas pesquisas, por esta região amazônica englobar

alguns ecossistemas importantes. A Área de Proteção Ambiental do Rio Curiaú é composta por lagos permanentes e temporários dentro das florestas de várzeas, o que favorece em uma rica diversidade de espécies de peixes. Metynnis lippincottianus é um peixe ornamental, amplamente distribuído pelo Brasil e Guiana Francesa. Os parasitos de peixes podem refletir a qualidade ambiental, assim como nos hábitos de seu hospedeiro. Considerando a importância de entender e contribuir para a expansão dos estudos sobre parasitos de peixes, o presente estudo teve como objetivo, investigar as brânquias de Metynnis lippincottianus oriundos da bacia do Rio Curiaú no município de Macapá-AP (Amazônia Oriental). Foram examinados 200 exemplares de Metynnis lippincottianus, oriundos do rio Curiaú, sendo que 89% dos peixes analisados estavam parasitados por parasitos diversos: Piscinoodinium pillulare, Trichodina sp., Henneguya sp., Myxobolus sp., monogenoide da família Dactylogyridae e metacercárias. Apesar dessa alta carga parasitária, as condições corporais não foram afetadas. Esta é a primeira ocorrência de espécies do filo Cnidaria: Myxozoa em Metynnis lippincottianus.

Palavras- chave: peixe ornamental, parasitofauna, infecção.

(2)

2 Carvalho et al.

2013; PINTO, 2016), 20.83% of these floodplain

forest (4,632.71 hectares) are designated as the

Environmental Protection Area (APA) of the Curiaú

River (LIMA et al., 2013).

The APA of the Curiaú River is composed

of permanent and temporary lakes within the

floodplain forests, favoring a rich diversity of fish

species, such as Serrasalmus rhombeus (piranha),

Hoplosternum littorale (tamoatá), Cichla temensis

(tucunaré), Hoplias malabaricus (traíra), and

Piaractus mesopotamicus (pacu). Among these,

a species of ornamental importance, Metynnis

lippincottianus (Serrasalmidae) known popularly as

Pratinha is widely distributed in the Brazilian basins

and some French Guiana rivers. It has a diet based on

vegetables, seeds, phytoplankton, mollusks and some

arthropods and detritus (MOREIRA et al., 2009;

HOSHINO et al., 2014).

In the Amazon, several factors influence

the parasitic load of fish, such as seasonality, abiotic

and biotic factors in aquatic environment water, and

host ecology (NEVES et al., 2013). The diversity and

ecological function of the parasites in an ecosystem

can be used as tools for a better understanding of

the biosphere, as well as the parasitic indexes

that support parasite-host relationship analysis

(TAVARES-DIAS et al. 2014 CARDOSO et al.,

2018). TAKEMOTO et al. (2004) stated that all

fish hosted at least one species of parasite and the

location of the parasites may vary, where no organ is

free from parasitism, but one organ may have more

parasites than another organ.

Multiple studies have reported that gills

are one of the most parasitized organs (CARDOSO

et al., 2018; JERÔNIMO et al., 2014, GONÇALVES

et al., 2014, VENTURA et al., 2013, SANTOS et

al. 2013; OLIVEIRA et al., 2016). Gills are easily

damaged by parasitic infections, being the first

organ in contact with the external environment.

Additionally, gills perform several functions, such

as respiration, osmoregulation, and excretion. Gills

are an indicator of the rate of parasitism, based

on histopathological changes, such as respiratory

disorders and electrolyte imbalance

(FLORES-LOPES et al., 2011; NASCIMENTO et al., 2012).

Fish parasites may reflect the environmental

quality, as well as habits of their host, considering

the importance of understanding and contributing

to the expansion of studies on fish parasites

(FALKENBERG et al., 2019). Therefore, the present

study aimed to investigate the gills of Metynnis

lippincottianus from the Curiaú River basin in

Macapá (eastern Amazon).

MATERIALS AND METHODS

Study area

The Curiaú river basin measures

approximately 584.47 km

2

, almost 40% of the Curiaú

River’s Environmental Protection Area (APA) (LIMA

et al., 2013). The Curiaú River’s mouth in the Amazon

River presents meandric characteristics, which may

be due to the greater turbulence in the river, caused

by the speed of the water current and the Amazonian

river tidal regime (VASCONCELOS et al., 2011).

Specimens of M. lippincottianus (COPE,

1870), common fish species of the Curiaú River (Point

1: 51º2’57,205” W 0º8’29” N; Point 2:51º2’30”,743

W 0º8’43,087” N), were collected during a 12-month

period, from August 2017 to August 2018. Collections

were carried out twice per month for parasitological

analysis, using a 20 mm net between knots measuring

five meters long and two meters high, being placed

in points with intense activity of fishing by the local

population (Figure 1).

Parasites sampling procedures

All fish were transported alive in vats

containing water from the environment and artificial

aeration, to the Laboratory of Morphophysiology

and Animal Health (LABMORSA) at the State

University of Amapá (UEAP). The specimens were

desensitized through a medullary incision, using

pincers and a scalpel. Then, biometric data such as

total length (cm), standard length (cm) and weight

(g) were measured.

The entire external surface, mouth, nostrils,

fins, and gills were analyzed using stereoscopic

binocular microscopes, to verify the existence of

parasites, cysts, or lesions. During the necropsy,

small gills fragments were separated between slides

and coverslips, wherein foci of parasite development

were identified via light microscope analysis.

Prevalence was used to analyze the

infection level of the parasites following the

recommendations of BUSH et al. (1997). A relative

condition factor for the host was determined using

body weight (g) and total length (cm) data following

LECREN (1951) where the expected and observed

weight are used to calculate, which has a value equal

to one (Kn=1) under normal conditions.

The project was submitted to the Ethics

Committee for Animal Use (CEUA), nº 012-CEUA/

CPAFAP and to the System of Authorization and

Information on Biodiversity (SISBIO) nº 50376-1.

A license was also obtained from the Secretary of

the Environment of the State of Amapá (SEMA-AP)

(3)

(letter nº 1014 / 2016), due to the status of the research

site as an Environmental Protection Area.

RESULTS AND DISCUSSION

The 200

specimens of M. lippincottianus

examined from the Curiaú River, had a mean total

length of 7.77±0.78 cm; standard mean length of

6.21±0.64 cm; and mean weight of 9.17±2.82 g.

Eighty-nine percent were parasitized by one or

more species. Three taxa (Ciliophora, Cnidaria

and Platyhelminthes) and 6 groups of parasites:

Piscinoodinium pillulare, Trichodina sp., Henneguya

sp., Myxobolus sp., monogenoids from the family

Dactylogyridae, and unidentified digenetics

(metacercariae) (Figure 2). Cnidarian Henneguya sp

.

presented the highest prevalence (89%) among the

parasites reported in gills; metacercariae showed the

lowest prevalence (15%).

The

dinoflagellata

Piscinoodinium

pillulare was found in the gills of 44% of the

analyzed M. lippincottianus specimens, which was

lower than the prevalence reported by FLORINDO

et al. (2017) in ornamental fish from Santa Catarina,

which was 75% in all fish. This same parasite

was reported in Cichlasoma amazonarum and in

Hemibrycon surinamensis of the Igarapé of Fortaleza

basin, Macapá, with a prevalence of 49% and 17.2%,

respectively (CARVALHO et al., 2017; HOSHINO

et al. 2014; HOSHINO et al., 2014). Piscinoodinium

pillulare is common in cold season of the year and is

responsible for outbreaks in aquaculture, which may

cause discomfort and a

sphyxia in hosts, as described

by SANT’ANA et al (2012).

Parasitic infection of the gills in the

genus Trichodina is the main cause of mortality

among fish farms (MACIEL et al., 2018). In this

study, the prevalence of Trichodina sp. in the gills

was 19%, which was higher than the prevalence

(10.4%) reported by NEVES et al. (2013) in

Astronotus ocelatus from Pracuúba Lake, Amapá.

Trichodina spp. was found in gills of Carnegiella

strigata, Carnegiella martae, and Nannostomus

eques, with a prevalence of 14.3%, 7.9%, and 9.7%,

respectively; all of these fish were collected from

the middle Rio Negro (TAVARES-DIAS et al.,

Figure 1 - Collection sites of Metynnis lippincottianus in the Curiaú River, eastern Amazonia (Brazil). Author: Cardoso-Junior, F. S.

(4)

4 Carvalho et al.

2010). Trichodina nobilis parasitized the gills in

64.3% and 84.2%, respectively, of in Pterophyllum

scalare and Mesonauta acora individuals (FARIAS

PANTOJA et al., 2015).

In the present study, the parasite that

presented the highest prevalence of infection

was Henneguya sp., which infected 89% of the

specimens analyzed. This prevalence was greater

than thatported re in Hypophthalmus marginatus of

the municipality of Cametá, in the state of Pará, in

which 80% of the individuals were parasitized by

Henneguya sp

. (VELASCO et al., 2015), this higher

prevalence can be related directly as the feeding

habit of the fish species, as well as the behavioral,

biological and physiological differences of these

fish (ISAAC et al., 2004) because these factors

can affect the structure of the parasite community

(CARVALHO et al., 2017). Henneguya sp. was also

described in Pimelodus maculatus, infecting 13.4%

of the gills (MARTINS et al., 2018). Henneguya

paraensis was reported in 60% of the gills of Cichla

temensis specimens studied (VELASCO et al., 2016).

Henneguya aequidens occurred in 33.3% of the gills

of Aequidens plagiozonatus individuals (VIDEIRA et

al., 2015); whereas in Arapaima gigas, Henneguya

arapaima parasitized the gill arches and gall bladder

with a prevalence of 11.7% and 82.3%, respectively

(FEIJÓ et al., 2008). This parasite has high specificity

for its host fish, and its parasitic action brings not only

ultrastructural damages that can result in death, but

also cause sterility of the host when housed in the

gonads and testicles (MATOS et al., 2001).

Myxobolus spp

. parasitized 65% of

gills of the fish examined, a value higher than that

reported in the heart of Pimelodus ornatus, from

the Arari Waterfall, which had a prevalence of

13.9% in the 43 specimens analyzed (MATOS et al.,

2014). LACERDA et al (2013) explained that the

discrimination of the fish parasitic fauna can be based

on premise that the different biogeographic regions

showed a range of possibilities for the parasitic fauna

structure in the host, thus explaining the differences

in parasites prevalence in their hosts. A species of

Myxobolus, Myxobolus maculatus, was found to

parasitize 40% of the kidneys of Metynnis maculatus,

a fish of the same genus as those researched in

this study, collected in the Amazon River estuary

(CASAL et al., 2002). Myxobolus insignis infected

the gills of 66.6% of Semaprochilodus insignis

(EIRAS et al., 2005) and Myxobolus sp. of 5.5% of

Colossoma macropomum (MACIEL et al., 2011),

both fish species being from the Amazon basin.

Myxobolus marajoensis, was found to parasitize the

intestinal musculature of 20% of fish from Paracauri

River, in the Island of Marajó-PA, Rhamdia quelen

(ABRUNHOSA et al., 2017).

Monogenoids of the family Dactylogyridae

presented the second highest prevalence, at 81.5% of

Figure 2 - Prevalence of the parasites present in the gills of Metynnis lippincottianus from Curiaú River, Eastern Amazon.

(5)

the specimens examined. HOSHINO &

TAVARES-DIAS (2014) described the presence of a species of

the family Dactylogyridae in M. lippincottianus of

the Igarapé Fortaleza basin / AP. The species reported

was Anacanthorus jegui, with a prevalence of 95%

in the 80 specimens analyzed. In another study,

conducted by REVERTER et al. (2016) in gills of

butterflies fishes of the Tropical Islands of the Western

Pacific, parasitism by monogenea communities of the

Dactylogyridae family to occurred with prevalences

between 40% and 100% in the analyzed species;

members of the family Dactylogyridae are thus

present in both freshwater and marine environments.

According to MENDOZA-FRANCO et al. (2018), the

occurrence of monogenea in ornamental freshwater

fish is due to the introduction of exotic fish that

harbor these parasites and the pollution of the natural

environment.

The presence of digenetic metacercariae

larvae in the gills of M. lippincottianus was observed

with the lowest prevalence among the parasites

reported — only 15% of the individuals examined were

infected. It was not possible to identify the individual

species of metacercariae. In studies conducted in

Lago Guaíba / RS, 13 species belonging to the phylum

Platyhelminthes were parasitizing the intestines,

gills, and stomach of Megaleporinus obtusidens,

with prevalence between 1.66% and 86.66% in

the 60 specimens analyzed (WENDT et al., 2018).

There were metacercariae of Posthodiplostomum

sp. parasitizing the gills of Auchenipterus nuchalis

(TAVARES-DIAS, 2017) and metacercariae in the

gills of 77.5% of M. lippincottianus (HOSHINO et

al., 2014); both fish species distributed the Igarapé

of Fortaleza basin. MORAIS et al., (2011) reported

metacercariae of Clinostomun marginatum and

Austrodiplostomum compactum, parasitizing 100%

and 15%, respectively, present in Pygocentrus

nattereri of central Amazon.

The relative factor of the host

(Kn=1.000±0.08) was not affected by the parasitism,

since it remained very close to the standard value,

that is Kn=1.0, according LECREN (1951), thus

indicating that the specimens’ condition was not

impacted, despite the high parasitic load. This

relative condition factor indicated the well-being

of the fish, thus measuring the state of animal

health (VAZZOLER, 1996, LIZAMA et al., 2006).

FALKENBERG et al. (2019) said that under natural

conditions, fish can be infected by many species,

which coexist and show interrelations, demonstrating

that each host has its own community of parasites and

that hosts acquire resistance, as well as adapt with the

presence of parasites and thus not have a negative

influence on the condition factor.

CONCLUSION

The parasitic fauna of the gills of M.

lippincottianus comprised micro and macroparasites,

was diverse in its composition, and was dominated

by the phylum Cnidaria: Myxozoa. Henneguya sp

.

was the most prevalent parasite, while metacercariae

were the least prevalent. The presence of protozoa,

Trichodina sp. and Piscinoodinium pillulare,

occurred in almost 50% of the specimens, and these

are primarily responsible for production losses in

aquaculture. The presence of two species of the genus

Myxobolus was observed, which were differentiated

based on spores of different shapes, since species

identification for myxozoa requires molecular

and ultrastructural analysis. This is first observed

occurrence of species belonging to the phylum

Cnidaria: Myxozoa in M. lippincottianus.

DECLARATION OF CONFLICT OF

INTERESTS

The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

BIOETHICS AND BIOSSECURITY

COMMITTEE APPROVAL

This research was approved by the Animal Use Ethics Committee (CEUA) of EMBRAPA-AP, number 012-CEUA/CPAFAP and registered in the System of Authorization and Information of Biodiversity (SISBIO), nº 50376-1, as well as authorized by the Secretary of Environment of the State of Amapá (SEMA), for the reason of the study being conducted in Environmental Protection Area, under the official number 1014/2016.

AUTHORS’ CONTRIBUTIONS

All authors contributed equally for the conception and writing of the manuscript. All authors critically revised the manuscript and approved of the final version.

REFERENCES

ABRUNHOSA, J. et al . Myxobolus marajoensis sp. n.

(Myxosporea: Myxobolidae), parasite of the freshwater catfish Rhamdia quelen from the Brazilian Amazon region.

Revista Brasileira de Parasitologia Veterinária, v.26, n.4,

p.465–471, 2017. Available from: <http://www.scielo.br/scielo. php?script=sci_arttext&pid=S1984-29612017000400465>. Accessed: Aug. 14, 2018. doi: 10.1590/s1984-29612017067.

(6)

6 Carvalho et al. BATISTA, A.P.B. et al. Caracterização estrutural em uma floresta

de terra firme no estado do Amapá, Brasil. Pesquisa Florestal Brasileira, v.35, p.21-33, 2015. Available from: <https://pfb.cnpf.

embrapa.br/pfb/index.php/pfb/article/view/689>. Accessed: Feb. 20, 2018 doi: 10.4336/2015.pfb.35.81.689.

BITTENCOURT, L.S. et al. Parasites of native Cichlidae populations and invasive Oreochromis niloticus (Linnaeus, 1758) in tributary of Amazonas River (Brazil). Revista Brasileira de Parasitologia Veterinária, v.23, n.1, p.44-54, 2014.

Available from: <http://www.scielo.br/scielo.php?pid=S1984-29612014000100007&script=sci_arttext&tlng=es>. Accessed: Aug. 14, 2018. doi: 10.1590/S1984-29612014006.

BUSH, A.O. et al. Parasitology meets ecology on its own terms: Margolis et al. Revisited. The Journal of Parasitology, v.83,

p.575-583, 1997. Available from: <http://parasitology.msi.ucsb. edu/sites/parasitology.msi.ucsb.edu/files/docs/publications/ parasitology%20meets%20ecology.pdf>. Accessed: Sep. 08, 2017. doi: 10.2307/3284227.

CARDOSO, L. et al. Gill metazoan parasites of the spotted goatfish

Pseudupeneus maculatus (Ostheichthyes: Mullidae) from the Coast

of Pernambuco, northeastern Brazil. Brazilian. Journal of Biology,

v.78, p.414-420, 2018. Availabe from: <http://www.scielo.br/ scielo.php?script=sci_arttext&pid=S1519-69842018000300414>. Accessed: Aug. 14, 2018. doi: 10.1590/1519-6984.166631. CARVALHO, A.A.; et al. Diversity of parasites in Cichlasoma

amazonarum Kullander, 1983 during rainy and dry seasons in

eastern Amazon (Brazil). Journal of Applied Ichthyology, v.3,

p.1178-1183, 2017. Available from: <https://www.researchgate. net/publication/319041774_Diversity_of_parasites_in_ Cichlasoma_amazonarum_Kullander_1983_during_rainy_and_ dry_seasons_in_eastern_Amazon_Brazil>. Accessed: Aug. 18, 2018. doi: 10.1111/jai.13451.

CASAL, G. et al. Ultrastructural data on the spore of Myxobolus

maculatus n. sp. (phylum Myxozoa), parasite from the Amazonian

fish Metynnis maculatus (Teleostei). Diseases of aquatic organisms, v.51, p.107-112, 2002. Available from: <https://www.

ncbi.nlm.nih.gov/pubmed/12363082>. Accessed: Mar. 18, 2018. doi: 10.3354/dao051107.

DE ANDRADE, J.I.A. et al. Hematology and biochemistry of

Colossoma macropomum co-infected with Aeromonas hydrophila

and monogenean Anacanthorus spathulatus after treatment with seed extract of Bixa orellana. Aquaculture, v.495, p.452-457,

2018. Available from: <https://www.sciencedirect.com/science/ article/abs/pii/S0044848618306215>. Accessed: Feb. 20, 2018. doi: 10.1016/j.aquaculture.2018.06.026.

EIRAS, J.C. et al. Métodos de estudo e técnicas laboratoriais em parasitologia de peixes. Maringá: Ed. EDUEM. 2006.

FALKENBERG, J. M. et al. Gill parasites of fish and their relation to host and environmental factors in two estuaries in northeastern Brazil. Aquatic Ecology, v.43, n.1, p.109-118, 2019. Available

from: <https://www.researchgate.net/publication/331013056_Gill_ parasites_of_fish_and_their_relation_to_host_and_environmental_ factors_in_two_estuaries_in_northeastern_Brazil>. Accessed: Feb. 20, 2019. doi: 10.1007/s10452-019-09676-6.

FARIAS PANTOJA, W.M. et al. Parasites component community in wild population of Pterophyllum scalare Schultze, 1823 and

Mesonauta acora Castelnau, 1855, cichlids from the Brazilian

Amazon. Journal of Applied Ichthyology, v.31, n.6, p.1043–

1048. 2015. Available from: <https://www.embrapa.br/busca- de-publicacoes/-/publicacao/1030674/parasites-component- community-in-wild-population-of-pterophyllum-scalare-schultze- 1823-and-mesonauta-acora-castelnau-1855-cichlids-from-the-brazilian-amazon>. Accessed: Apr. 20, 2018. doi: 10.1111/ jai.12903.

FEIJÓ, M. M. et al. Light and scanning electron microscopy of Henneguya arapaima n. sp. (Myxozoa: Myxobolidae) and histology of infected sites in pirarucu (Arapaima gigas: Pisces: Arapaimidae) from the Araguaia River, Brazil. Veterinary Parasitology, v.157, n.2, p.59–64, 2008. Available from: <https://

www.ncbi.nlm.nih.gov/pubmed/18771855>. Accessed: Apr. 28, 2018. doi: 10.1016/j.vetpar.2008.06.009.

FLORES-LOPES, F.; et al. Histopathologic alterations observed in fish gills as a tool in environmental monitoring.

Brazilian Journal of Biology, v.71, n.1, p.179-188 2011.

Available from: <http://www.scielo.br/scielo.php?script=sci_ arttext&pid=S1519-69842011000100026>. Accessed: May, 01, 2018. doi: 10.1590/S1519-69842011000100026.

FLORINDO, M.C. et al. Protozoan parasites of freshwater ornamental fish. Latin American. Journal of Aquatic Research,

v.45, p.948-956, 2017. Available from: <https://scielo.conicyt.cl/ pdf/lajar/v45n5/0718-560X-lajar-45-05-0948.pdf>. Accessed: Oct. 03, 2018. doi: 10.3856/vol45-issue5-fulltext-10.

HOSHINO, M.D.F.G. et al.. First study on parasites of Hemibrycon

surinamensis (Characidae), a host from the Eastern Amazon

region. Revista Brasileira de Parasitologia Veterinária, v.23,

p.343-347, 2014. Available from: <https://www.ncbi.nlm.nih.gov/ pubmed/25271454>. Accessed: May, 01, 2018. doi: 0.1590/S1984-29612014069.

HOSHINO, M.D.F.G.; et al. Ecology of parasites of Metynnis

lippincottianus (Characiformes: Serrasalmidae) from the

eastern Amazon region, Macapá, State of Amapá, Brazil. Acta Scientiarum. Biological Sciences, v.36, p.249-255. Available

from: <https://www.embrapa.br/amapa/busca-de-publicacoes/-/ publicacao/1009555/ecology-of-parasites-of-metynnis- lippincottianus-characiformes-serrasalmidae-from-the-eastern-amazon-region-macapa-state-of-amapa-brazil>. Accessed: Jun. 04, 2018. doi: 10.4025/actascibiolsci.v36i2.19876.

ISAAC, A. et al. Composição e estrutura das infracomunidades endoparasitárias de Gymnotus spp. (Pisces: Gymnotidae) do rio Baía, Mato Grosso do Sul, Brasil. Acta Scientiarum. Biological Sciences, v.26, n.4, p.453-462, 2004. Available fom: <https://

www.researchgate.net/publication/247915423_Composicao_e_ estrutura_das_infracomunidades_endoparasitarias_de_ Gymnotus_spp_Pisces_Gymnotidae_do_rio_Baia_Mato_ Grosso_do_Sul_Brasil>. Accessed: Feb. 20, 2019. doi: 10.4025/ actascibiolsci.v26i4.1527.

JERÔNIMO, G. et al. Haematological and histopathological analysis in South American fish Piaractus mesopotamicus parasitized by monogenean (Dactylogyridae). Brazilian Journal of Biology, v.74,

n.4, p.1000–1006, 2014. Available from: <http://www.scielo.br/ scielo.php?script=sci_arttext&pid=S1519-69842014000401000>. Accessed: Jun. 04, 2018. doi: 10.1590/1519-6984.09513.

LACERDA, A. C. F. et al. Peixes introduzidos e seus parasitos. In: PAVANELLI, G. et al. Parasitologia de peixes de água doce do Brasil. Maringá: Eduern, 2013. pp.169-193.

(7)

LECREN, E. D. The length–weight relationship and seazonal cycle in gonad weight and condition in the perch (Perca fluviatilis).

Journal of Animal Ecology, v.20, n.2, p.201-219, 1951.

LIMA, R.B. et al. Caracterização agroecológica e socioeconômica dos moradores da comunidade quilombola do Curiaú, Macapá-AP, Brasil. Biota Amazônia, v.3, n.113-138 2013. Available from:

<https://periodicos.unifap.br/index.php/biota/article/view/861>. Accessed: Feb. 18, 2018. doi: 10.18561/2179-5746/biotaamazonia. v3n3p113-138.

LIZAMA, M. A. P.; et al. Influence of the seasonal and environmental patterns and host reproduction on the metazoan parasites of

Prochilodus lineatus (Valenciennes, 1836) (Prochilodontidae) of

the Upper Parana´ River floodplain, Brazil. Brazilian Archives of Biology and Technology, v.49, n.4, p.611-622, 2006.

MACIEL, P.O. et al. Myxobolus sp. (Myxozoa) no sangue circulante de Colossoma macropomum (Osteichthyes, Characidae). Revista Brasileira de Parasitologia Veterinária, v.20, n.1, p.82–84, 2011.

Available from: <http://www.scielo.br/scielo.php?script=sci_artte xt&pid=S1984-29612011000100018>. Accessed: Sep. 20, 2018. doi: 10.1590/S1984-29612011000100018.

MACIEL, P.O. et al. Trichodinidae in commercial fish in South America. Reviews in Fish Biology and Fisheries, v.28, p.35-56,

2018. Available from: <https://link.springer.com/article/10.1007/ s11160-017-9490-1>. Accessed: Sep. 20, 2018. doi: 10.1007/ s11160-017-9490-1.

MARTINS, M. et al. Henneguya sp. (Myxozoa: Myxobolidae) em

Pimelodus maculatus (Osteichthyes: Siluridae) do Reservatório

de Volta Grande, Minas Gerais, Brasil. Boletim do Instituto de Pesca, v.30, n.1, p.01-07, 2018. Available from: <https://www.

pesca.sp.gov.br/boletim/index.php/bip/article/view/Martins30_1>. Accessed: Oct. 15, 2018.

MATOS, E. et al. Incidência de parasitas do Phylum Myxozoa (Sub-reino Protozoa) em peixes da região amazônica, com especial destaque para o gênero Henneguya. Revista de Ciência Agrária,

v.36, p.83-99, 2001. Available from: <https://periodicos.ufra.edu. br/index.php/ajaes/article/view/1996>. Accessed: Mar. 20, 2018. MATOS, E. et al. Infection of the heart of Pimelodus ornatus (Teleostei, Pimelodidae), by Myxobolus sp. (Myxozoa, Myxobolidae). Revista Brasileira de Parasitologia Veterinária,

v.23, p.543-546, 2014. Available from: <http://www.scielo.br/ scielo.php?script=sci_arttext&pid=S1984-29612014000400543>. Accessed: Mar. 20, 2018. doi: 10.1590/S1984-29612014083. MENDOZA-FRANCO, E.F. et al. Ecto-and endo-parasitic monogeneans (Platyhelminthes) on cultured freshwater exotic fish species in the state of Morelos, South-Central Mexico. ZooKeys, v.776, p.1-12, 2018.

Available from: <https://zookeys.pensoft.net/article/26149/>. Accessed: Mar. 21, 2018. doi: 10.3897/zookeys.776.26149.

MORAIS, A. M. et al. Clinostomum marginatum (Braun, 1899) and Austrodiplostomum compactum (lutz, 1928) metacercariae with zoonotic potencial on Pygocentrus nattereri (Kner, 1858) (Characiformes: Serrasalmidae) from Central Amazon, Brazil.

Neotropical Helminthology, v.5, n.1, p.8–15, 2011. Available

from: <https://www.arca.fiocruz.br/handle/icict/16850>. Accessed: Nov. 16, 2018. doi: 10.1645/15-773.

MOREIRA, L.H.A. et al. Ecological aspects of metazoan endoparasites of Metynnis lippincottianus (Cope, 1870)

(Characidae) from Upper Paraná River floodplain, Brazil.

Helminthologia, v.46, p.214-219, 2009. Available from:

<https://www.researchgate.net/publication/225331558_ Ecological_aspects_of_metazoan_endoparasites_of_Metynnis_ lippincottianus_Cope_1870_Characidae_from_Upper_Parana_ River_floodplain_Brazil>. Accessed: Mar. 10, 2018. doi: 10.2478/ s11687-009-0040-9.

MOREIRA, L.H.D.A. et al. The influence of parasitism on the relative condition factor (Kn) of Metynnis lippincottianus (Characidae) from two aquatic environments: the upper Parana river floodplain and Corvo and Guairacá rivers, Brazil. Acta Scientiarum. Biological Sciences, v.32, p.83-86, 2010. Available

from: <http://periodicos.uem.br/ojs/index.php/ActaSciBiolSci/ article/view/3668>. Accessed: Mar. 10, 2018. doi: 10.4025/ actascibiolsci.v32i1.3668.

NASCIMENTO, A.A. et al. Fish gills alterations as potential biomarkers of environmental quality in a eutrophized tropical river in south-eastern Brazil. Journal of Veterinary Medicine Series C: Anatomia Histologia Embryologia, v.41, n.3, p.209–216,

2012. Available from: <https://onlinelibrary.wiley.com/doi/abs/10 .1111/j.1439-0264.2011.01125.x>. Accessed: Mar. 12, 2018 doi: 10.1111/j.1439-0264.2011.01125.x.

OLIVEIRA, M.S.B.; et al. Communities of parasite metazoans in Piaractus brachypomus (Pisces, Serrasalmidae) in the lower

Amazon River (Brazil). Brazilian Journal of Veterinary Parasitology, v.25, n.2, p.151–157, 2016. Available from: <http://

www.scielo.br/scielo.php?script=sci_abstract&pid=S1984-29612016000200151&lng=pt&nrm=iso&tlng=en>. Accessed: May, 25, 2018. doi: 10.1590/S1984-29612016022.

NEVES, L.R. et al. Seasonal influence on the parasite fauna of a wild population of Astronotus ocellatus (Perciformes: Cichlidae) from the Brazilian Amazon. The Journal of Parasitology, v.99,

p.718-721, 2013. Available from: <https://www.ncbi.nlm.nih.gov/ pubmed/23421456>. Accessed: May, 28, 2018. doi: 10.1645/12-84.1. PINTO, M.J.S. Conhecendo o Amapá. Belém: Cultural Brasil, 2016.

QUEIROZ, L.J. et al. Peixes do Rio Madeira. São Paulo: Santo

Antônio 3 Energia, 2013.

REVERTER, M. et al. Gill monogenean communities (Platyhelminthes, Monogenea, Dactylogyridae) of butterflyfishes from tropical Indo-West Pacific Islands. Parasitology, v.143,

p.1580-1591, 2016. Available from: <https://www.ncbi.nlm.nih. gov/pubmed/27573880>. Accessed: Oct. 16, 2018. doi: 10.1017/ S0031182016001463.

SANT’ANA, F.J. et al. Surtos de infecção por Piscinoodinium

pillulare e Henneguya spp. em pacus (Piaractus mesopotamicus)

criados intensivamente no Sudoeste de Goiás. Pesquisa Veterinária Brasileira, v.3, p.121-125, 2012. Available from: <http://www.

scielo.br/scielo.php?pid=S0100-736X2012000200005&script=sci_ abstract&tlng=pt>. Accessed: May, 30, 2018. doi: 10.1590/S0100-736X2012000200005.

SANTOS, E.F. et al. Fauna parasitária de tambaqui Colossoma

macropomum (Characidae) cultivado em tanque-rede no

estado do Amapá, Amazônia oriental, Acta Amazonica v.43,

n.1, p.105–112, 2013. Available from: <http://www.scielo. br/scielo.php?pid=S0044-59672013000100013&script=sci_ abstract&tlng=pt>. Accessed: Mar. 15, 2018. doi: 10.1590/S0044-59672013000100013.

(8)

8 Carvalho et al. TAKEMOTO, R.M. et al. Parasitos de águas continentais

IN: RANZANI-PAIVA, M.J.T. et al. Sanidade de organismos aquáticos. São Paulo: Livraria Varela, 2004, p. 179-198.

TAVARES-DIAS, M. et al. Parasitic fauna of eight species of ornamental freshwater fish species from the middle Negro River in the Brazilian

Amazon Region. Revista Brasileira de Parasitologia Veterinária,

v.19, n.2, p.29–33, 2010. Available from: <http://www.scielo.br/ scielo.php?script=sci_arttext&pid=S1984-29612010000200007>. Accessed: Mar. 15, 2018. doi: 10.4322/rbpv.01902007.

TAVARES-DIAS, M. et al. Ecology and seasonal variation of parasites in wild Aequidens tetramerus, a Cichlidae from the Amazon. Acta Parasitologica, v.54, n.1, p.158-164, 2014. Available from: <https://

www.ncbi.nlm.nih.gov/pubmed/24570063>. Accessed: May, 17, 2018. doi: 10.2478/s11686-014-0225-3.

TAVARES-DIAS, M. Community of protozoans and metazoans parasitizing Auchenipterus nuchalis (Auchenipteridae), a catfish from the Brazilian Amazon. Acta Scientiarum. Biological Sciences, v.39, n.1, p.123–128, 2017. Available from: <http:// periodicos.uem.br/ojs/index.php/ActaSciBiolSci/article/ view/32836>. Accessed: Sep. 19, 2018. doi: 10.4025/actascibiolsci. v39i1.32836.

TAVARES, G.C. et al. Disease outbreaks in farmed Amazon catfish (Leiarius marmoratus x Pseudoplatystoma corruscans) caused by Streptococcus agalactiae, S. iniae, and S.

dysgalactiae. Aquaculture, v.495, p.384–392, 2018. Available

from: <https://www.sciencedirect.com/science/article/abs/pii/ S0044848618308196>. Accessed: May, 09, 2018. doi: 0.1016/j. aquaculture.2018.06.027.

VASCONCELOS, H.C.G.; et al. Alimentação de Potamotrygon

motoro (Chondrichthyes, Potamotrygonidae) na planície de

inundação da APA do Rio Curiaú, Macapá-Amapá-Brasil.

Biota Amazônia, v.1, n.2, p.66-73, 2011. Available from:

<https://periodicos.unifap.br/index.php/biota/article/view/362>. Accessed: Oct. 20, 2018. doi: 10.18561/2179-5746/biotaamazonia. v1.n2.p66-73.

VAZZOLER, A. E. A. M Biologia e reprodução de peixes teleósteos: teoria e prática. Maringá: Ed. EDUEM. 1996.

VELASCO, M. et al. Infection by Henneguya sp. (Myxozoa) in the bone tissue of the gill filaments of the Amazonian catfish

Hypophthalmus marginatus (Siluriformes). Revista Brasileira de Parasitologia Veterinária, v.24, p.365-369, 2015. Available

from: <http://www.scielo.br/scielo.php?script=sci_arttext&pid =S1984-29612015000300365>. Accessed: Sep. 20, 2018. doi: 10.1590/S1984-29612015021.

VELASCO, M et al. Henneguya paraensis n. sp. (Myxozoa; Myxosporea), a new gill parasite of the Amazonian fish Cichla

temensis (Teleostei: Cichlidae): morphological and molecular aspects.

Parasitology Research, v.115, n.5, p.1779–1787, 2016. Available

from: <https://www.ncbi.nlm.nih.gov/pubmed/26847632>. Accessed: Sep. 20, 2018. doi: 10.1007/s00436-016-4916-6.

VENTURA, A.S. et al. Fauna parasitária dos híbridos siluriformes cachapinta e jundiara nos primeiros estágios de desenvolvimento.

Pesquisa Agropecuária Brasileira, v.48, n.8, p.943–949, 2013.

Available from: <https://seer.sct.embrapa.br/index.php/pab/article/ view/11388>. Accessed: Oct. 18, 2018. doi: 10.1590/S0100-204X2013000800019.

VIDEIRA, M. et al. Morphological aspects of Henneguya aequidens n. sp. (Myxozoa: Myxobolidae) in Aequidens plagiozonatus Kullander, 1984 (Teleostei: Cichlidae) in the Amazon region, Brazil.

Parasitology Research, v.114, n.3, p.1159–1162, 2015. Available

from: <http://www.bioone.org/doi/abs/10.1645/15-773>. Accessed: Mar. 20, 2018. doi: 0.1007/s00436-014-4295-9.

WENDT, E. W. et al. Helminth fauna of Megaleporinus obtusidens (Characiformes: Anostomidae) from Lake Guaíba: analysis of the parasite community. Parasitology research, v.117, p.2445-256, 2018.

Available from: <https://www.ncbi.nlm.nih.gov/pubmed/29858940>. Accessed: Sep. 14, 2018. doi: 10.1007/s00436-018-5933-4.

ZATTI, S.A. et al. Ceratomyxa gracillima n. sp. (Cnidaria: Myxosporea) provides evidence of panmixia and ceratomyxid radiation in the Amazon basin. Parasitology, v.145, n.9, p.1-10, 2018. Available

from: <https://www.cambridge.org/core/journals/parasitology/ article/ceratomyxa-gracillima-n-sp-cnidaria-myxosporea-provides- evidence-of-panmixia-and-ceratomyxid-radiation-in-the-amazon-basin/885CF2EB831DB1BB09B0506D90FA5346>. Accessed: Nov. 16, 2018. doi: 10.1017/S0031182017002323.

Referências

Documentos relacionados

This log must identify the roles of any sub-investigator and the person(s) who will be delegated other study- related tasks; such as CRF/EDC entry. Any changes to

Além disso, o Facebook também disponibiliza várias ferramentas exclusivas como a criação de eventos, de publici- dade, fornece aos seus utilizadores milhares de jogos que podem

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

Na hepatite B, as enzimas hepáticas têm valores menores tanto para quem toma quanto para os que não tomam café comparados ao vírus C, porém os dados foram estatisticamente

É nesta mudança, abruptamente solicitada e muitas das vezes legislada, que nos vão impondo, neste contexto de sociedades sem emprego; a ordem para a flexibilização como

Para entender mais sobre quais são estas dificuldades epistemológicas, ler a obra “Como dar sentido ao passado: questões relevantes de meta- história” (2009) do