• Nenhum resultado encontrado

Morpho-histological characterization of immature of the bioindicator midge Chironomus sancticaroli Strixino and Strixino (Diptera, Chironomidae)

N/A
N/A
Protected

Academic year: 2021

Share "Morpho-histological characterization of immature of the bioindicator midge Chironomus sancticaroli Strixino and Strixino (Diptera, Chironomidae)"

Copied!
11
0
0

Texto

(1)

ww w . r b e n t o m o l o g i a . c o m

REVISTA

BRASILEIRA

DE

Entomologia

AJournalonInsectDiversityandEvolution

Medical

and

Veterinary

Entomology

Morpho-histological

characterization

of

immature

of

the

bioindicator

midge

Chironomus

sancticaroli

Strixino

and

Strixino

(Diptera,

Chironomidae)

Vinicius

Sobrinho

Richardi

a

,

Maiara

Vicentini

a

,

Débora

Rebechi

a

,

Luis

Fernando

Fávaro

b

,

Mário

Antônio

Navarro-Silva

a,∗

aLaboratóriodeEntomologiaMédicaeVeterinária,DepartamentodeZoologia,UniversidadeFederaldoParaná,Curitiba,PR,Brazil bLaboratóriodeReproduc¸ãoeComunidadedePeixes,DepartamentodeBiologiaCelular,UniversidadeFederaldoParaná,Curitiba,PR,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received12February2015 Accepted18April2015 Availableonline18July2015 AssociateEditor:GustavoGraciolli Keywords:

Ecotoxicology Histologicalbiomarker Sediment

a

b

s

t

r

a

c

t

Chironomidaeimmatureareusedasbioindicatorsofsedimentqualityinaquaticecosystemsand eco-toxicologicalassays.Histologicaldescriptionsforthisfamilyareoutdatedandlimitedandthereareno studieswithNeotropicalspecies.Theaimofthisstudywastodescribethetissuearchitectureofseveral organsofthelarvaofChironomussancticaroli.Forthedescriptionofthehistologicalpattern,thelarvae werefixedinDuboscqsolutionforinsectsat56◦C,followedbyroutinehistologicprocessing,infiltration inparaffin,andthesectionswerestainedwithHematoxylin–Eosin.Afterexaminingtheslides,thetube digestive,salivarygland,excretory,nervous,endocrine,circulatory,andintegumentarysystemsandfat bodywerehistologicallycharacterized.Thehistologyallowsevaluationofcellmorphology,andforbeing notexpensiveandeasilyaccessiblecanberoutinelyusedinbiomonitoring.Inaddition,isausefultool inecotoxicologicalassaysandallowtoevaluatebiomarkersattissueandcelllevels.

©2015PublishedbyElsevierEditoraLtda.onbehalfofSociedadeBrasileiradeEntomologia.Thisisan openaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

TheimmatureformsofChironomidaeareabundantandwidely distributed in water bodies, having theirhabits closely related tothesedimenttheyareinsertedin.Oneoftheircharacteristics isthepresenceofhemoglobininthehemolymph,whichallows these organisms to tolerate low oxygen concentrations in the water(Trivinho-Strixino,2011a).Anotheraspectisthe possibil-itythatthispigmentisabletometabolizexenobiotics(Weberand Vinogradov,2001;HaandChoi,2008),makingpossiblethe pres-enceoftheseinsectsforalongertimeindegradedenvironments. Thus,sublethaleffectscanbeassessedbybiomarkersof environ-mentalcontamination.Asaresultofthesecharacteristics,these organismsareconsideredbiondicatorsofenvironmentalquality.

Several studies that applied biochemical and molecular biomarkerswereperformedusingchironomids(Callaghanetal., 2001; Callaghan et al., 2002; Crane et al., 2002; Lee and Choi, 2006; Printes et al., 2007). However, there is a lack of

∗ Correspondingauthor.

E-mail:mnavarro@ufpr.br(M.A.Navarro-Silva).

applicationofcellandtissuebiomarkersthatdemonstratechronic effects.

Microscopicanalysescanidentifyalterationsincellsandtissues, andhelpinunderstandingthephysiologyoforgansandsystems. Themicroscopictechniqueiswidelyusedtostudyfishinaquatic ecotoxicology(Bernetetal.,1999),beingsensitivetodetectsubtle effectsofpollutants,determinationoftargetorgansandpossible toxicmechanisms.Becausetherearenosufficientlydetailed histo-logicaldescriptionsoftheorgansandsystemsofchironomidsand otherspeciesalsousedintoxicitytests,thehistologicaldescription ofrepresentativesofthistaxonbecomesrelevant.

Chironomus sancticaroli Strixino and Strixino, 1981 was considered synonymy to Chironomus xanthus, Rempel, 1939 (Trivinho-Strixino,2011b), beingeasilyrearedin thelaboratory (Fonseca and Rocha, 2004). Theywereused in ecotoxicological testsfortheevaluationofenvironmentalqualityinBrazil( Moreira-Santosetal.,2005;Silvérioetal.,2005;Dornfeldetal.,2006;Printes etal.,2007;Santosetal.,2007;Sotero-Santosetal.,2007;Janke etal.,2011;Printesetal.,2011;Novellietal.,2012).Toproperly understandtheeffectsof xenobioticsondifferentreducedscale bodytissuessuchasChironomidaelarvae,thereisneedforprior knowledgeofanatomicalstandardofthetissuebeforeindication ofanychange.Thisstudy aimstodescribethestructure ofthe http://dx.doi.org/10.1016/j.rbe.2015.07.003

0085-5626/©2015PublishedbyElsevierEditoraLtda.onbehalfofSociedadeBrasileiradeEntomologia.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

Retrocerebral complex

A

B

D

C

Digestory tube Aorta Fat body Nerve cord Malpighian tubules Heart Oesophagus Aorta Oesophagus Brain Nerve Trachea Anterior gland Corpora allata Corpora cardiaca Prothoracic gland Foregut or estomodeum Midgut or mesenteron Hindgut or proctodeum Gastric caeca Midgut (region I) Midgut (region II) Midgut (region III) Valvulae region Ileum Colon e rectum Anus Salivary gland Brain Frontal ganglion

Fig.1. SchematicrepresentationsoforgansandtissuesofimmatureChironomussancticaroli.(A)Internalmorphologyofthelarva;(B)morphologyofthedigestivetract;(C) aspectofthesalivarygland;(D)dispositionoftheendocrineglandsintheretrocerebralcomplex.

standardtissueofdifferentorgansandsystemsofthelarvaeofC. sancticaroliandtooffersubsidiesfortheuseofmicroscopic tech-niquesintheseorganismsforenvironmentalanalysis.

Materialandmethods

Larvae ofC.sancticaroli werefroma colonymaintainedat a breeding room of the Department of Zoology at the Universi-dadeFederaldoParanáundercontrolledconditionsoftemperature (25±2◦C),humidity(80±10%)andphotoperiod(12hlight/12h dark),constantaerationandTetraMin®crushedfood,attherate of0.1gperliterofdechlorinatedwater.Weused30initialfourth instarlarvaefor histologicaldescriptionofthelarvalstage.The

breedingofthespecieswasadaptedfromMaieretal.(1990).The specimensweredepositedinthePadreJesusSantiagoMoure Ento-mologicalCollectionattheUniversidadeFederaldoParaná(DZUP), numbers249269–249276.

LarvaewerefixedinDuboscqsolutionforinsects(Barth,1958), for 4hin an incubator at 56◦C. After fixation,the larvae were washed in70% ethanol for theremoval ofthefixative solution andthentheproceduresofroutinehistologicaltechniqueswere followed:thematerialwasdehydratedinalcoholseries, diapha-nizationinxyleneandinfiltrationinparaffin.

Weobtainedtransversal,lateral,longitudinalanddorsoventral sectionsofthelarvae,inthethicknessof7␮m,andstainedwith Hematoxylin–Eosin.To performtheanalysisofthematerial, all

(3)

ml

oec

bb

oe

oe

cuc

oei

bb

E

F

C

D

B

A

cae

Fig.2. MicrographsoftheforegutandgastriccaecaregionofimmatureChironomussancticaroli.(A)Cross-sectionoftheesophaguswithlongitudinalfoldsformedbythe epithelium(arrow)andthelongitudinalmusclelayer;(B)longitudinalsectionshowingtheoesophagealliningepithelium(arrow);(C)cross-sectionalofthecaecumofthe larva,notetheCuénotcells(arrow),cellsofthecaecum(arrowhead)andesophagus;(D)theCuénotcellsaredetailed;(E)indetail,cellsofgastriccaeca;(F)longitudinal sectiontheregionofthecaecumshowingtheestomodealvalve.bb:brushborder;cae:gastriccaeca;cuc:Cuénotcells;ml:musclelayer;oe:esophagus;oec:esophagus cells;oei:esophagusinvagination.Stain:Harrishematoxylinandeosin.Scalebar=20␮m.

histologicalsectionswereusedtoallowabetterdescriptionofthe standardtissueofdifferentorgansandsystems.

Results

Asinitialparameter,weelaboratedthedescriptionofthetissue patternoforgansandstructuresofthedigestivesystem,salivary gland,excretory,nervousandendocrinesystemorretrocerebral complex,fatbodyandthecirculatoryandintegumentarysystems oflarvaeofC.sancticaroli(Fig.1A).

Digestivesystem

Thedigestivetractof theC. sancticarolilarvae extendsfrom mouthtoanus,beingdividedintothreeregions:foregut,midgut

andhindgut(Fig.1B).Theesophagusisthefirstregionofthe diges-tivetract,whichcorrespondstotheregionoftheforegut.Itisa shortorganthatshows nodifferentiated region,as cropor giz-zard.Thisorganextendsfromthemouthtothemetathorax.In cross-section,itispossibletoobservefivelongitudinalfoldsofthe epithelium,inadditiontothethickmuscularlayer(Fig.2A).Inits initialportion,itissurroundedbyamuscularstructureknownas periesophagealcollar(Fig.2B).Theepitheliumofdifficult observa-tionconsistsinpavementcellsthatdonotexceed6mmthick,with basophiliccytoplasmandlargenucleus(Fig.2B).

Cuénotcellsthatareassociatedwiththeoesophageal projec-tionaregroupedandexhibitareducedsizecomparedtocellsthat arenotassociatedtotheprojection.Thecellshavelargespherical nuclei,stronglybasophilicandgranularcytoplasmandcellapex withbrushborder(Fig.2CandD).

(4)

ep

A

C

F

G

D

E

B

fd

fd

fd

fd

lu

lu

lu

ep

cae

Fig.3. MicrographsofthemidgutofimmatureChironomussancticaroli.(A)Cross-sectionofthemidgutregionI;(B)longitudinalsectionofthemidgutregionI;(C)cellsof theepitheliumofthemidgutregionI,showingthelittlebrushborderarea(arrow)andapicalandbasaleosinophiliaofthecell(arrowhead);(D)cross-sectionofthemidgut regionII;(E)Cross-sectionoftheregionIIIofthemidgut;(F)Brushborder(arrow)andperitrophicmatrix(arrowhead)inregionIIofthemidgutand(G)Brushborder(arrow) andcellsintheprocessofsecretion(arrowhead)inregionIIIofmidgut.cae:gastriccaeca;ep:gutepithelia;fd:food;lu:lumen.Stain:Harrishematoxylinandeosin.Scale bar=20␮m.

FollowingtheCuénotcells isthe gastriccaeca zone,formed bythree or fourcrowns of fifteendiverticula, being the poste-riordiverticula significantlylarger.Theyare formedbyglobose cellsthatareslightlysmallerthantheCuénotcells,withgranular eosinophiliccytoplasm,largesphericalnucleiwherethechromatin canbeobserved,andcellswithextensivebrushborder(Fig.2E).

Inthetransitionbetweentheforegutandthemidgutisthe esto-modealvalve.Thisvalveis characterizedby aprojectionofthe epitheliumandmuscleoftheesophagus intothemidgut,being composedbyCuénotcellsandregionofgastriccaeca(Fig.2F).

The midgutis divided into three regions with differentcell types.RegionIis formedbylargecellswithirregularshape. In cross-section,theepitheliumhasastarshapedcontour,whilethe lumenhasacircularshape(Fig.3A).Thebasalregionofthecell isroundedandconvex,and protrudesbetweenadjacentmuscle fibers(Fig.3B).Intheapicalandbasalregionofthecytoplasmof thecellispossibletoseeamoreeosinophilicoutlinethanthe cyto-plasm,whichisgranular.Thebrushborderisnotextensive(Fig.3C). RegionIIhascubicalcellswithlargenucleiandbasophilic cyto-plasm(Fig.3D).RegionIIIisformedbycubicalcells,slightlysmaller

thantheanteriorregion(Fig.3E).ThebasalpoleofregionIIcells displaysheterogeneouslystainedregionsintheformofstriations (Fig.3F).Itispossibletoobserveaconspicuousbrushborderatthe apicalcellportion,moreextensivethanthoseofcellsintheregionI (Fig.3F).Thecytoplasmofthesecellsisstronglybasophillicandhas striationsperpendiculartothebaseofthecell,beingmoreevident thantheonesontheanteriorregion(Fig.3G).Intheregionbelow thenucleiandintheapicalcellportion,thecytoplasmisgranular andthebrushborderisconspicuous,representingaquarterofthe sizeofthecells.Also,inregionIII,thereareisolatedregenerative cellslocatedinthebasalepithelium(Fig.3G).

Thefirstregionofhindgutorvalveregionisformedbya cylin-dricalepitheliumwithbasophiliccytoplasm,mid-basalnucleiand peripheralchromatin(Fig.4A).Thevalveisformedbyacubical epitheliumwitheosinophiliccytoplasmandnucleiwithnot con-densedchromatin(Fig.4BandC).Theregionoftheileumissimilar instructuretotheesophagus,consistingofathickcircularmuscle layerandathinliningepitheliumcells,formedbycellswith impre-ciseboundaries,withlargeandsphericalnucleus,andchromatin arrangedinperipheralgranules.Thethinliningepitheliumforms

(5)

fd

pm

A

C

D

E

F

B

mlp

vep

lu

ml

ep

Fig.4. MicrographsofhindgutimmatureofChironomussancticaroli.(A)cross-sectionbetweenthetransitionalepitheliumofthemidgutandhindgut;(B)longitudinalsection ofthetransitionregionbetweenthemidandhindgut,showingtheproctodealvalve(arrow);(C)indetail,epitheliumoftheproctodealvalve;(D)cross-sectionofileum showingextensivemusclelayerandthelongitudinalfoldsformedbytheepithelium(arrow);(E)longitudinalsectionofthecolonandrectum;(F)cross-sectionofthe epitheliumofthecolonandrectumdemonstratingbasaleosinophiliaofthecell(arrowhead).p:epithelia;fd:food;lu:lumen;ml:musclelayer;mlp:Malpighiantubule, pm:perithroficmembrane;vep:valveepithelia.Stain:Harrishematoxylinandeosin.Scalebar=20␮m.

numerouslongitudinalfoldslinedbycuticle(Fig.4D).Inthefinal portionofthedigestivetract,thecolonandrectumcanbeobserved. Theyhavethesamecellularmorphology,composedoflargecells withelongatedbasalregioncontaininglargesphericalnucleus.The cytoplasmisslightlybasophilic,withaeosinophilicbasalandapical regions(Fig.4EandF).

Salivarygland

Thesalivaryglandsarepairs,andslightlycurvedstructures, fol-lowingthedorsalwallofthebody,locatedinthesecondandthird larvalthoracicsegment(Fig.1C).Inaddition,theglandular epithe-lialcellsarearrangedinasinglelayer,delimitingthelargecentral lumenofthesecretoryportion,whereisdepositedthesecretion thatexhibitshighaffinitytoeosin.Thesecellshavelargenuclei

containingpolytenechromosomes,thecytoplasmisuniformand stronglybasophilic(Fig.5AandB).Theexcretoryductopensinto theesophagus,consistingofcubicalepitheliumandsphericalnuclei withcondensedchromatinandbasophiliccytoplasm(Fig.5C). Excretorysystem

The species has four Malpighian tubules, with its proximal portionopeninginthefirstregionofthehindgutandacloseddistal portion.Thesetubulesarefreeinthebodycavity,beingbathedby hemolymph(Fig.5D).Theepitheliumiscomposedofasinglelayer ofpavementcells,withalargenucleusprojectedtothelumenofthe tubule.Thecytoplasmisgranuloseandeosinophilicandinthe api-calpoleofthecell,ashortbrushborderiseasilyobserved(Fig.5D andF).

(6)

oe

mg

hg

lu

*

ir

A

B

C

E

F

D

Fig.5.MicrographsofstructuresattachedtothedigestivetractofimmatureChironomussancticaroli.(A,B)Tangentialsectionofthesalivarygland,showingpartsofthe lumencontainingsecretion(arrow)andcells,highlightingthenucleuswithpolytenechromosomes(arrowhead);(C)longitudinalsectionofsalivaryglandduct,notethe presenceofcontentinthelumen(*);(D)longitudinalsectionshowingtheinsertionsiteofaMalpighiantubuleinthedigestivesystem;(E)cross-sectionofthetubuleswith thelumenandthebrushborder(arrow);(F)longitudinalsectionofatubulewiththebrushborder(arrow)andtheprojectionofthenucleusintothelumen(arrowhead). hg:hindgut;ir:insertionregion;lu:lumen;mg:midgut;oe:esophagus.Stain:Harrishematoxylinandeosin.Scalebar=20␮m.

Nervoussystem

Thecentral nervoussystemconsistsof brain,subesophageal ganglionandventralnervecord(withabdominalandthoracic gan-glia).Thebrainisabilobedorganlocatedabovetheesophagus, beingorganizedintocorticalandmedullarlayer.Theassociation oftheneurallamellawiththeperineuriumconstitutesthenerve sheath(Fig.6A).Theventralnervouscordisconstitutedbythree thoracicgangliaandeightabdominalgangliathatareconnected togetherandtothesubesophagealganglionbyconnectivepairs, whichare formedby theaxons oftheneuronsenclosedbythe neurallamella.Thefirstabdominalganglionisdislocatedtothe metathoraxofthelarvae,andthethoracicgangliaareslightlylarger

thantheabdominals.Thecellularstructureofthegangliainthe nervechainissimilartotheonedescribedforthebrain,butthe cellbodies,thatarelocatedintheventralganglion(Fig.6BandC). Thecorticalregionofbrainshowsthecellbodiesofneurons,while themedullaryregionischaracterizedbytheneuropile,aregion formedbytheaxonsofneurons(Fig.6D).Thefrontalganglionis locatedantertiortothebrainandaroundtheoralcavity(Fig.6E). Endocrinesystemorretrocerebralcomplex

Theretrocerebralcomplexiscomposedmainlybythecorpora allata, corpora cardiaca, and prothoracic gland (Fig. 1D). Cor-poraallataarepairedsphericalstructures,consistingofglandular

(7)

ne

nl

1

st

II

III

I

2

nd

3

rd

4

th

br

sg

ne

oe

fg

tr

dv

g

cn

cl

A

C

E

D

B

Fig.6.MicrographsofnervoussystemstructuresofimmatureofChironomussancticaroli.(A)Longitudinalsectionshowingthebraincorticalandneuropile;(B)longitudinal sectionofaganglioninthenervecordandaconnectivesheafformedbyaxons;(C)longitudinalsectionshowingthebrain,thoracicgangliaandthefirstabdominalventral nervecord(numbers);(D)cross-sectionofthebrain;(E)longitudinalsectionofthecephalicregionofthelarva,indetailisthefrontalganglion,anteriortothebrain.1st: firstthoracicgangliom,2nd:secondthoracicgangliom;3rd:thirdthoracicgangliom,I–III:thoracicsegments;4th:firstabdominalgangliom;br:brain;cl:corticallayer, cn:connective;dv:diverticulum;fg:frontalgangliom;g:gangliom,ne:neuropile;nl:neurallamella,oe:esophagus;sg:salivarygland,tr:trophoblastes.Stain:Harris hematoxylinandeosin.Scalebar=20␮m.

epitheliumformedby afew cells of varyingsizes, withcentral nucleusandvacuolatedcytoplasm.Theyarelocatedclosetothe aorta,posterior tothebrain andtothesalivarygland(Fig.7A). Prothoracicglands are formed by slightly pyramidal cells with basophiliccytoplasmand largenuclei,varyingfromsphericalto oval,andwithchromatinarrangedinclumps.Theyarearranged longitudinally,involvingthecephalictracheae(Fig.7B).The ante-riorpostcerebralglandsarepairsandunicellularstructures.The largercellhasintenselystainednucleus,duetothecondensation ofchromatin,andcytoplasmwithvacuolesandgranules.Theyare locatedcloselyassociatedwiththewalloftheesophagus(Fig.7C andD). Corpora cardiaca arepairedstructures, formedbya set ofsmallirregularlyshapedcells,withvacuolatedcytoplasmand nucleiwithcondensed chromatin.Theyarelocatedclosetothe cephalicdorsaltrachea,betweenanteriorpost-cerebralglandsand prothoracicgland(Fig.7CandE).

Fatbody

Thefatbodyisconstitutedbyoenocytesandtrophocytes.Inthe parietalfatbody,onlyintheabdominalsegments,ventrally,occurs singlyamodifiedtrophocyteprobablywithhemoglobincontents (Fig.8A).Theoenocytesarelocateddispersed,occurringin gro-pus intheparietalfatbody. Thesecells arelargewithglobular aspect,biggerthantrophocyte,butinsmallerquantities(Fig.8B). Thehemoglobincellsandoenocyteshaveastainedsimilarly,the cytoplasmisacidophilusandthenucleusiscentral,butinthe mod-ifiedtrophocyteshaveacidophiluscytoplasmicsgranulesandthe nucleuswithchromatinclumps(Fig.8C)whileoenocyteshavea perinuclearbasophiliccytoplasmandinthenucleus,thechromatin isdistributedintheperiphery(Fig.8D).

Theparietalfatbodyislocatedbetweentheepidermisandthe intersegmentalmuscles,whilethevisceralfatbodyisdistributed

(8)

A

B

C

D

E

tr

ptg

ptg

tr

cc

ga

Fig.7. MicrographsofglandsfromtheretrocerebralcomplexoftheimmatureChironomussancticaroli.(A)Longitudinalsectionofthecorporaallata,showingtheglandular epithelium,demonstratingthecellnucleus(arrowhead);(B)longitudinalsectionoftheprothoracicgland;(C)longitudinalsectionshowingtheregionofthecomplex, demonstratingtheanteriorpostcerebralglandandthesmallgroupofcellsthatmakeupthecorporacardiac;(D)detailoftheanteriorpostcerebralgland,notethegranules intheircytoplasm(arrowhead);(E)detailofthesmallgroupofcellsthatmakeupthecorporacardiaca(arrows).cc:corporacardiaca;ga:anteriorpostcerebralgland;ptg: prothoracicgland,tr:trachea.Stain:Harrishematoxylinandeosin.Scalebar=20␮m.

betweentheinternalorgansofthelarva.Theparietalfatbodyhas trophocytesandoenocytes,whilethevisceralisconstitutedonlyby trophocytes.Thetrophocytesoftheparietalfatbodyaresmallcells andformasolidmassassociatedwiththeintegumentofthelarva, whilethevisceralfatbodycellsarelargerandformcellularmasses thatfillthespacesbetweentheorgans(Fig.8E).Thetrophocytes presentthecytoplasmwithvacuolatedappearanceandnoaffinity forthehematoxylinandeosinstain,beingstainedbyhematoxilyn intheperinuclearregion.Thenucleusisroundandsmall,when comparedtothecytoplasmicvolume,andthechromatiniswell condensed(Fig.8F).

Circulatorysystem

The heart is located dorsally on the eighth abdominal seg-ment,anditpresentsachamberlinedbyathincontractilemuscle wall,whichisdifficulttoobserveinlightmicroscopy.Inthe mus-cularwall,theostia openup,whichallows theentranceofthe hemolymph(Fig.9A).Theaortaislocateddorsally,abovethe diges-tivetract.Itextendsfromtheregionofthehearttothehead,with itscephalicendsimilartoatrumpet.Thecellsthatformthewall oftheaortaarepavementcellswithlittlecytoplasmandflattened nucleus,containingcondensedchromatininitsperiphery(Fig.9B). Throughoutitslength,itwasobservedvalvesthatpreventbackflow ofhemolymph(Fig.9C).Thepresenceofpericardialcells associ-atedwiththeaortaisalsoreported(Fig.9D),asdescribedinthe

excretorysystem.Thepericardialcellsarelarge,multinucleated, witheosinophiliccytoplasmandvacuoles,andfoundattachedto thewallofthedorsalvessel(Fig.9D).

Integument

Theepidermisconsistsofasinglelayerofcubicalcellsthatmay formfoldsinthebodyoflarvae,witheosinophiliccytoplasmand sphericalnucleiwithcondensedchromatin.Thecuticleliningthe epidermisismadeupofthreelayers,withtheepicuticlebeingthe outermostand themostdifficulttoseein lightmicroscopy,the exocuticlethemiddlelayerandtheendocuticlethemostintern one.Thecephaliccapsuleisastronglysclerotizedstructure,soit ispossibletoobserveathinendocuticle, athickerlayerof exo-cuticulaandanextremelythinanddifficulttoobserveepicuticle (Fig.9E).Inthebodyofthelarvae,thecuticleisrepresentedbya largeramountofendocuticle,incomparisonwiththethicknesses oflayersofexocuticleandepicuticle(Fig.9F).

Discussion

ThemajorityofhistologicalstudieswithChironomidae histol-ogywereheldattheendofthenineteenthcenturyandthefirst halfofthetwentiethcentury.However,theseauthorsonly illus-tratedthegeneralmorphology oftissues, withoutdetailing the structureoftheircells(MiallandHammond,1900;Burtt,1938;

(9)

tr

ct

dg

vfb

llm

E

F

C

A

B

D

pfb

Fig.8. MicrographsofthefatbodyofimmatureChironomussancticaroli.(A)Hemoglobincellinparietalfatbody;(B)oenocyte,arrangedingroupsdistributedintheparietalfat body;(C)indetail,thehemoglobincellpresentinggranulesinitscytoplasm(arrowhead);(D)groupedoenocytesshowingthebasophilicperinuclearcytoplasm(arrowhead); (E)longitudinalshowingthearrangementoftheparietalandvisceralfatbody;(F)indetailthetrophocytes,cellsthatareingreaterquantityinthistissue,notetheperinuclear cytoplasm(arrowhead)andthevacuolesfillingthecell(arrows).ct:cuticle;dg:digestorytube;llm:longitudinalmusclelayer;pfb:parietalfatybody,tr:trophocytes;vfb: visceralbodyfat.Stain:Harrishematoxylinandeosin.Scalebar=20␮m.

Possompès, 1948; Zeeand Pai, 1944; Gouin, 1946; Possompès, 1946; Cazal, 1948; Pierson, 1956; Credlandand Phillips, 1974; CredlandandScales,1976;Credland,1978;Panov,1979;Seidman etal.,1986;Jarial,1988;Nardietal.,2009).Furthermore,the ner-vous,endocrine,circulatorysystemsandfatbodywerenotdetailed histologicallyforChironomidae.

Inecotoxicologicalcontext,manyxenobioticscancause patho-logicalchangesinorgansandsystemsoforganisms.Histopathology isanimportantanalyticaltoolbetweenmolecular,cellularand bio-chemicalbiomarkersandisconsideredanendpointwithrelevant extrapolationsonthepopulationlevel. Histologicalapproach is usedmainlyinorganismsexposedtolowconcentrations, show-ingchroniceffects. Such a damage assistsin theelucidation of xenobioticstargetorgans(ChiangandAu,2013).Histopathology isusedasbiomarkerinstudiesinvolvingseveralanimalgroups,

predominantlyfish(gill,liver,kidney,andgonads)inAquatic Tox-icology(Bernetetal.,1999).Theadvantageofworkingwiththis groupislinkedtothelargeamountsoftissueineachorgan,which allows analysis of only one organ in the slide. But with some invertebrates,due totheirbody size,it isonly possibleto per-formhistologicalstudiesevaluatingwholeorganismontheslide, requiringpriorknowledgetoidentifytargettissues.

The ecotoxicological studies with insects regarding Hymenoptera always refer to histological patterns under nor-mal conditions of the model organism as related in previous studies (Cruz et al., 2010; Cataeet al., 2014).But for Chirono-midaelarvae,thesestandardsarenot available.In studieswith Hymenoptera, various tissues (midgut, Malpighian tubules, fat body, brain)were sensitiveto various toxic substances, and in additiontothesetissuesotherpossibletargetsystemshavealso

(10)

ht

A

C

E

F

D

B

re

*

*

he

ex

ed

ex

ed

ao

ep

ep

alu

Fig.9.MicrographsofthecirculatorysystemandtheintegumentofimmatureChironomussancticaroli.(A)Longitudinalsectionoftheheart,notetheostiumregion(arrows); (B)longitudinalsectionoftheregionofthevesselwallwiththecellofthevessel(arrowhead);(C)longitudinalsectionshowingtheaorticvalves(*);(D)pericardialcells attachingtothewalloftheaorta;(E)longitudinalsectionoftheintegumentoftheheadcapsule,showingtheepitheliumandthelargeamountofexocuticle;(F)longitudinal sectionoftheintegumentofthebodyofthelarva,notethegreateramountofendocuticle.alu:aorticlumen;ao:aorta,ed:endocuticle;ep:epidermis,e.g.exocuticle;h: hemolymph,ht:heart;re:rectum.Stain:Harrishematoxylinandeosin.Scalebar=20␮m.

beendescribed in thepresent study(endocrineand circulatory system,salivarygland,integument) toalloweasyidentification oftissuesandorgansthatmaychangeinfuturehistopathological analyzesoftheChironomidaelarvae.

Inahistopathologicalanalysis,itisconsideredofgreat impor-tancetostudythetypesofchangesthatcanoccurinthecellsof themodelanimal.Themidgutappearsasatargetorganduetoits roleinabsorptionoforallyacquiredxenobioticsubstances.In hon-eybeelarvae(Cruzetal.,2010),itwasobservedvacuolationofthe cytoplasm,dilationoftheintercellularspace,extrusionofcellular contentsandchromatincompactioninducedbyexposuretoboric acidandfipronil.Inworkersants(Sumidaetal.,2010),thesame changesmentionedabovewereobserved,inadditiontonarrowing thewidthoftheepithelium,andnuclearpyknosisinthepresence ofboricacid.

TheMalpighiantubulesactinmetaboliteexcretion,therefore alsoaresensitivetoxenobiotics.Workersbeeslarvaeandworkers antsshowedvacuolizationofthebasalcytoplasmofepithelialcells. Furthermore,chromatincondensation,nuclearpyknosis,irregular nucleimorphology,obstructedlumenandalterationofcellvolume

wereobservedinbeelarvae(Ferreiraetal.,2013;Rossietal.,2013a; Sumidaetal.,2010).Xenobioticscanchangetheenergymetabolism ofsomeorganisms(Serviaetal.,2006),andthefatbodyis respon-sibleforthisfunction,inadditiontoproducingtheenzymesthat participateinthebiotransformationofchemicals.Thatiswhyit maybeatargetorganforcontaminants.Inworkersbeeslarvae, itwasobservednuclearpyknosisintrophocytesexposedtoboric acidandchangesincellvolumeinoenocytesexposedtoparaquat (Cruzetal.,2010;Cousinetal.,2013).

Othertissuesunrelatedtoabsorption,metabolismand excre-tionofxenobioticsmayalsobetargetsforhistologicalchanges, suchasthebrain.Adultbeesexposedtoimidacloprid,therewere alterationsinpedunculatedbodycellsandopticlobe,suchas chro-matincondensation,changesincellvolumeandcelldeath(Rossi etal.,2013b).

Conclusions

Thisstudypresentsadescriptionofthehistologyofa biondica-torofthequalityofaquaticsedimentsintheabsenceofchemical

(11)

contaminants.We described peculiaritiesof someorgans never detailedbeforetothegroup,whichwillbeusedasareferencefor ecotoxicologicalstudies;besidestheyassistintheunderstanding ofthetargetorganofsomexenobiotics.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest. Acknowledgements

WethanktheConselhoNacionaldeDesenvolvimentoCientífico eTecnológico(CNPq,process305038/2009-5)andCamiladaCosta SenkivforEnglishreview.

References

Barth,R.,1958.Métodosusadosemmicroanatomiaehistologiaentomológica.Mem. Inst.OswaldoCruz56,453–471.

Bernet,D.,Schmidt,H.,Meier,W.,Burkhardt-Holm,P.,Wahli,T.,1999. Histopath-ologyinfish:proposalforaprotocoltoassessaquaticpollution.J.FishDis.22, 25–34.

Burtt,E.T.,1938.OnthecorporaallataofdipterousinsectsII.Proc.R.Soc.B126, 210–223.

Callaghan,A.,Fisher,T.C.,Grosso,A.,Holloway,G.J.,Crane,M.,2002.Effectof temper-atureandpirimiphosmethylonbiochemicalbiomarkersinChironomusriparius Meigen.Ecotoxicol.Environ.Saf.52,128–133.

Callaghan,A.,Hirthe,G.,Fisher,T.,Crane,M.,2001.Effectofshort-termexposure tochlorpyrifosondevelopmentalparametersandbiochemicalbiomarkersin ChironomusripariusMeigen.Ecotoxicol.Environ.Saf.50,19–24.

Catae,A.F.,Roat,T.C.,DeOliveira,R.A.,Nocelli,R.C.F.,Malaspina,O.,2014.Cytotoxic effectsofthiamethoxaminthemidgutandmalpighiantubulesofAfricanized Apismellifera(HymenopteraApidae).Microsc.Res.Tech.77,274–281. Cazal,P.,1948.Lesglandesendocrinesrétro-cérébralesdesInsects(Étude

mor-phologique).Bull.Biol.Fr.Bel.Suppl.32,1–227.

Chiang,M.W.-L.,Au,D.W.-T.,2013.Histopathologicalapproachesinecotoxicology. In:Férard,J.-F.,Blaise,C.(Eds.),EncyclopediaofAquaticEcotoxicology.Springer, Netherlands,pp.597–614.

Cousin,M.,Silva-Zacarin,E.,Kretzschmar,A.,ElMaataoui,M.,Brunet,J.-L.,Belzunces, L.P.,2013.Sizechangesinhoneybeelarvaeoenocytesinducedbyexposureto Paraquatatverylowconcentrations.PLOSONE8,e65693.

Crane,M.,Sildanchandra,W.,Kheir,R.,Callaghan,A.,2002.Relationshipbetween biomarkeractivityanddevelopmentalendpointsinChironomusripariusMeigen exposed to an organophosphate insecticide. Ecotoxicol. Environ. Saf. 53, 361–369.

Credland,P.F.,1978.Anultrastructuralstudyofthelarvalintegumentofthemidge, ChironomusripariusMeigen (Diptera:Chironomidae). CellTissueRes.186, 327–335.

Credland,P.F.,Phillips,A.D.,1974.Theneuro-endocrinesystemofChironomus ripar-ius(Diptera).Anintroduction.Ent.Tidskr.95,49–57.

Credland,P.F.,Scales,M.D.C.,1976.Theneurosecretorycellsofthebrainand suboe-sophagealganglionofChironomusriparius.J.InsectPhysiol.22,633–642. Cruz,A.S.,daSilva-Zacarin,E.C.M.,Bueno,O.C.,Malaspina,O.,2010.Morphological

alterationsinducedbyboricacidandfipronilinthemidgutofworkerhoneybee (ApismelliferaL.)larvae:morphologicalalterationsinthemidgutofA.mellifera. CellBiol.Toxicol.26,165–176.

Dornfeld,C.B., Espíndola,E.L.G.,Fracácio,R.,Rodrigues, B.K.,Novelli,A., 2006. Comparac¸ãodebioensaioslaboratoriaiseinsituutilizandoChironomus xan-thusnaavaliac¸ãodatoxicidadedesedimentosdorioMonjolinho(SãoCarlos, SP).J.Braz.Soc.Ecotoxicol.1,161–165.

Ferreira,R.A.C.,SilvaZacarin,E.C.M.,Malaspina,O.,Bueno,O.C.,Tomotake,M.E.M., Pereira,A.M.,2013.CellularresponsesintheMalpighiantubulesofScaptotrigona postica(Latreille,1807)exposedtolowdosesoffipronilandboricacid.Micron 46,57–65.

Fonseca,A.L.,Rocha,O.,2004.LaboratoryculturesofthenativespeciesChironomus xanthusRempel,1939(Diptera-Chironomidae).ActaLimnol.Bras.16,153–161. Gouin,F.,1946.Recherchesmorphologiquessurlemésentéronetleproctodeum

deslarvesdeChironomides.Arch.Zool.Exp.Gén.84,335–374.

Ha,M.,Choi,J.,2008.Effectsofenvironmentalcontaminantsonhemoglobinof lar-vaeofaquaticmidge,Chironomusriparius(Diptera:Chironomidae):apotential biomarkerforecotoxicitymonitoring.Chemosphere71,1928–1936.

Janke,H.,Yamada,T.M.,Beraldo,D.A.S.,Botta,C.M.R.,Nascimento,M.R.L.,Mozeto, A.A.,2011.Assessmentoftheacutetoxicityofeutrophicsedimentsafterthe additionofcalciumnitrate(Ibiritéreservoir,MinasGerais-SEBrazil):initial laboratoryexperiments.Braz.J.Biol.71,903–914.

Jarial,M.S.,1988.FinestructureoftheMalpighiantubulesofChironomuslarvain relationtoglycogenstorageandfateofhemoglobin.TissueCell20,355–380. Lee,S.-B.,Choi,J.,2006.Multilevelevaluationofnonylphenoltoxicityinfourth-instar

larvaeofChironomusriparius(Diphtera,Chironomidae).Environ.Toxicol.Chem. 25,3006–3014.

Maier,K.J.,Kosalwat,P.,Knight,A.W.,1990.CultureofChironomusdecorus(Diptera: Chironomidae)andtheeffectoftemperatureonitslifehistory.Environ. Ento-mol.19,1681–1688.

Miall,L.C.,Hammond,A.R.,1900.TheStructureandLifeHistoryoftheHarlequinFly (Chironomus).ClarendonPress,Oxford.

Moreira-Santos,M.,Fonseca,A.L.,Moreira,S.M.,Osten,J.R.,Silva,E.M.,Soares, A.M.V.M.,Guilhermino,L.,Ribeiro,R.,2005.Short-termsublethal(sediment andaquaticrootsoffloatingmacrophytes)assayswithatropicalchironomid basedonpostexposurefeedingandbiomarkers.Environ.Toxicol.Chem.24, 2234–2242.

Nardi,J.B.,Miller,L.A.,Bee,C.M.,LeeJr.,R.E.,Denlinger,D.L.,2009.Thelarval alimen-tarycanaloftheAntarcticinsect,Belgicaantarctica.ArthropodStruct.Dev.38, 377–389.

Novelli,A.,Vieira,B.H.,Cordeiro,D.,Cappelini,L.T.D.,Vieira,E.M.,Espíndola,E.L.G., 2012.LethaleffectsofabamectinontheaquaticorganismsDaphiasimilis, Chi-ronomusxanthusandDaniorerio.Chemosphere86,36–40.

Panov,A.A.,1979.Brainneurosecretorycellsandtheiraxonpathwaysinthelarvaof ChironomusplumosusL.(Diptera:Chironomidae).Int.J.InsectMorphol.Embryol. 8,203–212.

Pierson,M.,1956.Contributional’histologiedel’appareildigestifdeChironomus plumosusL.Ann.Sci.Nat.Zool.Biol.Anim.18,107–122.

Possompès,B.,1946.Lesglandesendocrinespost-cérébralesdesDiptères.I.Etude chezlalarvedeChironomusplumosusL.Bull.Soc.Zool.Fr.71,99–109. Possompès,B.,1948.LescorporacardíacadelalarvedeChironomusplumosusL.Bull.

Soc.Zool.Fr.73,202–206.

Printes, L.B., Espíndola, E.L.G., Fernandes, M.N., 2007. Biochemical biomark-ers in individual larvae of Chironomus xanthus (Rempel, 1939) (Diptera,Chironomidae).J.Braz.Soc.Ecotoxicol.2,53–60.

Printes,L.B.,Fernandes,M.N.,Espíndola,E.L.G.,2011.Laboratorymeasurementsof biomarkersandindividualperformancesinChironomusxanthustoevaluate pes-ticidecontaminationofsedimentsinariverofsoutheasternBrazil.Ecotoxicol. Environ.Saf.74,424–430.

Rossi,C.D.A.,Roat,T.C.,Tavares,D.A.,Cintra-Socolowski,P.,Malaspina,O.,2013a. EffectsofsublethaldosesofimidaclopridinMalpighiantubulesofAfricanized Apismellifera(Hymenoptera,Apidae).Microsc.Res.Tech.76,552–558. Rossi,C.A.,Roat,T.C.,Tavares,D.A.,Cintra-Socolowski,P.,Malaspina,O.,2013b.Brain

morphophysiologyofAfricanizedbeeApismelliferaexposedtosublethaldoses ofimidacloprid.Arch.Environ.Contam.Toxicol.65,234–243.

Santos,M.A.P.F.,Vicensotti,J.,Monteiro,R.T.R.,2007.SensitivityofNaCloffour testorganisms:Chironomusxantus,Daphniamagna,Hydraattenuataand Pseu-dokirchneriellasubcapitata,asanalternativetoreferencetoxicants.J.Braz.Soc. Ecotoxicol.2,229–236.

Seidman,L.A.,Bergtrom,G.,Remsen,C.C.,1986.Structureofthelarvalmidgutofthe flyChironomusthummianditsrelationshiptositesofcadmiumsequestration. TissueCell18,407–418.

Servia,M.J.,Péry,A.R.R.,Heydorff,M.,Garric,J.,Lagadic,L.,2006.Effectsofcopperon energymetabolismandlarvaldevelopmentinthemidgeChironomusriparius. Ecotoxicology(Lond.,Engl.)15,229–240.

Silvério,P.F.,Fonseca,A.L.,Botta-Paschoal,C.M.R.,Mozeto,A.A.,2005.Release, bioavailabilityandtoxicityofmetalsinlacustrinesediments:acasestudy ofreservoirsandlakesinSoutheastBrazil.Aquat.Ecosyst.HealthManag.8, 313–322.

Sotero-Santos,R.B.,Rocha,O.,Povinelli,J.,2007.Toxicityofferricchloridesludgeto aquaticorganisms.Chemosphere68,628–636.

Sumida,S.,DaSilva-Zacarin,E.C.M.,Decio,P.,Malaspina,O.,Bueno,F.C.,Bueno, O.C.,2010.ToxicologicalandhistopathologicaleffectsofboricacidonAtta sex-densrubropilosa(Hymenoptera:Formicidae)workers.J.Econ.Entomol.103, 676–690.

Trivinho-Strixino,S.,2011a.LarvasdeChironomidae.GuiadeIdentificac¸ão.Depto Hidrobiologia/Lab.EntomologiaAquática/UFScar,SãoCarlos.

Trivinho-Strixino,S.,2011b.Chironomidae(Insecta,Diptera,Nematocera)doEstado deSãoPaulo,SudestedoBrasil.BiotaNeotrop.11,1–10.

Weber,R.E.,Vinogradov,S.N.,2001.Non-vertebratehemoglobins:functionand molecularadaptation.Physiol.Rev.81,569–628.

Zee,H.C.,Pai,S.,1944.CorpusallatumandcorpuscardiacuminChironomussp.Am. Nat.78,472–477.

Referências

Documentos relacionados

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

Longitudinal section of the tip of the spur showing the nectarostomata (black arrows) on the spur lumen epidermis surface, the subepidermic secretory tissue (st) and the

Importa também referir que o presente projeto, intitulado “A Wikipédia como Recurso Educacional Aberto: Práticas Formativas e Pedagógicas no Ensino Básico

To be able to do it, we will start by presenting what culture is and some key concepts that allow us to understand its evolution through time better, identify

Despercebido: não visto, não notado, não observado, ignorado.. Não me passou despercebido

Longitudinal section showing the hepatopancreatic tubule and the different cells (E, B, F, M, R) in the 3 regions of the tubule (proximal, medium and distal) with the

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,