• Nenhum resultado encontrado

(1)Lecture 32 : The Hückel Method The material in this lecture covers the following in Atkins

N/A
N/A
Protected

Academic year: 2022

Share "(1)Lecture 32 : The Hückel Method The material in this lecture covers the following in Atkins"

Copied!
26
0
0

Texto

(1)

Lecture 32 : The Hückel Method

The material in this lecture covers the following in Atkins.

14.0 The Hückel approximation (a)The secular determinant

(b) Ethene and frontier orbitals

(c) Butadiene and p-electron binding energy (d) benzene and aromatic stability

Lecture on-line

Huckel Theory (PowerPoint) Huckel Theory (PDF)

Handout for this lecture

(2)

The Hückel method The Hückel approximation

can be used for conjugated

molecules in which there is an alternation of single and

double bonds along a chain One example is the

conjugated - systems π C2H4

allyl cation Butadiene

Cyclo-Butadiene

Benzene

Conjugated systems We shall also use it for the - bond in ethylene

π

(3)

Molecular orbital theory In molecular orbital

theory we write our orbitals as linear

combinations of atomic orbitals :

ψk iχ

i i n

C i

( )1 ( )1

1

= ∑=

=

We next require that the corresponding orbital energies

W C C H dv

n k k dv

k k

(C1, ,.. ) ( ) ˆ

( ) ( )

2 1

1 1

= ∫∫

ψ ψ

ψ ψ

be optimal with respect to {C1,C2,..Cn}

or : W

C i = 1,..,n

i

δ

δ = 0;

This leads to the

set of homogeneous equations :

C H WS

i = 1, 2,...,n.

k ik ik

k=1

k=n∑ − = 0

For which the

secular determinant must be zero

H WS

i = 1, 2,...,n; k = 1, 2,...,n

ikik = 0

In order to obtain

non - trivial solutions

(4)

The Hückel method We are going to use as our

atomic orbitals a single p function on each

carbon atom.

π

The p orbital is the p - function perpendicular to

the molecular plane

π

For ethylene we have two p orbitalsπ

pAπ pBπ

pAπ

pBπ

pCπ

pDπ

For butadiene we have four p orbitalsπ

Conjugated systems

(5)

The Hückel method For ethylene we have

two p orbitalsπ

pAπ pBπ

For ethylene we can use linear variation

theory to obtain a set of linear homogeneous equations

H E H - ES

H1121 - ES2112 H11 12E

− − = 0

C H WS

i = 1, 2 and n = 1, 2

k ik ik

k=1

k=n∑ − = 0

Non - trivial solutions are only possible if

the secular determinant is zero

Each of the two roots W = E i = 1, 2 can be substituted

into the set of linear equations to obtain orbital coefficients

i

ψi ik kπ

k=1 k=n

C p k = 1, 2 ; i = 1, 2

= ∑

Ethylene

(6)

The Hückel method

For butadiene we can use linear variation theory to obtain a set of linear homogeneous equations

C H WS

i = 1, 4 and n = 1, 4

k ik ik

k=1

k=n∑ − = 0

pAπ

pBπ

pCπ

pDπ

For butadiene we have four p orbitalsπ

Butadiene

(7)

The Hückel method

Each of the two roots W = E i = 1, 4 can be substituted

into the set of linear equations to obtain orbital coefficients

i ψi ik kπ

k=1 k=n

C p k = 1, 4 ; i = 1, 4

= ∑ H E H - ES H - ES H - ES

H - ES H E H - ES H - ES H - ES H - ES H E H - ES H - ES H - ES H - ES H E

11 12 12 13 13 14 14

21 21 22 23 23 24 24

31 31 32 32 33 34 34

41 41 42 42 43 43 44

− −

− −

= 0 Non - trivial solutions

are only possible if

the secular determinant is zero

Butadiene

(8)

The Hückel method

H E H - ES H - ES H - ES H - ES H E H - ES H - ES H - ES H - ES H E H - ES H - ES H - ES H - ES H E

11 12 12 13 13 14 14

21 21 22 23 23 24 24

31 31 32 32 33 34 34

41 41 42 42 43 43 44

− −

− −

= 0

H E H - ES

H1121- ES2112 H11 12E

− − = 0

The Hückel approximation

1. all overlaps are set to zero S ij = 0

H E H H1121 H11 12E

− − = 0

H E H H H H H E H H H H H E H H H H H

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

− −

− = 0

(9)

The Hückel method

H E H H H H H E H H H H H E H H H H H

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

− −

− = 0

H E H H1121 H11 12E

− − = 0

The Hückel approximation

1. All overlaps are set to zero S ij = 0 2. All diagonal terms are set equal to Coulomb integral α

α α

α α

− −

− =

E H H H H E H H H H E H

H H H - E

12 13 14

21 23 24

31 32 34

41 42 43

0 α − α

− = E H

H21 12E 0

(10)

The Hückel method

α α

α α

− −

− =

E H H H H E H H H H E H

H H H - E

12 13 14

21 23 24

31 32 34

41 42 43

0 α − α

− = E H

H21 12E 0

The Hückel approximation

1. All overlaps are set to zero S ij = 0 2. All diagonal terms are set equal to Coulomb integral α

1

2

3

4

3. All resonance integrals between non - neighbours are set to zero

α α

α

α

− −

− =

E H 0 0 H E H 0 0 H E H 0 0 H - E

12

21 23

32 34

43

0 α − α

− = E H

H21 12E 0

(11)

The Hückel method

α α

α

α

− −

− =

E H 0 0 H E H 0 0 H E H 0 0 H - E

12

21 23

32 34

43

0 α − α

− = E H

H21 12E 0

The Hückel approximation

1. All overlaps are set to zero S ij = 0 2. All diagonal terms are set equal to Coulomb integral α

1

2

3

4

3. All resonance integrals between non - neighbours are set to zero

4. All remaining resonance integrals are set to β

α β

β α β

β α β

β α

− −

− =

E 0 0 E 0 0 E

0 0 - E

0

α β

β − α

− = E

E 0

(12)

The Hückel method

α β

β α β

β α β

β α

− −

− =

E 0 0 E 0 0 E

0 0 - E

0

α β

β − α

− = E

E 0

The Hückel approximation

1. All overlaps are set to zero S ij = 0 2. All diagonal terms are set equal to Coulomb integral α

1

2

3

4

3. All resonance integrals between non - neighbours are set to zero

4. All remaining resonance integrals are set to β

(13)

The Hückel method Solutions for ethylene

α β

β − α α β

− = − − =

E

E ( E)2 2 0

C H WS

i = 1, 2 and n = 1, 2

k ik ik

k=1

k=n∑ − = 0

E1 = +α β α ( and negative)β E2 = −α β α ( and negative) β

ψ1 = 1 p1π + pπ2 2

1 2

ψ2 1 π π

2

1

= − p1 + 2 p2 ψi ik kπ

k=1 k=n

C p k = 1, 2 ; i = 1, 2

= ∑ (α − E)2 = β2; (α − E) = ± β

(14)

The Hückel method

α β

β α β

β α β

β α

− −

− =

E 0 0 E 0 0 E

0 0 - E Solutions for butadiene

(α )α β

β α β

β α

− −

− −

E

E

E

E 0 0

− −

− = ββ β

α β

β α 0 0

0

E

E

( ) ( )

( )

α α β

β α α ββ β

− − α

− − − −

E E

E E

E

2

0

− −

− + − =

β α β

β α β β

2 2 0 α

0 E

E ( E)

(α − E)4(α − E)2 2β − −(α E)2 2β − −(α E)2 2β +β4 (α −E)43(α − E)2 2β + β4 = 0

(15)

The Hückel method Solutions for butadiene

Thus

E = α ± 1.62 and β α ± 0.62β (α − E)43(α − E)2 2β + β4 = 0 Dividing by β2 : α

β

α β

(E)4(E) + =

4

2

3 2 1 0

Introducing : x = ( - E)2

2

α β

x23x + =1 0

x = 2.62 ; x = 0.38

(16)

The Hückel molecular orbital energy levels of butadiene and the top view of the corresponding

π orbitals. The four p electrons (one supplied by each C)

occupy the two lower π orbitals.

Note that the orbitals are delocalized.

The Hückel method

C H WS

i = 1, 4 and n = 1, 4

k ik ik

k=1

k=n∑ − = 0

ψi ik kπ

k=1 k=n

C p k = 1, 4 ; i = 1, 4

= ∑ Solutions for butadiene

(17)

The Hückel method

0.372p1π + 0 602. p2π + 0 602. p3π + 0.372p4π

1

2

3

4

0 602. pp1π0.3722π + 0.372p + 0.602p3π 4π 0 602. pp1π0.3722π0.372p + 0.602p3π 4π

1

2

3

4

0.372p1π0 602. p2π + 0 602. p3π0.372p4π

1

2

3

4

1

2

3

4

Solutions for butadiene

(18)

The Hückel method Solutions for butadiene

E1 = h2 8mL2 ,

E2 = h2 8mL4 2, E3 = h2 8mL9 2,

FMO Huckel

α+1.62β α+.62β

α−.62β

Comparison between PIB and Huckel treatment of

butadiene

Same nodal structure

(19)

The Hückel method Solutions for butadiene We can write butadiene

as two localized - bondsπ

Or two delocalized - bondsπ 4π

α+1.62β α+.62β

α−.62β

Butadiene

α+β

Ethylene α−β

Eπ(Bu)2Eπ(Et) delocalization energy

Eπ(Bu) = 2(α + 1 62. β) + 2(α + .62β)

2Eπ(Et) = 4(α β+ ) = 4α + 4β

= 4α + 4 48. β

Delocalization energy = .48β (36 kJ mol-1)

(20)

The Hückel method Cyclobutadiene

1

2 4

3

α β β

β α β

β α β

β β α

− −

− =

E 0 E 0 0 E

0 - E

0

α + 2β α − 2β

α α

0.5p1π + 0 5. p2π + 0 5. p3π + 0.5p4π 0.5p1π0 5. p2π + 0 5. p3π0.5p4π

0.5p1π0 5. p2π0 5. p3π + 0.5p4π

0.5p1π + 0 5. p2π0 5. p3π0.5p4π

(21)

α + 2β α α

α 2β

α β+ α β−

1 2

4 3

1 2

4 3

The Hückel method Cyclobutadiene

No delocalization energy

(22)

The framework of benzene

is formed by the overlap of Csp2 hybrids, which fit without strain into a hexagonal arrangement.

The Hückel method Benzene

Benzene

The C - C and C - H - orbitals

σ

(23)

Benzene The Hückel method

α β β

β α β

β α β

β α β

β α β

β β β α

− −

− − =

E 0 0

E 0

0 E 0 0

0 0 E 0 0 0 - E

0 0 - E 0

0

0

C H WS

i = 1, 6 and n = 1, 6

k ik ik

k=1

k=n∑ − = 0 ψi ik kπ

k=1 k=n

C p k = 1, 6 ; i = 1, 6

= ∑ E = 2 ; ; α ± β α β α β± ±

(24)

Benzene The Hückel method

α + 2β α − 2β

α β+ α β−

Delocalization energy = 2( + 2 ) + 4( +α β α β)6(α β+ ) = 2β

150 kJ mol-1

(25)

What you should learn from this lecture 1. Be able to construct the secular

determinant for a conjugated - system within the Huckel approximation

π 2. Be able to calculate orbital energies for simple systems 3. You will not be asked to find the molecular orbitals. However, you should be able to discuss

provided orbitals in terms of bonding and anti - bonding interactions

(26)

The Hückel method

2

3

allyl cation

α β

β α β

β α

− −

E 0 E

0 E

= 0 The allyl system

α + 1 42. α α − 1 42. α

α

0.5p1π + 0 707. p2π + 0 5. p3π 0.5p1π0 707. p2π + 0 5. p3π

0.707p1π0 707. p3π

Referências

Documentos relacionados

Despercebido: não visto, não notado, não observado, ignorado.. Não me passou despercebido

Diretoria do Câmpus Avançado Xanxerê Rosângela Gonçalves Padilha Coelho da Cruz.. Chefia do Departamento de Administração do Câmpus Xanxerê Camila

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

In an earlier work 关16兴, restricted to the zero surface tension limit, and which completely ignored the effects of viscous and magnetic stresses, we have found theoretical

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

Peça de mão de alta rotação pneumática com sistema Push Button (botão para remoção de broca), podendo apresentar passagem dupla de ar e acoplamento para engate rápido

Ainda assim, sempre que possível, faça você mesmo sua granola, mistu- rando aveia, linhaça, chia, amêndoas, castanhas, nozes e frutas secas.. Cuidado ao comprar