• Nenhum resultado encontrado

Comput. Appl. Math. vol.31 número1

N/A
N/A
Protected

Academic year: 2018

Share "Comput. Appl. Math. vol.31 número1"

Copied!
18
0
0

Texto

(1)

ISSN 0101-8205 / ISSN 1807-0302 (Online) www.scielo.br/cam

An integrable decomposition of the Manakov equation

SHOUTING CHEN1 and RUGUANG ZHOU2∗

1School of Mathematics and Physical Sciences, Xuzhou Institute of Technology,

Xuzhou, 221018, China

2School of Mathematical Sciences, Jiangsu Normal University, Xuzhou, 221116, China

E-mail: rgzhou@public.xz.js.cn

Abstract. An integrable decomposition of the Manakov equation is presented. A pair of new finite-dimensional integrable Hamiltonian systems which constitute the integrable decomposition

of the Manakov equation are obtained.

Mathematical subject classification: 37K10.

Key words:binary nonlinearization of the spectral problem, the 4-component AKNS equation, the Manakov equation, integrable decomposition.

1 Introduction The Manakov equation

      

q1t = i

3 q1x x +2(|q1| 2+ |q

2|2)q1

,

q2t = i

3 q2x x +2(|q1| 2+ |q

2|2)q2

,

(1)

where q1,q2 are potentials, is nothing but the 2-component vector nonlinear Schrödinger equation and sometimes is referred to as the coupled nonlinear Schrödinger equation. Manakov first examined equation (1) as an asymptotic model for the propagation of the electric field in a waveguide [1]. Subsequently, the system (1) was derived as a key model for lightwave propagation in optical

(2)

fibers [2]. The system admits vector-soliton solutions, the solution collision is elastic and the dynamics of soliton interactions can be explicitly computed [3].

The nonlinearization of spectral problem (NSP), which was put forward by Cao [4, 5], is a powerful tool to study integrable systems in (1+1)-dimensions. With it we can generate new finite-dimensional integrable Hamiltonian systems, decompose (1+1) dimensional integrable systems into a pair of compatible finite-dimensional integrable Hamiltonian systems, and thus construct explicit or nu-merical solutions of the (1+1) dimensional integrable systems. During the past two decades, many powerful techniques of generalizations of the NSP have been obtained. For example, the binary NSP, which was presented for the first time by Ma and Strampp [6], has been studied [7, 8]. After that the higher-order symmetry constraint method [9] and binary nonlinearization of spectral prob-lems under higher-order symmetry constraints [10] were discussed. The nonlin-earization and binary nonlinnonlin-earization of the discrete eigenvalue problem were introduced [11, 12], respectively. And then Ma and Zhou proposed the adjoint symmetry constraint method [13, 14]. The adjoint symmetry constraint can be used to solve the multicomponent AKNS equations associated with degenerate spectral problems. Because the spectral matrix of the Manakov equation is de-generate, general methods of the NSPs are impossible for the success of making integrable decompositions. Therefore, the introduction of the adjoint symmetry is very crucial for the integrable decomposition of the Manakov equation.

(3)

2 An integrable decomposition of the 4-component AKNS equation In Ref. [15] the multi-wave interaction equations associated with the 3×3 ma-trix AKNS spectral problem were decomposed into finite-dimensional Liouville integrable Hamiltonian systems by carrying out binary Bargmann symmetry constraints. As a special case, in this section, following [13, 15] we review the integrable decomposition of the 4-component AKNS equation.

2.1 The 4-component AKNS hierarchy of equations

It is well known that the 4-component AKNS hierarchy of equations is associ-ated with the following spectral problem

8x =U(u, λ)8, U(u, λ)=

  

−2iλ q1 q2

r1 iλ 0

r2 0 iλ

 

, (2)

whereλis a spectral parameter andq1,q2,r1,r2are four potentials,

8=(φ1, φ2, φ3)T, u =(q1,q2,r1,r2)T, q =(q1,q2), r =(r1,r2)T. From the adjoint representation equation

Vx = [U,V] =U VV U, (3)

with

V =

∞ X

k=0

a(k) b(k)

c(k) d(k)

! λ−k,

b(k) = b(1k),b(2k), c(k) = c1(k),c(2k)T, d(k) = di j(k)2×2, and then through a tedious and straightforward calculation, we work out

bi(1)=qi, c

(1)

i =ri, a(1) =0, d

(1)

i j =0,

bi(2)= −1

3iqi,x, c

(2)

i =

1 3iri,x,

a(2) = 1

3i(q1r1+q2r2), d

(2)

(4)

bi(3)= −1

9

qi,x x −2(q1r1+q2r2)qi

,

c(3)i = −1

9

ri,x x−2(q1r1+q2r2)ri

,

where 1≤i,j ≤2.

Consider the following auxiliary problem

8tn =V

(n)8, V(n) =n

V)+, n ≥0. (4)

From the compatibility condition of (2) and (4)

UtVx(n)+ [U,V

(n)] =0,

we obtain the 4-component AKNS hierarchy of equations

utn =

qT r

!

tn

= −3i b

(n+1)T 3i c(n+1)

!

. (5)

The first nontrivial equation or the 4-component AKNS equation is 

     

qj,t2 = −

1 3i

qj,x x −2(q1r1+q2r2)qj

,

rj,t2 =

1 3i

rj,x x −2(q1r1+q2r2)rj

,

1≤ j ≤2, (6)

which admits spectral problem (2) and

8t2 =V

(2)(q,r, λ)8, (7)

where

V(2)(u, λ) =

  

−2i 0 0

0 i 0

0 0 i

  λ2+

  

0 q1 q2

r1 0 0

r2 0 0

  λ

+ i

3   

−(q1r1+q2r2) q1x q2x −r1x r1q1 r1q2

−r2x r2q1 r2q2   .

(5)

2.2 Adjoint symmetry constraint

In order to preform the binary NSPs of the 4-component AKNS hierarchy, we take N distinct eigenvalue parameters λj,1 ≤ jN, and N copies of the 3×3 matrix spectral problem for AKNS hierarchy (2) and their adjoint spectral problems as follows

                      

φ1j,x = −2iλjφ1j +q1φ2j +q2φ3j,

φ2j,x =iλjφ2j+r1φ1j,

φ3j,x =iλjφ3j +r2φ1j,

ψ1j,x =2iλjψ1jr1ψ2jr2ψ3j,

ψ2j,x = −iλjψ2jq1ψ1j,

ψ3j,x = −iλjψ3jq2ψ1j,

1≤ jN, (9)

which can be written as the following compact form 

                     

φ1x = −2i Aφ1+q1φ2+q2φ3,

φ2x =i Aφ2+r1φ1,

φ3x =i Aφ3+r2φ1,

ψ1x =2i Aψ1−r1ψ2−r2ψ3,

ψ2x = −i Aψ2−q1ψ1, ψ3x = −i Aψ3−q2ψ1,

(10)

where

φj =(φj1, . . . , φj N)T, ψj =(ψj1, . . . , ψj N)T, A=diag(λ1, . . . , λN). Following [13], we consider the following Bargmann adjoint symmetry con-straint

qj =

3i

γj+1−γ1

hφ1, ψj+1i, 1≤ j≤2, (11)

rj = 3i

γj+1−γ1

(6)

2.3 Completely integrable Hamiltonian system

Substituting (11) and (12) into (10), then we get the finite-dimensional Hamil-tonian system                                                                     

φ1x = −2i Aφ1+ 3i

γ2−γ1

hφ1, ψ2iφ2

+ 3i

γ3−γ1

hφ1, ψ3iφ3= − ∂Hx

∂ψ1 ,

φ2x =i Aφ2+ 3i

γ2−γ1

hφ2, ψ1iφ1= − ∂Hx

∂ψ2 ,

φ3x =i Aφ3+ 3i

γ3−γ1

hφ3, ψ1iφ1= −∂H x

∂ψ3 ,

ψ1x = −2i Aψ1− 3i

γ2−γ1

hφ2, ψ1iψ2

− 3i

γ3−γ1hφ3, ψ1iψ3= ∂Hx

∂φ1 ,

ψ2x = −i Aψ2− 3i

γ2−γ1hφ1, ψ2iψ1= ∂Hx

∂φ2,

ψ3x = −i Aψ3− 3i

γ3−γ1hφ1, ψ3iψ1= ∂Hx

∂φ3,

(13)

where

Hx = 2ihAφ1, ψ1i −

2 X

j=1 3i

γj+1−γ1

hφ1, ψj+1ihφj+1, ψ1i

−i

2 X

j=1

hAφj+1, ψj+1i.

Under the control of (11), (12) and (13), we can get the following Hamiltonian system

φ1,t2 = −

Ht2

∂ψ1 , φ2,t2 = − ∂Ht2

∂ψ2, φ3,t2 = − ∂Ht2

∂ψ3 ,

ψ1,t2 =

Ht2

∂φ1 , ψ2,t2 = ∂Ht2

∂φ2 , ψ3,t2 = ∂Ht2

∂φ3 ,

(7)

where

Ht2 = 2ihA2φ1, ψ1i −ihA2φ2, ψ2i −ihA2φ3, ψ3i

− 3i

γ2−γ1

hφ1, ψ2ihAφ2, ψ1i − 3i

γ3−γ1

hφ1, ψ2ihAφ3, ψ1i

− 3i

γ2−γ1

hφ2, ψ1ihAφ1, ψ2i − 3i

γ3−γ1

hφ3, ψ1ihAφ1, ψ3i

− 3i

(γ2−γ1)2

hφ1, ψ2ihφ2, ψ1ihφ1, ψ1i

− 3i

(γ3−γ1)2hφ1, ψ3ihφ3, ψ1ihφ1, ψ1i

+ 3i

(γ2−γ1)2hφ1, ψ2ihφ2, ψ1ihφ2, ψ2i

+ 3i

(γ2−γ1)(γ3−γ1)

hφ1, ψ2ihφ3, ψ1ihφ2, ψ3i

+ 3i

(γ2−γ1)(γ3−γ1)

hφ1, ψ3ihφ2, ψ1ihφ3, ψ2i

+ 3i

(γ3−γ1)2

hφ1, ψ3ihφ3, ψ1ihφ3, ψ3i.

Hamiltonian systems (13) and (14) allow Lax representations

d

d xL(λ)=

U(eu, λ),L(λ), d

dt2

L(λ)=Ve(2)(eu, λ),L(λ), (15)

respectively, where

L(λ)=

  

γ1 0 0 0 γ2 0 0 0 γ3

  +

N

X

j=1 1 λ−λj

  

φ1jψ1j φ1jψ2j φ1jψ3j

φ2jψ1j φ2jψ2j φ2jψ3j

φ3jψ1j φ3jψ2j φ3jψ3j

  , (16)

λ1, λ2,∙ ∙ ∙, λN are N distinct parameters, andU(eu, λ), eV(2)(eu, λ)are the con-straint spectral matrices generated fromU,V(2)under constraint (11) and (12). To analyze the integrability of (13) and (14), we define a symplectic structure

ω2=

3 X

i=1

dφidψi =

3 X

i=1

N

X

s=1

(8)

The corresponding Poisson bracket is given by

{f,g} =

3 X

i=1

N

X

s=1

f

∂ψi s

g

∂φi s − ∂f

∂φi s

g

∂ψi s

, f,gC∞(C6N). (18)

Furthermore, it has been shown that Lax matrix (16) satisfies an r-matrix relation [13]. Therefore, we can get 3N conserved integrals

F1k = hAk−1φ1, ψ1i + hAk−1φ2, ψ2i + hAk−1φ3, ψ3i, (19)

F2k = (γ2+γ3)hAk−1φ1, ψ1i +(γ1+γ3)hAk−1φ2, ψ2i

+(γ1+γ2)hAk−1φ3, ψ3i + X

i+l=k−2

i,l≥0 "

hAiφ1, ψ1i hAiφ1, ψ2i

hAlφ2, ψ1i hAlφ2, ψ2i

+

hAiφ1, ψ1i hAiφ1, ψ3i hAlφ3, ψ1i hAlφ3, ψ3i +

hAiφ2, ψ2i hAiφ2, ψ3i hAlφ3, ψ2i hAlφ3, ψ3i # , (20)

F3k = γ2γ3hAk−1φ1, ψ1i +γ1γ3hAk−1φ2, ψ2i +γ1γ2hAk−1φ3, ψ3i

+ X

i+l=k−2

i,l≥0 " γ1

hAiφ

2, ψ2i hAiφ2, ψ3i

hAlφ3, ψ2i hAlφ3, ψ3i

+γ2

hAiφ1, ψ1i hAiφ1, ψ3i hAlφ

3, ψ1i hAlφ3, ψ3i +γ3

hAiφ1, ψ1i hAiφ1, ψ2i hAlφ

2, ψ1i hAlφ2, ψ2i # + X

i+l+n=k−3

i,l,n≥0

hAiφ

1, ψ1i hAiφ1, ψ2i hAiφ1, ψ3i

hAlφ2, ψ1i hAlφ2, ψ2i hAlφ2, ψ3i

hAnφ3, ψ1i hAnφ3, ψ2i hAnφ3, ψ3i

. (21)

A direct check shows that

Fi k, 1≤i ≤3, 1≤kN,

(9)

Proposition 1. Ifφ1, φ2, φ3, ψ1, ψ2, ψ3satisfy both(13)and(14), then

qj =

3i

γj+1−γ1

hφ1, ψj+1i, rj = 3i

γj+1−γ1

j+1, ψ1i, 1≤ j ≤2,

solve the 4-component AKNS equation(6).

3 An integrable decomposition of the Manakov equation

This section is devoted to an integrable decomposition of the Manakov equation. It is known that equation (1) may be reduced from the 4-component AKNS equation by imposing the reality conditionr = −q†. Moreover, the Manakov equation associates with the following spectral problems

8x =U(q,r, λ)8, r = −q†, (22)

8t2 =V

(2)(q,r, λ)8, r = −q, (23) and the adjoint spectral problems

9x = −UT(q,r, λ)9, r = −q†, (24)

9t2 = −V

(2)T(q,r, λ)9, r = −q, (25) whereU(q,r, λ),V(2)(q,r, λ)are defined by(2), (8).

On the basis of the reality conditionr = −q†we have the following lemma. Lemma 1. Let r = −q†, (φ1, φ2, φ3)T solves (22), (23), and (ψ1, ψ2, ψ3)T

solves(24),(25),

(i) If parameterλis nonreal complex, then1∗, ψ2∗, ψ3∗)T solves(22) and

(23)with parameterλ∗. In the same time,

1, φ2∗, φ3∗)T solves(24)and (25)with parameterλ∗.

(ii) If parameter λ is real, then1∗, φ2∗, φ3∗)T solves the adjoint spectral problems(24)and(25)with parameterλ.

Now let us carry out the binary NSPs of the Manakov equation. We take N

(10)

Guided by Lemma 1, we introduce new variables and notation b

φ1 = φ1(r), ψ ∗(r) 1 , φ

(Nr) 1

T

, bφ2 = φ2(r), ψ ∗(r) 2 , φ

(Nr) 2

T

, b

φ3 = φ (r) 3 , ψ

∗(r) 3 , φ

(Nr) 3

T

, b

ψ1 = ψ1(r), φ ∗(r) 1 , φ

∗(Nr) 1

T

, ψb2 = ψ2(r), φ ∗(r) 2 , φ

∗(Nr) 2

T

, b

ψ3 = ψ (r) 3 , φ

∗(r) 3 , φ

∗(Nr) 3

T

, bA = diag 3(r), 3(r), 3(Nr), (26)

where

3(r) = diag

1,∙ ∙ ∙ , λr), 3(Nr) = diag(λr+1,∙ ∙ ∙, λN),

φk(r) = (φk1,∙ ∙ ∙, φkr)T, φ

(Nr)

k = (φk,r+1,∙ ∙ ∙, φk,N)T,

ψk(r) = (ψk1,∙ ∙ ∙, ψkr)T, ψk(Nr) = (ψk,r+1,∙ ∙ ∙, ψk,N)T,

(27)

and then we can get the following vector form of spectral problem(22)and(24) coupling with their complex conjugates

                      

b

φ1x = −2ibAbφ1+q1bφ2+q2bφ3, b

φ2x =ibAφb2+r1bφ1, b

φ3x =iAbbφ3+r2bφ1, r = −q†, b

ψ1x =2ibAψb1−r1ψb2−r2ψb3, b

ψ2x = −iAbψb2−q1bψ1, b

ψ3x = −iAbψb3−q2bψ1,

(28)

which is just a compact form of special 3×3 matrix spectral problems for AKNS hierarchy and their adjoint spectral problems. Therefore, we only need to modify the procedure of the binary NSPs of the 4-component AKNS hierarchy by replacing variables φ1, φ2, φ3, ψ1, ψ2, ψ3 with bφ1,bφ2,bφ3,ψ1,b ψ2,b ψ3b such that the reality conditionr = −q†holds.

Now we consider the constraint of the Manakov equation

qj =

3i

γj+1−γ1

hbφ1,ψbj+1i = 3i

γj+1−γ1

(hφ1(r), ψ(jr+)1i + hφ1(Nr), φ∗j+(N1r)i + hψ1∗(r), φ∗j+(r1)i),

rj =

3i

γj+1−γ1

hbφj+1,ψb1i = 3i

γj+1−γ1

(hφ(jr+)1, ψ1(r)i + hφ(jN+1r), φ1∗(Nr)i + hψ∗j+(r1), φ1∗(r)i),

(11)

which solves

r = −q†,1≤ j ≤2.

Substituting (29) into (28), then we get the finite-dimensional Hamiltonian system

φ(1rx)= −∂Hb x

∂ψ1(r), ψ (r) 1x =

Hbx

∂φ1(r), φ ∗(r) 1x =

Hbx

∂ψ1∗(r), φ(2rx)= −∂Hb

x

∂ψ2(r)

, ψ2(rx)= ∂Hb x

∂φ2(r)

, φ2x(r) = ∂Hb x

∂ψ2∗(r) ,

φ(3rx)= −∂Hb x

∂ψ3(r), ψ (r) 3x =

Hbx

∂φ3(r), φ ∗(r) 3x =

Hbx

∂ψ3∗(r), ψ1x(r)= − ∂Hb

x

∂φ1∗(r), φ (Nr) 1x = −

Hbx

∂φ1∗(Nr), φ ∗(Nr)

1x =

Hbx

∂φ1(Nr), ψ2x(r)= − ∂Hb

x

∂φ2∗(r)

, φ2(Nxr) = − ∂Hb x

∂φ2∗(Nr)

, φ2x(Nr)= ∂Hb x

∂φ2(Nr) ,

ψ3x(r)= − ∂Hb x

∂φ3∗(r), φ (Nr) 3x = −

Hbx

∂φ3∗(Nr), φ ∗(Nr)

3x =

Hbx

∂φ3(Nr), (30)

where

b

Hx = 2i h3(r)φ(1r), ψ1(r)i + h3(r)ψ∗(r) 1 , φ

∗(r) 1 i + h3

(Nr)φ(Nr) 1 , φ

∗(Nr)

1 i

i h3(r2(r), ψ2(r)i + h3(r)ψ∗(r) 2 , φ

∗(r) 2 i + h3

(Nr)

φ2(Nr), ψ2∗(Nr)i −i h3(r3(r), ψ3(r)i + h3(r)ψ∗(r)

3 , φ ∗(r) 3 i + h3

(Nr)

φ3(Nr), ψ3∗(Nr)i

− 3i

γ2−γ1

1(r), ψ2(r)i + hψ1∗(r), φ2∗(r)i + hφ1(Nr), φ2∗(Nr)i

× hφ2(r), ψ1(r)i + hψ2∗(r), φ1∗(r)i + hφ2(Nr), φ1∗(Nr)i

− 3i

γ3−γ1

1(r), ψ3(r)i + hψ1∗(r), φ3∗(r)i + hφ1(Nr), φ3∗(Nr)i

(12)

Similarly, we can get the temporal Hamiltonian system

φ(1rt)

2 = −

Hbt2

∂ψ1(r)

, ψ1(rt)

2 =

Hbt2

∂φ(1r)

, φ1t(r)

2 =

Hbt2

∂ψ1∗(r) ,

φ(2rt)

2 = −

Hbt2

∂ψ2(r), ψ (r) 2t2 =

Hbt2

∂φ(2r), φ ∗(r) 2t2 =

Hbt2

∂ψ2∗(r), φ(3rt)

2 = −

Hbt2

∂ψ3(r), ψ (r) 3t2 =

Hbt2

∂φ(3r), φ ∗(r) 3t2 =

Hbt2

∂ψ3∗(r), ψ1t(r)

2 = −

Hbt2

∂φ1∗(r)

, φ(1Ntr)

2 = −

Hbt2

∂φ1∗(Nr)

, φ1t(Nr)

2 =

Hbt2

∂φ(1Nr) ,

ψ2t(r)

2 = −

Hbt2

∂φ2∗(r), φ (Nr) 2t2 = −

Hbt2

∂φ2∗(Nr), φ ∗(Nr) 2t2 =

Hbt2

∂φ(2Nr), ψ3t(r)

2 = −

Hbt2

∂φ3∗(r)

, φ(3Ntr)

2 = −

Hbt2

∂φ3∗(Nr)

, φ3t(Nr)

2 =

Hbt2

∂φ(3Nr) ,

(31)

where b

Ht2 = 2i h3(r)2φ(r)

1 , ψ (r)

1 i + h3(r) 2

ψ1∗(r), φ1∗(r)i + h3(Nr)2φ1(Nr), φ1∗(Nr)i −i h3(r)2φ2(r), ψ2(r)i + h3(r)2ψ∗(r)

2 , φ ∗(r) 2 i + h3

(Nr)2

φ2(Nr), ψ2∗(Nr)i −i h3(r)2φ3(r), ψ3(r)i + h3(r)2ψ∗(r)

3 , φ ∗(r) 3 i + h3

(Nr)2φ(Nr) 3 , ψ

∗(Nr)

3 i

− 3i

γ2−γ1 hφ (r) 1 , ψ

(r) 2 i + hψ

∗(r) 1 , φ

∗(r) 2 i + hφ

(Nr) 1 , φ

∗(Nr)

2 i

× h3(r2(r), ψ1(r)i + h3(r)ψ∗(r) 2 , φ

∗(r) 1 i + h3

(Nr)φ(Nr) 2 , φ

∗(Nr)

1 i

− 3i

γ3−γ1

1(r), ψ3(r)i + hψ1∗(r), φ3∗(r)i + hφ1(Nr), φ3∗(Nr)i

× h3(r3(r), ψ1(r)i + h3(r)ψ∗(r) 3 , φ

∗(r) 1 i + h3

(Nr)φ(Nr) 3 , φ

∗(Nr)

1 i

− 3i

γ2−γ1

2(r), ψ1(r)i + hψ2∗(r), φ1∗(r)i + hφ2(Nr), φ1∗(Nr)i

× h3(r1(r), ψ2(r)i + h3(r)ψ∗(r) 1 , φ

∗(r) 2 i + h3

(Nr)φ(Nr) 1 , φ

∗(Nr)

2 i

− 3i

γ3−γ1

(13)

× h3(r1(r), ψ3(r)i + h3(r)ψ∗(r) 1 , φ

∗(r) 3 i + h3

(Nr)φ(Nr) 1 , φ

∗(Nr)

3 i

− 3i

(γ2−γ1)2 hφ (r) 1 , ψ

(r) 2 i + hψ

∗(r) 1 , φ

∗(r) 2 i + hφ

(Nr) 1 , φ

∗(Nr)

2 i

× hφ(2r), ψ1(r)i + hψ2∗(r), φ1∗(r)i + hφ2(Nr), φ1∗(Nr)i × hφ(1r), ψ1(r)i + hψ1∗(r), φ1∗(r)i + hφ1(Nr), φ1∗(Nr)i

− 3i

(γ3−γ1)2

hφ(1r), ψ3(r)i + hψ1∗(r), φ3∗(r)i + hφ(1Nr), φ3∗(Nr)i

× hφ(3r), ψ1(r)i + hψ3∗(r), φ1∗(r)i + hφ3(Nr), φ1∗(Nr)i × hφ(1r), ψ1(r)i + hψ1∗(r), φ1∗(r)i + hφ1(Nr), φ1∗(Nr)i

+ 3i

(γ2−γ1)2 hφ (r) 1 , ψ

(r) 2 i + hψ

∗(r) 1 , φ

∗(r) 2 i + hφ

(Nr) 1 , φ

∗(Nr)

2 i

.

Hamiltonian systems (30) and (31) are completely integrable systems. In fact, first of all, it is not difficult to check that (30) and (31) allow the following Lax matrix

L(λ)=

  

γ1 0 0

0 γ2 0

0 0 γ3

  +

r

X

j=1 1 λ−λj

  

φ1jψ1j φ1jψ2j φ1jψ3j

φ2jψ1j φ2jψ2j φ2jψ3j

φ3jψ1j φ3jψ2j φ3jψ3j

  

+ r

X

j=1 1 λ−λ∗j

  

ψ∗

1jφ1∗j ψ1∗jφ2∗j ψ1∗jφ∗3j

ψ2jφ1j ψ2jφ2j ψ2jφ∗3j ψ3jφ1j ψ3jφ2j ψ3jφ∗3j

  

+ N

X

j=r+1 1 λ−λj

  

|φ1j|2 φ1jφ∗2j φ1jφ∗3j

φ2jφ∗1j |φ2j|2 φ2jφ3∗j

φ3jφ∗1j φ3jφ∗2j |φ3j|2

  .

(32)

Introducing symplectic structure

bω2=

3 X

i=1

r

X

s=1

dφi sdψi s+dψi s∗ ∧dφ ∗ i s

+

3 X

i=1

Nr

X

j=1

(14)

The corresponding Poisson bracket is given by

{f,g} =

3 X

i=1

r

X

s=1

f

∂ψi s

g

∂φi s − ∂f

∂φi s

g

∂ψi s + ∂f

∂φ∗ i s

g

∂ψ∗ i s

− ∂f

∂ψ∗ i sg ∂φ∗ i s + 3 X

i=1

Nr

X

j=1 ∂f

∂φ∗ i,r+j

g

∂φi,r+j

− ∂f

∂φi,r+j

g

∂φ∗ i,r+j

! .

By a direct check, we come to a conclusion that L(λ)satisfies ther-matrix relation

{L1(λ),L2(μ)} = [r12(λ, μ),L1(λ)] + [r21(λ, μ),L2(μ)], whereL1(λ)=L(λ)⊗I, L2(μ)= IL(μ), I is the 3×3 unit matrix,

r12(λ, μ)= − X 1≤i,j≤3

ei jej i

μ−λ , r21(λ, μ)= − X 1≤i,j≤3

ei jej i

μ−λ , (34)

and ei j is the matrix with the element 1 at the (i, j) position and zeros elsewhere.

We can expand (19), (20), (21) as follows

b

F1k = h3(r)

k−1

φ1(r), ψ1(r)i + h3(r)k−1ψ∗(r) 1 , φ

∗(r) 1 i

+ h3(Nr)k−1(Nr), φ1∗(Nr)i+ h3(r)k−2(r), ψ2(r)i + h3(r)k−1ψ∗(r)

2 , φ ∗(r) 2 i + h3

(Nr)k−1φ(Nr) 2 , φ

∗(Nr)

2 i

+ h3(r)k−3(r), ψ3(r)i + h3(r)k−1ψ∗(r) 3 , φ

∗(r) 3 i

+ h3(Nr)k−3(Nr), φ3∗(Nr)i, (35) b

F2k = (γ2+γ3) h3(r)

k−1

φ1(r), ψ1(r)i + h3(r)k−1ψ∗(r) 1 , φ

∗(r) 1 i

+ h3(Nr)k−1(Nr), φ1∗(Nr)i+(γ1+γ3) h3(r)

k−1

φ(2r), ψ2(r)i + h3(r)k−1ψ∗(r)

2 , φ ∗(r) 2 i + h3

(Nr)k−1

φ2(Nr), φ2∗(Nr)i +(γ1+γ2) h3(r)

k−1

φ3(r), ψ3(r)i + h3(r)k−1ψ∗(r) 3 , φ

∗(r) 3 i

+ h3(Nr)k−3(Nr), φ3∗(Nr)i

+ X

i+l=k−2

i,l≥0 "

1i11 1i12 1l21 1l22 +

1i11 1i13 1l31 1l33 +

(15)

b

F3k = γ2γ3 h3(r)

k−1

φ(1r), ψ1(r)i + h3(r)k−1ψ∗(r) 1 , φ

∗(r) 1 i

+ h3(Nr)k−1(Nr), φ1∗(Nr)i+γ1γ3 h3(r)

k−1

φ2(r), ψ2(r)i + h3(r)k−1ψ∗(r)

2 , φ ∗(r) 2 i + h3

(Nr)k−1

φ2(Nr), φ2∗(Nr)i +γ1γ2 h3(r)

k−1

φ3(r), ψ3(r)i + h3(r)k−1ψ∗(r) 3 , φ

∗(r) 3 i

+ h3(Nr)k−3(Nr), φ3∗(Nr)i

+ X

i+l=k−2

i,l≥0 " γ3

1i11 1i12 1l21 1l22 +γ2

1i11 1i13 1l31 1l33 +γ1

1i22 1i23 1l32 1l33 # + X

i+l+n=k−3

i,l,n≥0

1i11 1i12 1i13 1l21 1l22 1l23 1n31 1n32 1n33 , (37)

where 1≤kN +r,

1abs = h3(r)sφa(r), ψb(r)i + h3(r)sψ∗(r)

a , φ ∗(r)

b i + h3

(Nr)sφ(Nr)

a , φ

∗(Nr)

b i.

It can be checked that Fb1k,bF2k,bF3k,1 ≤ kN +r,are 3(N +r)integrals in involution. To establish the completely integrability of Hamiltonian systems (30) and (31), it is essential to prove the functional independence of the above 3(N+r)integrals by making use of a small epsilon technique [16].

In fact, let P0be a point ofC3(N+r) satisfyingbφi s = ε,1 ≤ i ≤ 3,1 ≤ sN+r,whereεis a small constant, andbφi s,ψbi s,1≤i ≤3,1≤sN+r,are defined by (26). At this pointP0, by a direct calculation, we have

J = ∂ F11, . . . ,F1,N+r,F21, . . . ,F2,N+r,F31, . . . ,F3,N+r

∂ ψb11, . . . ,ψb1,N+r,ψb21, . . . ,ψb2,N+r,ψb31, . . . ,ψb3,N+r

= ε3(N+r)

θN+r θN+r θN+r

(γ2+γ3)θN+r (γ1+γ3)θN+r (γ1+γ2)θN+r

γ2γ3θN+r γ1γ3θN+r γ1γ2θN+r

+O(ε3(N+r)+1)

= ε3(N+r)det(3⊗θN+r)+O(ε3(N+r)+1) = ε3(N+r) Y

1≤i<j≤3

i −γj)N

Y 1≤i<jN+r

(16)

where

3 =   

1 1 1

γ2+γ3 γ1+γ3 γ1+γ2 γ2γ3 γ1γ3 γ1γ2

  ,

θN = (θ

(N)

i j )N×N, λN+i =λ∗i, 1≤ir.

Since the Jacobian is a polynomial function ofφi si si s∗,ψi s∗, 1 ≤ i ≤ 3, 1≤ sN +r, it is not zero over a dense open subset ofC3(N+r). Therefore, the functionsbFi k,1≤i ≤3,1≤kN +r,are functionally independent over that dense open subset ofC3(N+r).

Moreover, a direct computation shows that the following proposition holds.

Theorem 1. Ifφ(jr),ψ(jr),φ∗j(r),ψj∗(r),φ(jNr),φ∗j(Nr),1 ≤ j ≤ 3, satisfy both

(30)and(31), then

qj =

3i

γj+1−γ1

hφ(1r), ψ(jr+)1i+hψ1∗(r), φ∗j+(r1)i+hφ1(Nr), φ∗j+(N1r)i, 1≤ j ≤2,

solve the Manakov equation(1). This means that(30)and(31)constitute an

integrable decomposition of the Manakov equation.

4 Concluding remarks

In this paper, we have presented the integrable decomposition of the Manakov equation. The main idea of this method is to couple the spectral problems of the Manakov equation with their complex conjugates and then reduce these problems to that of 4-component AKNS equation by introducing new variables. Finally, the integrable decompositions of the Manakov equation are obtained by applying the corresponding results of the 4-component AKNS equation.

(17)

restrictions are released by using binary nonlinearizations of spectral problem, instead of mono-nonlinearization of spectral problem. Viewing from (33), we can easily find that whether the eigenvalue parameters are real or not leads to completely different symplectic structures.

Acknowledgments. This work has been supported by the National Natural Science Foundation of China under Grant No. 10871165.

REFERENCES

[1] S.V. Manakov,On the theory of two-dimensional stationary self-focusing of elec-tromagnetic waves. Sov. Phys. JETP,38(1974), 248–253.

[2] C.R. Menyuk,Nonlinear pulse propagation in birefringent optical fibers. IEEE J. Quant. Electr.,23(1987), 174–176.

[3] M.J. Ablowitz, B. Prinari and A.D. Trubatch,Discrete and Continuous Nonlinear Schrödinger Systems. Cambridge Univ. Press (2004).

[4] C.W. Cao,A cubic system which generates Bargmann potential and N-gap poten-tial. Chin. Quart. J. Math.,3(1988), 90–96.

[5] C.W. Cao,Nonlinearization of the Lax system for AKNS hierarchy. Sci. Chin. A, 33(1990), 528–536.

[6] W.X. Ma and W. Strampp,An explicit symmetry constraint for the Lax pairs and the adjoint Lax pairs of AKNS systems. Phys. Lett. A,185(1994), 277–286. [7] W.X. Ma,Symmetry constraint of MKdV equations by binary nonlinearization.

Physica A,219(1995), 467–481.

[8] W.X. Ma, Q. Ding, W.G. Zhang and B.Q. Lu,Binary nonlinearization of Lax pairs of Kaup-Newell soliton hierarchy. II Nuovo Cimento B,111(1996), 1135–1149. [9] Y.B. Zeng and Y.S. Li, On a general approach from infinite-dimensional inte-grable Hamiltonian systems to finite-dimensional ones. Adv. in Math.,24(1995), 111–130.

[10] Y.S. Li and W.X. Ma,Binary nonlinearization of AKNS spectral problem under higher-order symmetry constraints. Chaos Solitons and Fractals, 11(5) (2000), 697–710.

(18)

[12] W.X. Ma and X.G. Geng,Bäcklund transformations of soliton systems from sym-metry constraints. CRM Proc. Lect. Notes,29(2001), 313–323.

[13] W.X. Ma and R.G. Zhou,Adjoint symmetry constraints leading to binary nonlin-earization. J. Nonlinear Math. Phys.,9(2002), 106–126.

[14] W.X. Ma and R.G. Zhou,Adjoint symmetry constraints of multicomponent AKNS equations. China Ann. Math. Ser. B,23(2002), 373–384.

[15] W.X. Ma,Binary Bargmann symmetry constraints of soliton equations. Nonlin. Anal.,47(2001), 5199–5211.

[16] W.X. Ma and Z.X. Zhou, Binary symmetry constraints of N-wave interaction equations in1+1and2+1dimensions. J. Math. Phys.,42(2001), 4345–4382. [17] J.M. Alberty, T. Koikawa and R. Sasaki,Canonical structure of soliton equations.

Physica D,5(1982), 43–65.

[18] R.G. Zhou,Nonlinearizations of spectral problems of the nonlinear Schrödinger equation and the real-valued mKdV equation. J. Math. Phys.,48(2007), 013510– 1–9.

Referências

Documentos relacionados

Its main original- ity is that it can consider the initial process of osmotic dehydration and couple the predicted water and solute concentration profiles to the simultaneous mass

Thus, in this article, we have proposed a mathematical model governing CaOs for changing membrane potential in the absence of fluxes from the intra- cellular stores.. Holmgren

In [9] Gandarias established local conservation laws for a porous medium equation using the self-adjointness of the equation under consideration.. More recently Gandarias and

Our numerical experiments show that the precision of interval solutions are reasonable in comparison to the classical methods and the obtained conditions and initial enclosure of

Jamison, The Use of interval-valued probability measure in optimization under uncertainty for problems containing a mixture of possibility, probabilistic and interval uncertainty,

In this work, a consistent stabilized mixed Petrov-Galerkin-like finite element formulation in primitive variables, with continuous velocity and discontinuous pressure

As illustrations the iterative method is checked against: (i) the analytical so- lutions to examples in dimension one and higher, some arising from optimal control problems

In this section, we do some numerical experiments to test Algorithm 2.1 with the modified strong Wolfe line search, and compare the performance with some existing conjugate