• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.25 número5

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.25 número5"

Copied!
7
0
0

Texto

(1)

w w w. s b f g n o s i a . o r g . b r / r e v i s t a

Original

Article

Musanga

cecropioides

leaf

extract

exhibits

anti-inflammatory

and

anti-nociceptive

activities

in

animal

models

Abimbola

Sowemimo

a,∗

,

Eboji

Okwuchuku

a

,

Fageyinbo

Muyiwa

Samuel

b

,

Olowokudejo

Ayoola

a

,

Ibrahim

Mutiat

a

aDepartmentofPharmacognosy,FacultyofPharmacy,UniversityofLagos,CollegeofMedicineCampus,Idi-Araba,Lagos,Nigeria

bDepartmentofPharmacology,TherapeuticsandToxicology,FacultyofBasicMedicalSciences,UniversityofLagos,CollegeofMedicineCampus,Idi-Araba,Lagos,Nigeria

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received23February2015 Accepted13July2015

Availableonline3September2015

Keywords:

Musangacecropioides

Anti-inflammatory Anti-nociception Phenol Flavonoid Mineralcontent

a

b

s

t

r

a

c

t

ExtractobtainedfromtheleavesofMusangacecropioidesR.Br.exTedlie,Urticaceae,atreegrowingin Africa,isusedtraditionallyinthetreatmentofedemaandrheumatism.Theanti-inflammatoryand anti-nociceptivepropertiesofethanolextractwerestudiedusingthecarrageenan,histamine,serotoninand xylene-inducededematestsaswellastheformalin,mousewrithingandtailcliptests.Significantdose dependentinhibitionwasobservedinthecarrageenanmodelwithpeakinhibitionat150mg/kg(71.43%, 90min,p<0.001).Inthehistamineandserotoninmodels,theextractcausedsignificantinhibitionof 83.33%(p<0.05)and45%(p<0.01)at120minrespectively.Forthexylenemodel,theextractshowed maximuminhibition(59.25%)at200mg/kg.Also,M.cecropioidesproducedsignificantanti-nociceptive activityinthemousewrithing(55.12%,p<0.01),formalin(81.88%,p<0.01)andtailclip(11.78%,p<0.001) testsat200mg/kgrespectively.Theresultsobtainedinthisstudydemonstratedthattheethanolicleaf extractofM.cecropioidespossessesanti-inflammatoryeffectpossiblymediatedviahistaminergicand serotonergicinhibitionandanti-nociceptiveeffectmediatedviaperipheralmechanismwithmildcentral involvement.

©2015SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

MusangacecropioidesR.Br.exTedlie,Urticaceae,isa

decidu-ousorevergreen,dioeciousmedium-sizedtreeofupto30mtall

withanumbrella-shapedcrown.Traditionally,theleavesareused

toprepareavaginaldoucheforpainfulmenstruationandalsoused

inthetreatmentofgonorrheaandcough(Burkill,1985;Ayinde

etal.,2003).Thebarkdecoctionistakentotreatarterial

hyper-tension,constipation,painduringchildbirth,cough,diabetesand

schizophrenia.Thestemsapisusedtotreatdysmenorrhoeaandas

galactagogue,whiletherootsapisusedtotreatstomachspasms,

diarrhea,gonorrhea,pulmonarycomplaints,trypanosomiasis,skin

diseases,otitis,rheumatism,edema, epilepsy,andtoease

child-birth.Therootbarkiseatenwithkolanuttocurecough,andthe

barkistiedonwoundswhereitissaidtoeffectacure(Adejuwon,

2001).Thesheath-likestipulesareappliedasemmenagogueand

oxytocic,andtotreatstomachcomplaints,hiccoughandwounds

(Burkill,1985).

∗ Correspondingauthor.

E-mail:asowemimo@unilag.edu.ng(A.Sowemimo).

Pharmacologicalactivitiessuchastheuterotonic,antidiabetic,

hypotensiveandhypoglycemicpropertiesoftheleafandstembark

aswellastheantimicrobialactivityoftherootsapofM.cecropioides

havebeenreported(Kamanyietal.,1992,1996;Dongmoetal.,

1996;Ayindeetal.,2003,2006;Adeneyeetal.,2006,2007;Senjobi etal.,2012;Uwahetal.,2013).Thereis,however,norecordofthe

anti-inflammatoryoranalgesicactivityinliterature;hence,theaim

ofthisworkistoinvestigatetheanti-inflammatoryandanalgesic

propertiesoftheplantwithaviewtovalidatingitsethno-medicinal

use.

Materialsandmethods

Plantcollectionandextraction

TheleavesofMusangacecropioidesR.Br.exTedlie,Urticaceae,

leaveswerecollectedatAbatadu,Oke-ode,avillageabout3kmto

Ikere,OsunState,Nigeria(7◦30N430E),inFebruary,2013.The

plantspecimenwasidentifiedandauthenticatedattheHerbarium

oftheDepartmentofBotanyandMicrobiology,UniversityofLagos,

Akoka,Lagos,Nigeriawhereavoucherspecimen(LUH5637)was

deposited.Theleaveswerepulverizedandmaceratedwithabsolute

http://dx.doi.org/10.1016/j.bjp.2015.07.022

(2)

ethanolatroomtemperature.Theextractwasfilteredand

concen-tratedusingtherotaryevaporator(Buchi,Switzerland).Theyield

was4.58%(w/w).

Animals

Wistar rats (100–200g) and Swiss albino mice (18–30g) of

eithersexusedinthisstudywerepurchasedfromtheAnimalHouse

oftheNationalAgencyforFoodandDrugAdministrationand

Con-trol(NAFDAC),Lagos.Theanimalsweremaintainedunderstandard

laboratoryconditions(12hlight/darkcycleat22±2◦C)andfed

standardrodent pellets(LivestockFeedPLC,Lagos,Nigeria)and

wateradlibitum.Theprotocolwasapprovedbythe

Experimen-tationEthicsCommitteeoftheCollegeofMedicine,Universityof

Lagos(CM/COM/08).

Acutetoxicity

Acuteoraltoxicityassaywasperformedonthreegroupsofsix

miceeachfastedfor12hpriortotheexperiment.Theplantextract

wasadministeredatdosesof1,2and3g/kg(p.o.).Theanimalswere

observedforimmediatesignsoftoxicityandmortalityfor24hand

furtherobservedforsevendaysforsignsofdelayedtoxicity.

Pharmacologicalstudies

Invivoanti-inflammatoryactivity

Carrageenan-inducedpawedema. Increaseintherathindpaw

lin-earcircumferenceinducedbyplantarinjectionofthephlogistic

agentwasusedasthemeasureofacuteinflammation(Henriques

etal.,1987).Therats(n=6)wereadministeredtheplantextract

(50,100,150and200mg/kg,p.o.)whilethecontrolratsreceived

indomethacin(10mg/kg p.o.)and distilledwater(10ml/kg,p.o.)

respectively.Onehouraftertreatment,0.1mlofcarrageenan(1%,

w/v in water) was administered into the sub-plantartissue of

therighthindpaw.Thelinearpawcircumferencewasmeasured

immediatelybeforeinjectionofthephlogisticagentsandat30min

intervalfor 3husingthecottonthreadmethod(Bamgboseand

Naomesi,1981).

Anti-inflammatory activity is determined by analyzing the

reductioninedemasizeandcalculating%inhibitionofedema.A

meanreduction inedema when comparedwithcontrol andan

increase%inhibitioninthetreatedgroupsisanindicationof

anti-inflammatoryactivity.

Serotonin and histamine induced rat paw edema. In order to

elucidatethemechanismofactionofM.cecropioides,selected

anti-inflammatorymediators(histamineandserotonin)wereused.The

dosewhichgavemaximuminhibitioninthecarrageenanassayfor

wasusedforthetests.

Adult rats (100–200g) fasted overnight were divided into

three groups ofsix animalseach. Distilled water,10ml/kgwas

administeredtogroupone(control),grouptworeceived10mg/kg

indomethacinandgroupthree,150mg/kgM.cecropioides.All

treat-mentswere doneorally. One hour posttreatment, edema was

inducedbyinjectionof0.1mlserotoninorhistamine(10−3mg/ml)

intothesub-plantartissueoftherighthindpaw.Thelinear

circum-ferencesofthepawsweremeasuredusingcottonthreadmethod.

Measurementsweremadeat0minandthereafteratanintervalof

30minfor3h.Themeanofthepawsizewerecomputedand

per-centageinhibitionswerecalculated(AgbajeandFageyinbo,2011).

Xylene-inducedearedema. Adultmice(18–30g)fastedovernight

weredividedintosixgroupsofsixanimalseachandweretreated

asfollows:M.cecropioides(50,100,150and200mg/kg,p.o.),

dexa-methasone(1.0mg/kgp.o.)anddistilledwater(10ml/kgp.o.).Ear

edema wasinduced byapplying0.03ml ofxylene totheinner

surfaceoftherightear.Theleftearwasconsideredascontrol.

Fif-teenminutesaftertheapplicationofxylene,themicewerekilled

underetheranesthesiaandbothearswereremovedandweighed.

Increaseinweightcausedbytheirritantwasmeasuredby

sub-tractingtheweightoftheuntreatedleftearsectionfromthatof

thetreatedrightearsections(Nù ˜nezGuillénetal.,1997).

Anti-nociceptiveactivity

Mousewrithingtest.Miceusedforthisexperimentweredivided

intofivegroupsofsixanimalseach.GroupIwasgivendistilled

water(10ml/kg,p.o.);GroupIIreceivedthestandarddrug

acetyl-salicylicacid(100mg/kg,p.o.)whiletheremainingGroupsIII,IV

and V were given the plant extract (50mg/kg, 100mg/kg and

200mg/kg,p.o.)respectively.Sixtyminutesaftertreatment,acetic

acid(0.6%v/vinsaline,10ml/kgi.p.)wasadministered.Thenumber

ofwrithes(characterizedbycontractionoftheabdominal

muscula-tureandextensionofthehindlimbs)wascountedfor30min(Singh

andMajumdar,1995;MbagwuandAnene,2007).

Formalintest.Inthisstudy,theanimals(n=6)werearrangedinto

fivegroupswhichreceiveddistilledwater(10ml/kg),extract(50,

100and200mg/kg)andmorphine(10mg/kgs.c.)respectively.For

theinductionofpain,formalin(20␮lof1%solution)wasinjected

intosub-plantartissueoftherighthindpawofeachmouse60min

afteradministrationfortheoralrouteand30minforthe

subcuta-neousroute.Thenociceptiveresponsewasconsideredasthetime

spentinlickingandbitingoftheinjectedpaw.Theresponsesofthe

micewereobservedfor5min(firstphase)and15–30min(second

phase)postformalininjection(Shibataetal.,1989;Viannaetal.,

1998).

Haffner’s tail clip test. Mice used in this experiment were

pre-screenedbyplacingametalarteryclip1in.fromthebaseofthe

tailandanimalswhichdidnotrespondtotheclipplacementby

turningorbitingattheclipwithin10swerediscarded.Eligible

miceweredividedintofivegroupsoffiveanimalseach.The

pre-treatmentreactiontimeofallmicetoclipwasdeterminedafter

whichtheanimalsweretreatedasfollows:Group1:distilledwater

(10ml/kg),Groups 2, 3 and 4 weretreated withthe extractat

50mg/kg,100mg/kgand200mg/kgrespectively,Group5:

Mor-phine10mg/kg s.c.Thepresence orabsenceofanti-nociceptive

activity was determined 60min after drug administration for

oraladministrationand30minfor subcutaneousadministration

(Adeyemietal.,2004).Apost-treatmentcut-offtimeof30swas

used(Adeyemietal.,2004;AgbajeandAdeneye,2008).

Quantitativeanalysis

Determinationoftotalphenolcontent

Thetotalphenolic contentoftheextractwasdeterminedby

the modified Folin-Ciocalteu method (Wolfe et al., 2003).

Gal-lic acid was usedas a standard with a concentration range of

0.01–0.05mg/mlpreparedinmethanol(FolinandCiocalteu,1927).

Theextract(0.5ml)(0.1mg/ml)togetherwiththegallicacidwas

mixedwith2.5mlFolin–Ciocalteureagent(previouslydilutedwith

distilledwater1:10,v/v)and2ml(75g/l)ofsodiumcarbonate.The

mixtureswerevortexedfor15sandallowedtostandfor30minat

roomtemperaturebeforetheabsorbancewasmeasuredat765nm

usingaspectrophotometer.Alldeterminationswereperformedin

triplicates.Thetotalphenoliccontentwasexpressedasmggallic

acidequivalent(GAE)pergramofsample.

Determinationoftotalflavonoidcontent

TotalflavonoidwasestimatedusingthemethodofMiliauskas

(3)

thesample.Toobtainthecalibrationcurve,aconcentrationrange

of0.01–0.05mg/mlwasusedforquercetin.Theabsorbancewas

measuredat420nmafter60minatroomtemperature.Thetotal

flavonoidcontentwascalculatedasmilligramquercetinequivalent

(QE)pergramofsample.

Determinationofmineralcontent

Powderedleafsample (1g) wasdigestedusing 10ml of1M

HNO3.Thesolutionwasthenfilteredandmadeupto50mlwith

distilledwater. Concentrationsofsodium,potassium, zinc,

cop-per,calcium,magnesium,ironandmanganeseweredeterminedby

atomicabsorptionspectrophotometry(Analyst200,PerkinElmer,

Waltham,MA,USA).

Statisticalanalysis

All values were expressed as means±SEM. Results were

analyzedbyone-wayANOVAfollowedbyDunnett’smultiple

com-parisonorbytwo-wayANOVAfollowedbyBonferronitestusing

GraphPadPrism6.Resultswereconsideredstatisticallysignificant

atp<0.05,p<0.01,p<0.001.

Results

Acutetoxicitytest

TheethanolleafextractofM.cecropioideswasfoundsafeatthe

dosestested(1,2,3g/kg).Duringthesevendaysassessmenttime,

thetestanimalswerefoundnormalwithnovisiblesignsofdelayed

toxicity.

Anti-inflammatoryactivity

Carrageenan-inducedratpawedematest

TheleafextractofM.cecropioides(50,100,150and200mg/kg)

produced a significant(p<0.05, p<0.01, p<0.001) inhibition of

edemarelativetocontrol(10ml/kgdistilledwater)inadose

inde-pendentmanner.Thehighestinhibitionofedema wasobtained

with150mg/kgdose(71.43%)oftheextractat90min(Table1).

Theextractcomparedeffectivelywithstandarddrugindomethacin

(10mg/kg)usedinthisstudy,whichproducedapeakinhibitionof

edema(68.47%)at30min.

Inflammatorymediators

Serotonin-inducedandhistamine-inducedratpawedema

Intheserotoninmodel,theextractofM.cecropioidesatadoseof

150mg/kggaveamildinhibitoryeffect(45.0%)at120minwhilethe

standardproducedamorepronouncedinhibitory(64.52%)effect

at150min(Fig.1A).Forthehistaminemodel,atthesamedoseof

extract,therewasapeakinhibitoryeffect(83.33%)relativetothe

control(distilledwater10ml/kg)observedat120min.Theextract

wasmore effectivethan thestandard (indomethacin 10mg/kg)

whichalsoproducedapeakinhibitoryeffect(57.14%)atthesame

timewiththeextract(Fig.1B).

Xylene-inducedearedema

Animalspre-treatedwithethanolicleafextractofM.

cecropi-oides(50,100,150and200mg/kg)producedasignificant(p<0.05)

inhibition of edema (Table 2). The effect produced was dose

dependentandcomparedeffectivelywiththestandarddrug

dexa-methasone(1mg/kg)usedinthestudy. Table

(4)

80

A

70

60

50

40

% inhibition 30

20

10

0

T30 min

Serotonin + Indomethacin Serotonin + Musanga T60 min T90 minT120 minT150 minT180 min

80 100

90

B

70

60

50

40

% inhibition

30

20

10

0

T30 min

Histamine + Indomethacin Histamine + Musanga T60 min T90 min T120 min T150 min T180 min

Fig.1. TheeffectsofMusangacecropioides(MC)andindomethacinonrathindpaw edemainducedby(A)serotoninand(B)histamine.Datarepresentedasmean±SEM (n=6).*p<0.05,**p<0.01and***p<0.001comparedtothecontrol(one-wayANOVA followedbyDunnett’smultiplecomparison).

Table2

EffectofMusangacecropioidesonxyleneinducedearedema.

Treatment Dose(mg/kg) Increaseinearweight

(mg)

%Inhibition

M.cecropioides 50 12.83±0.003 34.63

M.cecropioides 100 13.00±0.004 33.79

M.cecropioides 150 11.00±0.006 43.96

M.cecropioides 200 8.00±0.002* 59.25

Dexamethasone 1 4.80±0.002* 75.55

Distilledwater 10ml/kg 19.63±0.004 –

Valuesareexpressedasmean±SEM(n=6).

*p<0.05vs.control(one-wayANOVA,Dunnett’smultiplecomparisontest).

Anti-nociceptiveactivity

Mousewrithingtest

Writhingreflexwasproducedbyintraperitonealinjectionof

aceticacidincontrolanimalswith107.3±14numberofwrithes

countedin 30min. Theplant extract (50,100, 200mg/kg)

pro-ducedasignificant(p<0.01)reductioninthenumberofwrithes

inadosedependentmanner.Thepeakinhibitoryeffect(55.12%)

wasproducedatthedoseof200mg/kg.Thestandarddrug(Aspirin,

100mg/kg)alsoproducedasignificant(73.30%,p>0.01)reduction

inthenumberofwritheswithagreaterinhibitioncomparedtothe

extract(Fig.2).

120

100

80

60

Number of writhes

40

20

0

Control Aspirin MC 50 mg/kg

MC 100 mg/kg

MC 200 mg/kg

Fig.2.EffectofMusangacecropioides(MC)onmousewrithingtestinmice.Values areexpressedasmean±SEM(n=6).*p<0.01comparedtothecontrol(one-way ANOVAfollowedbyDunnett’smultiplecomparison).

120 140 160 180

100

80

60

Licking time (s)

40

20

0

Control Morphine MC 50 mg/kg

MC 100 mg/kg

MC 200 mg/kg

First phase Second phase

Fig.3. EffectofMusangacecropioides(MC)onformalininducedreflexinmice.Data representedasmean±SEM(n=6).*p<0.05,**p<0.01and***p<0.001comparedto thecontrol(two-wayANOVAfollowedbyBonferronimultiplecomparison).

Formalintest

Injectionof formalininto thesub-plantartissue of theright

hind pawof control micein thefirst phase produced

nocicep-tiveresponse ofbitingand lickingof thepawwithdurationof

116±26.98s.Theplantextract(50,100,200mg/kg)produceda

statisticallysignificant(p<0.05,p<0.01,p<0.001)dose

depend-entinhibitionofnociceptivereactionwithpeakeffectproduced

(66.81%) ata doseof 200mg/kg. Morphineproduced a greater

inhibitoryresponse(100%).Inthesecondphase,thedurationof

thenociceptivereactioninthecontrolgroupwas151.8±41.3.The

extract,inadosedependentmanner,significantlyinhibited

noci-ceptivereactionwithpeak effect(81.88%)at200mg/kg.In this

phase,theeffectproducedbytheextractcomparedeffectivelywith

morphine(96.4%)(Fig.3).

Haffner’stailcliptest

Applicationofthemetalarteryclipuntothetailofanimalsinthe

controlgroupelicitedreactionstowardclipremovalwiththe

post-treatmentlatencybeing3.18±0.86s,5.04±0.63sand1.17±1.11s

measuredat60,90,and120min,respectively,withapre-treatment

latency of 3.17±0.52s. The ethanolic leaf extract of M.

cecro-pioides(200mg/kg) produced a significant(p<0.01) increase in

(5)

Table3

TheeffectsofMusangacecropiodesontailclipreflexinmice.

Treatment Dose(mg/kg) Pre-treatmentlatencyperiod Posttreatmentlatencyperiod

60min 90min 120min

M.cecropiodes 50 3.061±0.84 6.14±0.64(5.418) 8.74±2.02(9.97) 6.25±0.79(5.56)

M.cecropiodes 100 3.26±0.65 8.77±1.51(9.71) 10.26±0.78(12.35) 7.49±1.03(7.45)

M.cecropiodes 200 2.94±0.36 10.84±1.60(13.86)* 12.65±2.27(17.02)* 9.66±0.89(11.78)*

Morphine 10 1.95±0.48 48.41±8.48(80.03)**** 45.75±9.88(75.45)**** 49.22±9.05(81.43)****

Distilledwater 10ml/kg 3.17±0.52 3.18±0.86 5.04±0.63 1.17±1.11

Valuesareexpressedasmean±SEM(n=6).Figuresinparenthesisrepresentpercentageinhibition.

* p<0.01vs.controlgroup(two-wayANOVAfollowedbyBonferronimultiplecomparisontest). ****p<0.001vs.controlgroup(two-wayANOVAfollowedbyBonferronimultiplecomparisontest).

Table4

MineralcompositionofMusangacecropioidesleaves(mg/gofdrymatter).

S/n Element Concentration(mg/g)

1 Sodium(Na) 1.08

2 Potassium(K) 0.85

3 Zinc(Zn) 0.31

4 Copper(Cu) 0.0075

5 Calcium(Ca) 1.47

6 Magnesium(Mg) 1.06

7 Iron(Fe) 0.94

8 Manganese(Mn) 0.35

post-treatment.Thiseffectwasmildcomparedtotheeffect

pro-ducedbymorphine(81.43%inhibition)at120min(Table3).

Quantitativeanalysis

Thetotalphenolicandflavonoidcontentsoftheextractwere

385.46±7.44(GAE/gofdriedextractmg/g)and255.86±12.53(QE

mg/g)respectively.

Mineralcomposition

The mineralcomposition of the leaves of M. cecropioides is

presentedinTable4.Ofallfourmacro-elements(Na,K,Ca,Mg)

investigated,calciumoccurredinthelargestamountandforthe

micro-elements (Zn, Cu, Mn, Fe), iron occurred in the largest

amount.

Discussion

Theuseofplantsasmedicinespredateswrittenhumanhistory.

Plantsareabletosynthesizeawidevarietyofchemicalcompounds

whichhavebeneficialeffectsonlong-termhealthwhenconsumed

byhumans,andcanbeusedtoeffectivelytreathumandiseases.

This study investigated the anti-inflammatory and

anti-nociceptive activities of M. cecropioides. Carrageenan, xylene,

serotonin and histamine tests were used to screen the

anti-inflammatoryactivitywhilemousewrithing,formalinandtailclip

testswereusedtoevaluatetheanti-nociceptiveactivity.

The paw edema induced by carrageenan involves several

chemical mediators such as histamine, serotonin, bradykinin,

andprostaglandins(Vinegaretal.,1987).M.cecropioidesextract

significantly(p<0.001)inhibitedtheedema size.Theeffect

pro-ducedbytheextractcomparedeffectivelywiththestandarddrug

(indomethacin)withapeakinhibitoryeffectat150mg/kgobserved

at90min.ThisresultsuggeststhattheextractofM.cecropioidesis

effectiveintheearlyphaseofinflammationwhichisprimarilydue

tothereleaseofhistamineandserotonin.

Fortheinflammatorymediators,theplantextract(150mg/kg)

showeda significant(p<0.05)inhibitionof serotonincompared

withthe control.The peak inhibition wasobtained at 120min

postinduction.Ontheotherhand,thesamedoseoftheextract

(150mg/kg)showedasignificant(p<0.05)inhibitionofhistamine

whencomparedwiththecontrol(10ml/kgdistilledwater).The

peakinhibitionwasobtainedat120min.Thesedataindicatethat

the plant extract is likely to interfere with histamine release

at the initial phase of inflammation. Thus, it can be

specu-lated that the inhibition of edema by the extract at the early

phaseofinflammation-inducedbycarrageenanmaybemediated

possiblythroughtheinhibitionofhistamine.However,the

differ-enceinthetimeofpeakinhibitionobservedinthecarrageenan

and histamine/serotonin models maybe due to interference of

othermediatorssuchasbradykinin,andprostaglandinswhichare

presentwhencarrageenanisusedinedemainduction.

Thexylene-inducedearedematestisusefulfortheevaluation

ofanti-inflammatorysteroids.Theswellinginducedbyxylenecan

causeanacuteinflammatoryresponsewhichmayleadtosevere

vasodilationandplasmaextravasations.Thismodelislinkedwith

phospholipase A2 which is involved in thepathophysiology of

inflammationdue to xylene(Zaninir etal., 1992; Akindeleand

Adeyemi,2007).In this study,dexamethasone,asteroidal

anti-inflammatory agent, produced significant reduction in the ear

edema.TheextractofM.cecropioidesalsosignificantly(p<0.05)

inhibitededemainducedbyxyleneandthissuggestsasteroidal

anti-inflammatoryactivityoftheplantpossiblymediatedbythe

inhibitionofphospholiphaseA2.

Intraperitonealinjectionofaceticacidelicitsaresponse

charac-terizedbyawaveofabdominalmusculaturecontractionfollowed

byextensionof thehindlimb(writhing).Thisresponse isused

toestablishtheperipheraland non-steroidalaction of an

anal-gesicdrugandisthoughttoinvolvelocalperitonealreceptorsat

thesurfaceofthecellliningtheperitonealcavity(Bentleyetal.,

1983; Berkenkopfand Weichmann, 1988;Nù ˜nez Guillén et al., 1997; Zakaria et al., 2008). The agentreducing the number of

writhingwillrenderanti-nociceptiveeffectpreferablyby

inhibi-tionofprostaglandinsynthesis,aperipheralmechanismofpain

inhibition(Duarteetal.,1988;Ferdousetal.,2008).Peripherally

actingdrugssuchasaspirinhavebeenreportedtoexhibit

anti-nociceptiveactivityinthewrithingtestonly(Zakariaetal.,2008).

M.cecropioidesextractproducedasignificantreductioninnumber

ofwrithesinthisstudyandthissuggestsaperipheralmechanism

ofactioninvolvingdirectactiononnociceptors,directinhibitionof

prostaglandinactionorindirectinhibitionofprostaglandin

synthe-sisbyinhibitionofcyclo-oxygenase(COX)activity(Franzottietal.,

2000).

Biphasic nociceptive response is produced by subcutaneous

injectionof1%formalinintothemicerighthindpaw.Thefirst

tran-sientphasewhichisshortlived,involvesdirecteffectofformalin

onsensoryC-fiberswhilethesecondprolongedphaseis

associ-atedwiththedevelopmentoftheinjuryinducedspinalsensation

whichisresponsibleforfacilitatedpainprocessing.Thisisacentral

sensitizationofthedorsalhornneuron,aprocesswhichoccurs

dur-inginflammatorypain(Rezayatetal.,1999;Ashoketal.,2006;Da

Rochaetal.,2011).Changesinthedorsalhornofthespinalcordare

(6)

etal.,1992).Centrallyactinganalgesicdrugs suchasmorphine

inhibitboth phaseswhileperipherallyactingdrugs inhibitonly

thelatterphase(Santosetal.,1994;Chenetal.,1995;Agbajeand

Adeneye,2008).Studieshaveshowntheinvolvementofserotonin,

histamine,substanceP,excitatoryaminoacidandprostaglandin

inthelatephaseofformalintestwithbradykininaffectingboth

phases(Tjølsenetal.,1992;DoakandSawynok,1997;Rezayatetal.,

1999).M.cecropioidesinhibitedboththeearlyandthelatephaseof

formalininducedpainbutgreaterinhibitionwasobservedinthe

latephasewhichcomparedfavorablywiththestandarddrug

(mor-phine)usedinthestudy.Thus,suggestingmoreperipheralaction

thancentraleffect.

Tofurtherconfirmtheinvolvementofthecentralmechanism

intheanti-nociceptiveeffectofM.cecropioides,thetailcliptest

wasused.Inthismodel,increaseinthepainreactiontime(latency

period)indicatesthelevelofanti-nociceptioninducedbythedrug

orextract. Theextract ofM.cecropioides produced a significant

(p<0.01)dosedependentincreaseinpainthresholdinmice.This

effectwashowevermildwhencomparedwiththestandarddrug

(morphine).Maximuminhibitionoftheextractwasobservedat

90minwhilethatofthestandardwasseenat120min.Thisfurther

confirmedthattheplantextracthasverymildcentralactivity.

Thisisthefirstreportoftheanti-inflammatoryand

antinoci-ceptive effects of M. cecropioides in literature. However, the

anti-inflammatoryeffect ofpomolic acidisolated fromCecropia

pachystachya, a member of the family Cecropiaceae has been

reported(Schinellaetal.,2008).

Phenoliccompoundsaresecondarymetabolitesfoundinplants.

Invitroandanimal studieshaveshown thatpolyphenolic

com-poundssuchasflavonoidsandphenolicacidscanexertmultiple

activitiessuchasanti-inflammatoryandanalgesiceffects(Larrosa

et al., 2010). Flavonoids have been reported to effect

anti-nociceptiveactivitybytargetingprostaglandins(Raoetal.,1998;

Rajannarayanaetal.,2001).Theresultsfromthisstudysuggestthat

theextractofM.cecropioidesisrichinpolyphenolsandthesemay

beresponsiblefortheobservedbiologicalactivities.

Theresultsfromthemineralcontentdeterminationbyatomic

absorptionspectrophotometryrevealed thepresenceof

magne-sium,manganese,copper,zinc, sodium,potassium,calciumand

iron.Theroleofmagnesiumininflammationhasbeenreported.

Magnesium deficiency in rats is said to lead to the activation

ofmacrophagesand elevationofplasmaconcentrationof

inter-leukin (IL) 6, which is a known mediator of the acute phase

response(Maieretal., 1997,2005).Manganeseisreportedasa

remedyforstrains, sprainsandinflammationasit hasthe

abil-itytoincreasetheleveloractivityofsuperoxidedismutase(SOD)

therebyincreasingantioxidantactivity(Murray,1996).Magnesium

andmanganeseblockcalciumchannels,thereby preventing

cal-ciumuptakeatthepresynapticterminalandsubsequentrelease

ofsynaptictransmitterhenceinhibitingnociception(Abdel-Azim,

2001;Giniatullinetal.,2003).Coppersupplementationhasbeen

reportedtohaveanti-inflammatoryeffectand thisis relatedto

itsabilitytoformcomplexesthatserveasselectiveantioxidants

(DiSilvestroandMarten,1990).Deficiencyofzinchasbeenreported

indiseases associated withchronicinflammationand oxidative

stresssuchasrheumatoidarthritis,diabetes,andcancers(Prasad,

2009).Ithasalsobeenreportedtoincreaseconcentrationof

inflam-matorycytokinesandoxidativestressandinduceapoptosisand

endothelial cell dysfunction(Brown et al., 2002; Prasad, 2008;

Overbeck et al., 2008). Reports suggest that calcium decreases

tumor-promotingpro-inflammatorymarkersintheplasmaof

spo-radiccolorectaladenomapatients.C-reactiveprotein(CRP),tumor

necrosisfactor-␣(TNF-␣)and interleukin-6(IL-6), specific

pro-inflammatorymarkersarereportedtobeelevatedinpatientswith

inflammatoryboweldisease(Kimetal.,2008;Groblewskaetal.,

2008).Calcium issaidtobindtobile acidsandfreefattyacids,

precipitatingthem fromsolutionin thecolonthereby reducing

oxidative stress and inflammation in the colon (Newmark and

Lipkin,1992).Itisalsoreportedtoactivatethecalciumsensing

receptorinvolvedincell-cycleeventsanddifferentiation

promot-ingcell-cellandcell-matrixadhesion(LamprechtandLipkin,2001).

ThepresenceoftheseelementsintheextractofM.creopioides

maycontributetoanti-inflammatoryandanti-nociceptiveeffects

observed.

Conclusively, the extract of M. cecropioides has shown

anti-inflammatoryactionmediatedpossiblythroughtheinhibitionof

histamineandanti-nociceptiveactionmediatedthrough

periph-eral mechanism with a mild central involvement. This study

justifiesthetraditionaluseoftheplantinthetreatmentof

inflam-mationandpainfulconditions.

Authors’contributions

Plantsamplecollection,identificationandthelaboratorywork

werecarriedoutbyEOandOA.FMSand IMcontributedtothe

biologicalstudiesandanalysisofthedata.SAdesignedthestudy,

supervisedtheworkandwrotethemanuscript.Alltheauthorshave

readthefinalmanuscriptandapprovedsubmission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

References

Abdel-Azim,A.,2001.Theinfluenceofdivalentcationsontheanalgesiceffectof opioidandnon-opioiddrugs.Pharmacol.Res.43,521–529.

Adejuwon,A.A., 2001.Protectiveactivity ofthestembarkaqueousextractof Musangacecropioidesincarbontetrachlorideandacetaminophen-inducedacute hepatotoxicityinrats.Afr.J.Trad.Comp.Alt.Med.6,131–138.

Adeneye,A.A.,Ajagbonna,O.P.,Mojiminiyi,F.B.O.,Odigie,I.P.,Etarrh,R.R.,Ojobor, P.D.,Adeneye,A.K.,2006.Thehypotensivemechanismsfortheaqueousextract ofMusangacecropioidesstembarkinrats.J.Ethnopharmacol.106,203–207. Adeneye,A.A.,Ajagbonna,O.P.,Ayodele,O.W.,2007.Thehypoglycemicand

antidi-abeticactivitiesofthestembarkaqueousandalcoholextractsofMusanga cecropioides in normal and alloxan-induced diabetic rats. Fitoterapia 78, 502–505.

Adeyemi,O.O.,Okpo,S.O.,Okpaka,O.,2004.Theanalgesiceffectofthemethanolic extractofAcanthusmontanus.J.Ethnopharmacol.90,45–48.

Agbaje,E.O.,Adeneye,A.A.,2008.Anti-nociceptiveandanti-inflammatoryeffectof aNigeriapolyherbalaqueoustea(PHT)extractinrodent.Afr.J.Trad.Compl.Alt. Med.5,399–408.

Agbaje,E.O.,Fageyinbo,M.S.,2011.Evaluatinganti-inflammatoryactivityofaqueous rootextractofStrophanthushispidus(DC.)(Apocynaceae).Int.J.Appl.Res.Nat. Prod.4,7–14.

Akindele,A.J.,Adeyemi,O.O.,2007.Antiinflammatoryactivityoftheaqueousleaf extractofByrsocarpuscoccineus.Fitoterapia78,25–28.

Ashok,P.,Prasanna,G.S.,Mathuram,V.,2006.Analgesicandanti-inflammatory activ-itiesofthechloroformextractofTrichiliaconnatoides(W&A)Bentilien.IndianJ. Pharm.Sci.68,231–233.

Ayinde,B.A.,Omogbai,E.K.I.,Onwukaeme,D.N.,2003.Pharmacognostic character-isticsandhypotensiveeffectofthestembarkofMusangacecropioidesR.Br. (Moraceae).WestAfr.J.Pharmacol.DrugRes.19,37–41.

Ayinde,B.A.,Onwukaeme,D.N.,Nworgu,Z.A.M.,2006.Oxytociceffectsofthewater extractofMusangacecropioidesR.Brown(Moraceae)stembark.Afr.J. Bio-technol.5,1336–1354.

Bamgbose,S.O.A.,Naomesi,B.K.,1981.StudiesoncrytolepineII:inhibitionof car-rageenaninducedoedemabycrytolepine.PlantaMed.42,392–396. Bentley,G.A.,Newton,S.H.,Starr,J.,1983.Studiesontheanti-nociceptiveactionof

␣-agonistdrugsandtheirinteractionwithopioidmechanisms.Br.J.Pharmacol. 79,25–34.

Berkenkopf,J.W.,Weichmann,B.M.,1988.Productionofprostacylininmice follow-ingintraperitonealinjectionofaceticacid,phenylbenzoquinoneandzymosan: itsroleinthewrithingresponse.Prostaglandins36,693–709.

Brown,K.H.,Peerson,J.M.,Allen,L.H.,Rivera,J.,2002.Effectofsupplementalzinc onthegrowthandserumzincconcentrationsofprepubertalchildren:a meta-analysisofrandomized,controlledtrials.Am.J.Clin.Nutr.75,1062–1071. Burkill,H.M.,1985.TheUsefulPlantsofWestTropicalAfrica.FamiliesA–D.Royal,vol.

1.,seconded.BotanicGardens,Kew,Richmond,UnitedKingdom,pp.346–349. Chen,T.F.,Tsai,H.Y.,Wu,T.S.,1995.Anti-inflammatoryandanalgesicactivitiesfrom

therootsofAngelicapubescens.PlantaMed.61,2–8.

(7)

effectsofArrabidaeabrachypoda(DC.)Bureauroots.J.Ethnopharmacol.133, 396–401.

Dongmo,A.B.,Kamanyi,A.,Bopelet,M.,1996.SaponinsfromtheleavesofMusanga cecropioides(Cecropiaceae)constituteapossiblesourceofpotenthypotensive principles.Phytother.Res.10,23–27.

DiSilvestro,R.A.,Marten,J.T.,1990.Effectsofinflammationandcopperintakeonrat liveranderythrocyteCu–Znsuperoxidedismutaseactivitylevels.J.Nutr.120, 1223–1227.

Doak,G.L.,Sawynok,J.,1997.Formalin-inducednociceptivebehaviorandoedema: involvementofmultipleperipheral5-hydroxytryptamine receptorsubtype. Neuroscience80,939–949.

Duarte,I.D.G.,Nakamura,M.,Ferreira,S.H.,1988.Participationofthesympathetic systeminaceticacid-inducedwrithinginmice.Braz.J.Med.Biol.Res.21, 341–343.

Ferdous,M.,Rouf,R.,Shilpi,J.A.,Uddin,S.J.,2008.Antinociceptiveactivityofthe ethanolicextractofFicusracemosaLinn.(Moraceae).Orient.Pharm.Exp.Med. 8,93–96.

Folin,C.,Ciocalteu,V.,1927.Tyrosineandtryptophandeterminationinprotein.J. Agric.FoodChem.73,627–650.

Franzotti,E.M.,Santos,C.V.F.,Rodrigues,H.M.S.L.,Mourao,R.H.V.,Andrade,M.R., Antoniolli,A.R.,2000.Antiinflammatory,analgesicactivityandacutetoxicityof SidacordifoliaL.(Malva-branca).J.Ethnopharmacol.72,273–278.

Giniatullin,R.,Sokolova,E.,Nistri,A.,2003.ModulationofP2X3receptorsby Mag-nesium2+onratDRGneuronsinculture.Neuropharmacology44,132–140. Groblewska, M., Mroczko, B., Wereszczynska-Siemiatkowska, U., Kedra, B.,

Lukaszewicz,.M.,Baniukiewicz,A.,Szmitkowski,M.,2008.Seruminterleukin 6(IL-6)andC-reactiveprotein(CRP)levelsincolorectaladenomaandcancer patients.Clin.Chem.Lab.Med.46,1423–1428.

Henriques,M.G.,Silva,P.M.,Martins,M.A.,Flores,C.A.,Cunha,F.Q.,Assreuy-Filho,J., Cordeiro,R.S.,1987.Mousepawedema.Anewmodelforinflammation.Braz.J. Med.Biol.Res.20,243–249.

Kamanyi,A.,Bopelet,M.,Tatchum,T.R.,1992.Contractileeffectofsomeextractsfrom theleavesofMusangacecropioides(Cecropiaceae)onuterinesmoothmuscleof therat.Phytother.Res.6,165–167.

Kamanyi,A.,Bopelet,M.,Lontsi,D.,Noamesi,B.K.,1996.Hypotensiveeffectsofsome extractsoftheleavesofMusangacecropioides(Cecropiaceae).Studiesinthecat andtherat.Phytomedicine2,209–212.

Kim,S.,Keku,T.O.,Martin,C.,Galanko,J.,Woosley,J.T.,Schroeder,J.C.,Satia,J.A., Halabi,S.,Sandler,R.S.M.,2008.Circulatinglevelsofinflammatorycytokines andriskofcolorectaladenomas.CancerRes.68,323–328.

Larrosa,M.,González-Sarrías,A.,Yánez-Gascón,M.J.,Selma,M.V.,Azorín-Ortu ˜no, M.,Toti,S.,Tomás-Barberán,F.,Dolara,P.,Espín,J.C.,2010.Anti-inflammatory propertiesofapomegranateextractanditsmetaboliteurolithin-Ainacolitis ratmodelandtheeffectofcoloninflammationonphenolicmetabolism.J.Nutr. Biochem.21,717–725.

Lamprecht, S.,Lipkin,M., 2001. Cellular mechanisms ofcalcium andvitamin Dinthe inhibitionofcolorectalcarcinogenesis. Ann.N.Y. Acad Sci.952, 73–87.

Maier,J.A.M.,Malpuech-Brugère,C.,Rock,E.,Rayssiguier,Y.,Mazur,A.,1997.Serum frommagnesium-deficientratsaffectsendothelialcellsinculture:roleof hyper-lipemiaandinflammation.J.Nutr.Biochem.9,17–22.

Maier,J.A.M.,Bernardini,D., Nasulewicz,A., Mazur,A.,2005. Magnesiumand microvascularendothelialcells:aroleininflammationandangiogenesis.Front. Biosci.10,1177–1182.

Mbagwu,H.O.,Anene,R.A.,2007.Analgesic,antipyreticandanti-inflammatory prop-ertiesofMezoneuronbenthamianumBail(Caesalpiniaceae).Nig.Quart.J.Hosp. Med.17,35–41.

Murray,M.T.,1996.Encyclopedia ofNutritionalSupplements.Harmony,U.S.A., pp.159–180.

Miliauskas,G.,Venskutonis,P.R.,VasBeek,T.A.,2004.Screeningofradicalscavenging activityofsomemedicinalplantsandaromaticplantextract.FoodChem.85, 231–237.

Newmark,H.,Lipkin,M.,1992.Calcium,vitaminD,andcoloncancer.CancerRes.52, 2067s–2070s.

Nù ˜nezGuillén,M.E.,Emim,J.A.S.,Souccar,C.,Lapa,A.J.,1997.Analgesicand inflam-matoryactivitiesoftheaqueousextractofPlantagomajorL.Pharm.Biol.35, 99–104.

Overbeck,S.,Rink,L.,Haase,H.,2008.Modulatingtheimmuneresponsebyoralzinc supplementation:asingleapproachformultiplediseases.Arch.Immunol.Ther. Exp.56,15–30.

Prasad,A.S.,2008.Clinical,immunological,anti-inflammatoryandantioxidantroles ofzinc.Exp.Gerontol.43,370–377.

Prasad,A.S.,2009.Zinc:roleinimmunity,oxidativestressandchronicinflammation. Curr.Opin.Clin.Nutr.Metab.Care12,646–652.

Rajannarayana,K.,Reddy,M.S.,Chaluvadi,M.R.,Krisha,D.R.,2001.Bioflavonoids classification,pharmacological,biochemicaleffectsandtherapeuticpotential. IndianJ.Pharmacol.33,2–16.

Rao,M.R., Rao,Y.M.,Rao,A.V., Prabhkar,M.C.,Rao, C.S.,Muralidhar,N.,1998. Antinociceptiveandanti-inflammatoryactivityofaflavonoidisolatedfrom Car-allumaattenuate.J.Ethnopharmacol.62,63–66.

Rezayat,M.,Tabarrai,E.,Parvini,S.,Zarrindast,M.R.,Pirali,M.,1999.EffectsofCCK antagonistsonGABAmechanism-inducedanti-nociceptiveintheformalintest. Eur.Neuropsychopharmacol.9,9–14.

Santos,A.R.S.,Filho,V.C.,Niero,R.,Viana,A.M.,Morenof,N.,Campos,M.M.,Yunes, R.A.,Calixto,J.B.,1994.Analgesiceffectsofcalluscultureextractsfromselected speciesofPhyllantusinmice.J.Pharm.Pharmacol.46,755–759.

Schinella,G.,Aquila,S.,Dade,M.,Giner,R.,delCarmenRecio,M.,Spegazzini,E.,de Buschiazzo,P.,Tournier,H.,Ríos,J.L.,2008.Anti-inflammatoryandapoptotic activitiesofpomolicacidisolatedfromCecropiapachystachya.PlantaMed.74, 215–220.

Senjobi,C.T.,Ettu,A.O.,Gbile,Z.O.,2012.PharmacologicalscreeningofNigerian speciesofM.cecropioidesR. Br. ExTeddie(Moraceae)inrodentsas anti-hypertensive.Afr.J.PlantSci.6,232–238.

Shibata,M.,Ohkubo,T.,Takahashi,H.,Inoki,R.,1989.Modifiedformalintest: char-acteristicbiphasicpainresponse.Pain38,347–352.

Singh,S.,Majumdar,D.K.,1995.AnalgesicactivityofOcimumsanctumandits pos-siblemechanismofaction.Int.J.Pharmacogn.33,188–192.

Tjølsen,A.,Berge,O.G.,Hunskaar,S.,Rosland,J.H.,Hole,K.,1992.Theformalintest: anevaluationofanti-nociceptive.Pain51,5–17.

Uwah,A.F.,Otitoju,O.,Ndem,J.I.,Peter,A.I.,2013.Chemicalcompositionand anti-microbialactivitiesofadventitiousrootsapofMusangacecropioides.Pharm.Lett. 5,13–16.

Vianna,G.S.B.,dovale,T.G.,Rao,V.S.N.,Matos,F.J.A.,1998.Analgesicand anti-inflammatoryeffectsoftwochemotypesofLippisalba:acomparativestudy. Pharm.Biol.36,347–351.

Vinegar,R.,Truax,J.F.,Selph,J.L.,Johnston,P.R.,Venable,A.L.,McKenzie,K.K.,1987. Pathwaytocarrageenaninducedinflammationinthehindlimboftherat.Fed Proc46,118–126.

Wolfe,K.,Wu,X.,Liu,R.H.,2003.Antioxidantactivityofapplepeels.J.Agric.Food Chem.51,609–614.

Zakaria,Z.A.,AbdulGhani,Z.D.F.,Nor,R.N.S.,Gopalan,H.K.,Sulaimon,M.R.,Mat Jais,A.M.,Somchit,M.N.,Kader,A.A.,Ripin, J.,2008.Antinociceptive, anti-inflammatory,andantipyreticpropertiesofanaqueousextractofDicranopteris linearisleavesinexperimentalanimalmodel.J.Nat.Med.62,179–187. Zaninir,J.C.,Medeiros,Y.S.,Cruz,A.B.,Yunes,R.R.A.,Calixto,J.B.,1992.Actionof

Imagem

Fig. 3. Effect of Musanga cecropioides (MC) on formalin induced reflex in mice. Data represented as mean ± SEM (n = 6)

Referências

Documentos relacionados

Lovastatin (administered 1 h prior to carrageenan), at oral doses of 2, 5, and 10 mg/kg, markedly attenuated paw edema formation in rats at the 4th hour after carrageenan

The anti-inflammatory effects of long-term ethanol intoxication were determined during ethanol treatment and withdrawal on the basis of neutrophil and eosinophil migration, hind

We have previously determined the chemical composition as well as the analgesic and anti-inflammatory activities of a standard ethanol extract of a Bulgarian sample (Et-Blg) (Prytzyk

The tests used were paw edema induced by carrageenan, dextran, histamine or serotonin; peritonitis induced by carrageenan and fMLP, as well as the measurement of MPO activity, TNF-

However, the pharmacodynamic tests evaluated the anti- inflammatory activity, anti-edematogenic and nociceptive of the drug, they showed that the effect of DMA

The NST decreased the formation of edema induced by histamine, serotonin, capsaicin and PGE2, suggesting the NST might prevent the release of endogenous mediators responsible

Also, most of the tested compounds exhibited high anti-inflammatory activity compared with indomethacin using carrageenan induced rat paw edema assay.. Keywords:

maderaspatensis was investigated using carrageenan-induced paw edema in rats, xylene- induced edema in mice, mouse writhing and tail clip tests respectively.. The effect of the