• Nenhum resultado encontrado

NOTE: The above stated conditions can be plotted on the PH

N/A
N/A
Protected

Academic year: 2019

Share "NOTE: The above stated conditions can be plotted on the PH"

Copied!
6
0
0

Texto

(1)

DuPont

Suva

®

REFRIGERANTS

Technical Information

The PH diagram is a common method of graphically present-ing the thermodynamic properties of a refrigerant. From this diagram, approximate thermodynamic properties can be quickly determined. If accuracy is essential, detailed thermo-dynamic tables must be used.

The PH diagram can be used to determine approximately any of the following theoretical values:

1. Condenser Pressure. 2. Evaporator Pressure.

3. Heat Content (enthalpy) of liquid.

4. Heat Content (enthalpy) of saturated vapor. 5. Latent heat of vaporization.

6. Refrigerating effect.

7. Weight of refrigerant circulated per ton of refrigeration. 8. Specifi c volume of vapor leaving evaporator.

9. Entropy of vapor.

10. Temperature of vapor after compression.

12. Horsepower requirement per ton of refrigeration. 13. Heat removed in condenser.

14. Volume of vapor handled per ton of refrigeration. 15. Specifi c heat of the vapor at constant pressure (Cp). 16. Specifi c heat of the vapor at constant volume (Cv).

The use of a PH diagram is illustrated by means of the follow-ing examples usfollow-ing Suva® R-134a refrigerant.

For simplifi cation, it is assumed that the temperature of the liquid leaving the condenser and entering the evaporator is 86°F, while the temperature of liquid and vapor in the evapora-tor and the vapor entering the compressor is 5°F. It has been assumed that the other refrigerant properties do not change from leaving the condenser to entering the evaporator, or from leaving the evaporator to entering the compressor.

NOTE: The above stated conditions can be plotted on the PH diagram at the end of this paper.

Using the Pressure Enthalpy Diagram

The PH Diagram

(2)

Table 1

Examples �f Therm�dynamic Pr�perties ... �u�a� 134a (R-134a)

Pressure, psia Volume, cu. ft./lb. Density, lb./cu. ft. Enthalpy, BTU/lb. Entropy, BTU/(lb.) (°R) Temp., °F Liquid Vapor Liquid Vapor Liquid Vapor Liquid Latent Vapor Liquid Vapor

–40 7.42 7.42 0.0113 5.7904 88.31 0.1727 0.0 97.2 97.2 0.0000 0.2316 –20 12.89 12.89 0.0116 3.4471 86.30 0.2901 6.0 94.2 100.2 0.0139 0.2281 0 21.16 21.16 0.0119 2.1580 84.23 0.4634 12.1 91.0 103.1 0.0275 0.2255

20 33.13 33.13 0.0122 1.4090 82.08 0.7097 18.4 87.7 106.0 0.0408 0.2235 40 49.77 49.77 0.0125 0.9523 79.82 1.0501 24.8 84.1 108.8 0.0538 0.2220 60 72.17 72.17 0.0129 0.6622 77.43 1.5102 31.4 80.2 111.5 0.0666 0.2208

80 101.49 101.49 0.0134 0.4709 74.89 2.1234 38.1 75.9 114.0 0.0792 0.2199 100 139.00 139.00 0.0139 0.3408 72.13 2.9347 45.1 71.2 116.3 0.0918 0.2190 120 186.02 186.02 0.0145 0.2494 69.10 4.0089 52.4 65.9 118.3 0.1043 0.2181

For additional thermodynamic properties refer to DuPont publication T-134a – ENG.

Figure 1. DuP�nt� �u�a� Pressure Enthalpy (PH) Diagram (IP) Values

(3)

1. Condenser Pressure: The 86°F point of the saturated liquid line gives a pressure of 112 psia, which is read on the left hand side of the diagram.

2. Evaporator Pressure: The 5°F point of the saturated liquid line gives a pressure of 24 psia, which is read on the left hand side of the diagram.

3. Heat Content (Enthalpy) of Liquid: The 86°F point on the saturated liquid line gives a heat content of the liquid leaving the condenser (or entering the evapora-tor) or 40.2 BTU/lb., which can be read on the horizontal marginal scales.

4. Heat Content (Enthalpy) of Saturated Vapor: The 5°F point on the saturated vapor line gives a heat content of the vapor leaving the evaporator (or entering the com-pressor) or 103.9 BTU/lb., which can be read on the horizontal marginal scales.

5. Latent Heat of Vaporization: The latent heat of vapor-ization may be defi ned as the difference in heat content of saturated vapor and saturated liquid at the same tem-perature. At the evaporator temperature of 5°F, the heat content of the saturated liquid is 13.7 BTU/lb. Thus, the latent heat of vaporization at 5°F is 90.2 BTU/lb. (103.9 – 13.7 = 90.2).

6. Refrigerating Effect: The theoretical refrigerating ef-fect may be simply determined by subtracting the heat content of the liquid entering the evaporator at 86°F from the heat content of the vapor leaving the evaporator at 5°F. Thus the theoretical refrigerating effect is 63.7 BTU/ lb. (103.9 – 4.2 = 63.7).

7. Weight of Refrigerant Circulated per Ton of Refriger-ation: The standard ton of refrigeration may be defi ned as the removal of 200 BTU of heat per minute. Thus 3.1 pounds of Suva® R-134a per minute per ton of refrigera-tion must be circulated in this case.

8. Specifi c Volume of Vapor Leaving Evaporator: The specifi c volume of the vapor leaving the evaporator (or entering the compressor) can be determined by referring to the constant volume lines intersecting the saturated vapor line nearest the 5°F point. The specifi c volume of the vapor thus determined is 1.93 cu. ft./lb.

9. Entropy of Vapor: The entropy of the vapor can be determined by referring to the constant entropy line intersecting the saturated vapor lines nearest the 5°F point. This gives a vapor of 0.225 BTU/lb/°R.

10. Temperature of Vapor after Compression: If the com-pression is assumed to be isentropic (heat of compres-sion added at constant entropy), the theoretical tem-perature at the point in the superheat region where the constant entropy line of 0.225 BTU/lb/°R intersects the condenser pressure line of 112 psi is the proper value. Thus, the theoretical temperature of the vapor after compression is 98°F, which is estimated by referring to the constant temperature lines nearest the specifi c point on the diagram.

11. Heat Equivalent of Compression Power: The theoreti-cal heat equivalent of compression power (isentropic compression) can be obtained by subtracting the heat content of the vapor entering from the heat content of the vapor leaving the compressor. The heat content of the vapor leaving the compressor can be read from the horizontal marginal scale for the point determined imme-diately above on the 98°F constant temperature line. This gives 117 BTU/lb. for the heat content of vapor leaving the compressor, and thus a heat equivalent of compres-sion power of 13.1 BTU/lb. (117.0 – 103.9 = 13.1).

12. Horsepower Requirement per Ton of Refrigeration: The theoretical required horsepower per ton of refrigera-tion now can easily be calculated for this system.

Required H.P./Ton =

13. Heat Removed in Condenser: The heat removed in the condenser may be determined by the difference in the heat content of the superheated vapor entering the condenser and the saturated liquid (zero degrees of sub-cooling) leaving the condenser. This gives 76.8 BTU/lb. of heat removed in the condenser (117 – 40.2 = 76.8). 200 BTU/min./ton

63.7 BTU/lb = 3.1 lbs./min./ton

76.8

Heat of Compression (BTU/lb. x 200 (BTU/min/ton) x 778 (ft.-lb./BTU) Refrigereation Effect (BTU/lb.) x 33,000 (ft/-lb./min./H.P.)

Heat of Compression x 4.715 Refrigeration Effect =

13.1 x 4.715 63.7

(4)

14. Volume of Vapor Handled per Ton of Refrigeration: This value can be determined by multiplying the number of pounds of refrigerant circulated per minute per ton of refrigeration by the specifi c volume of the vapor entering the compressor (or leaving the evaporator). This gives 5.98 cu. ft./min./ton (3.1 x 1.98 = 5.98), which is the theoretical piston displacement or volumetric displace-ment in cubic feet per minute per ton of refrigeration.

15. Specifi c Heat of the Vapor at Constant Pressure (Cp): Find the enthalpy of the vapor at temperatures just below and just above that desired, but at the same pressure. Find the difference in the enthalpy and divide by the dif-ference in temperatures. To fi nd the Cp for Suva® R-134a at 150°F and 100 psia.

Enthalpy at 160°F and 100 psia = 133.2 BTU/lb. Enthalpy at 140°F and 100 psia = 128.5 BTU/lb.

Enthalpy difference = 4.7 BTU/lb.

= 0.235 BTU/lb./°F = 0.235 BTU/lb./°F4.7 BTU/lb. = 0.235 BTU/lb./°F = 0.235 BTU/lb./°F

20°F Cv =

4.4 BTU/lb. 0.093 BTU/lb. 4.493 BTU/lb.

= 0.22 BTU/lb./°F 4.493 BTU/lb.

20°F

16. Specifi c Heat of the Vapor at Constant Volume (Cv): The procedure is similar to that used for fi nding Cp ex-cept that the enthalpy must be correct for the product of the volume times the change in pressure.

To fi nd the Cv for Suva® R-134a at 150°F and a volume of 1.00 cu. ft./lb.

Enthalpy of vapor at 160°F and 1.00 cu. ft./lb. = 134.7 Enthalpy of vapor at 140°F and 1.00 cu. ft./lb. = 130.3

Enthalpy difference = 4.4

Pressure at 160°F and 1.00 cu. ft./lb. = 61.5 psia Pressure at 140°F and 1.00 cu. ft./lb. = 61.0 psia

Pressure difference = 61.5 psia

J = 0.18505 (Conversion factor from Work Units to Heat Units (psia) (cu. ft. lb.) to heat units (BTU/lb.)

(5)

5

HFC-134a

Pressure-Enthalpy Diagram

(6)

Copyright © 2005, DuPont or its affi liates. The DuPont Oval Logo, DuPont™, The miracles of science , and Suva®, are registered trademarks or trademarks of DuPont or its affi liates.

NO PART OF THIS MATERIAL MAY BE REPRODUCED, STORED IN A RETRIEVAL SYSTEM OR TRANSMITTED IN ANY FORM OR BY ANY MEANS ELECTRONIC, MECHANICAL, PHOTOCOPYING, RECORDING OR OTHERWISE WITHOUT THE PRIOR WRITTEN PERMISSION OF DUPONT.

Europe

DuPont de Nemours International S.A. 2 Chemin du Pavillon P.O. Box 50

CH-1218 Le Grand-Saconnex Geneva, Switzerland 41-22-717-5111

Canada

DuPont Canada, Inc. P.O. Box 2200, Streetsville Mississauga, Ontario Canada

L5M 2H3 (905) 821-3300

Mexico

DuPont, S.A. de C.V. Homero 206

Col. Chapultepec Morales C.P. 11570 Mexico, D.F. 52-5-722-1100

South America

DuPont do Brasil S.A. Alameda Itapecuru, 506 Alphaville 06454-080 Barueri São Paulo, Brazil

55-11-7266-8263

DuPont Argentina S.A.

Casilla Correo 1888 Correo Central

1000 Buenos Aires, Argentina 54-1-311-8167

Pacifi c

DuPont Australia P.O. Box 930

North Sydney, NSW 2060 Australia

61-2-99236111

Japan

Mitsui DuPont Fluorochemicals Co., Ltd. Chiyoda Honsha Bldg.

5-18, 1-Chome Sarugakucho Chiyoda-Ku, Tokyo 101-0064 Japan 81-3-5281-5805

Asia

DuPont Taiwan P.O. Box 81-777 Taipei, Taiwan 886-2-514-4400

DuPont China Limited P.O. Box TST 98851

1122 New World Offi ce Bldg. (East Wing) Tsim Sha Tsui

Kowloon, Hong Kong Phone: 852-734-5398 Fax: 852-236-83516

DuPont Thailand Ltd. 9-11 Floor, Yada Bldg. 56 Silom Road

Suriyawongse, Bankrak Bangkok 10500 Phone: 66-2-238-0026 Fax: 66-2-238-4396

DuPont China Ltd. Rm. 1704, Union Bldg. 100 Yenan Rd. East

Shanghai, PR China 200 002 Phone: 86-21-328-3738 Telex: 33448 DCLSH CN Fax: 86-21-320-2304

DuPont Far East Inc.

6th Floor Bangunan Samudra No. 1 JLN. Kontraktor U1/14, SEK U1 Hicom-Glenmarie Industrial Park 40150 Shah Alam, Selangor Malaysia Phone 60-3-517-2534

DuPont Korea Inc. 4/5th Floor, Asia Tower

#726, Yeoksam-dong, Kangnam-ku Seoul, 135-082, Korea

82-2-721-5114

DuPont Singapore Pte. Ltd. 1 Maritime Square #07 01 World Trade Centre Singapore 0409 65-273-2244

DuPont Far East, Philippines 8th Floor, Solid Bank Bldg. 777 Paseo de Roxas Makati, Metro Manila Philippines

Phone: 63-2-818-9911 Fax: 63-2-818-9659

DuPont Far East Inc. 7A Murray’s Gate Road Alwarpet

Madras, 600 018, India 91-44-454-029

DuPont Far East Inc.—Pakistan 9 Khayaban-E-Shaheen Defence Phase 5 Karachi, Pakistan 92-21-533-350

DuPont Far East Inc. P.O. Box 2553/Jkt Jakarta 10001, Indonesia 62-21-517-800

For Further Information: (800) 235-SUVA

www.suva.dupont.com

Imagem

Figure 1.  DuP�nt� �u�a �  Pressure Enthalpy (PH) Diagram (IP) ValuesFigure 1.   Pressure Enthalpy (PH) Diagram (IP) Values

Referências

Documentos relacionados

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

No campo, os efeitos da seca e da privatiza- ção dos recursos recaíram principalmente sobre agricultores familiares, que mobilizaram as comunidades rurais organizadas e as agências

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

 O consultor deverá informar o cliente, no momento do briefing inicial, de quais as empresas onde não pode efetuar pesquisa do candidato (regra do off-limits). Ou seja, perceber

H„ autores que preferem excluir dos estudos de prevalˆncia lesŽes associadas a dentes restaurados para evitar confus‚o de diagn€stico com lesŽes de

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

não existe emissão esp Dntânea. De acordo com essa teoria, átomos excita- dos no vácuo não irradiam. Isso nos leva à idéia de que emissão espontânea está ligada à