• Nenhum resultado encontrado

Braz. J. Phys. vol.31 número3

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.31 número3"

Copied!
5
0
0

Texto

(1)

On the Biphoton Wavelength

P. H. SoutoRibeiro

InstitutodeFsia,

UniversidadeFederaldoRiode Janeiro,

CaixaPostal 68528,RiodeJaneiro,RJ,21945-970,Brazil

Reeivedon30January,2001

Wereportonanexperimentshowingthatthewavelengthofabiphotonislearlydependentonthe

measurementshemeandonthewayitisdened. Itisshownthatitantakeanyvalue,depending

ontheontrolof theinterferometerphasedierenes. It ispossibleto identifythe interfereneof

thesingleandtwo-photonwavepaketsaspartiularasesofthemostgeneralinterfereneproess.

Thevariablewavelengthhasnoimpliationontheenergyoftheindividualphotonsneitheronthe

total energyofthebiphoton.

I Introdution

Theuseofinterferometryformeasuringthewavelength

of a radiation eld is probably oneof its older

appli-ations. Nowadays the onept of interferometry has

beenextended. It has beome possibleto observe

ex-perimentallytheinterfereneforonepartileandeven

formultipartilewaveelds. Thetwo-photoneld

pro-dued in the parametri down-onversion, have been

extensivelyutilized in many ofthe so-alled

multipar-tileinterferometryexperiments[1,2℄.

Inthisnewtypeofinterferene,itisnotpossibleto

ignorethequantumaspetsoftheeletromagnetield.

In quantum interferometry, it is also possibleto

asso-iateinterferenepatternstothewavelengthofaeld.

For single photon elds, lassial and quantum

inter-pretations of the interferene experiments lead to the

same wavelength. For multi-photon or multi-partile

elds however, the wavelength an be dependent on

thewaythemeasurementisperformed,andalassial

interpretation is no longer possible. Thinking of

two-photon wavepakets, for example, if we anmakethe

twophotonstraveltogetherthroughaninterferometer

astheywereontainedinonepaket,weanmeasurea

wavelengthorrespondingtoanentitywiththeenergy

twotimeslargerthanthesinglephotonone[3,4℄. This

oneptisquitegeneralinquantumphysisanditan

beextendedto anypartile oreld and theDeBroglie

wavelengthwillbeassoiatedtothetotalenergyofthe

system.

Inthis paperwestudythetwophotoninterferene

fromthepointofviewofthemeasurementofthe

wave-length. We present an experiment whose

ongura-tionis apable to produequantum interferene

with-out the use of material interferometers, in the sense

It onsists of a transverse version of interferometers

of the type of Mandel's[5℄ and Zeilinger's[6℄. It is

alsosimilartotheinterferometerpresentedbyKlyshko

et al. in Ref.[7℄, but without the double-slits and

with the possibility of deteting signal and idler

pho-tons in ompletely independene, asit will be shown.

This is the main dierene from previous transverse

interferometers[8, 9, 10, 11℄. Another experiment

re-entlyperformedbyFonseaetal.[12℄,utilizesthesame

priniple for measuring a non-loal wavelength for a

two-photon wavepaket. The onguration presented

here is similar to that presented by White et al.[13℄

for produing polarization entangled states with high

intensities, however in our ase the polarization state

is not entangled. Twin photons from the parametri

down-onversionproessareused. Thesephotonshave

beenalledbiphotonsasareferenetotheirstrong

or-relationat thequantum level. Theinterferenefringes

are obtainedby measuringoinideneountsand the

frequeny of theosillationof the patterns are

assoi-atedtowavelengthsforthebiphotons. Itisshownthat

this frequenyanbearbitrarily varied,depending on

the way the measurements are performed. It is also

shown,that themeasuredwavelengthsanbeassigned

tosingleandtotwo-photonwavepakets,fortwokinds

of measurement. Attempts to onneting the

osilla-tionfrequenyandthebiphotonwavelengthsforother

kindsofmeasurementsindiate thatspeialaremust

betakenindeningandmeasuringwavelengthsin

mul-tipartileinterferometry. Ontheotherhand,this

inter-ferometeranbeusedintheprodutionand

manipula-tion ofposition entangledstatesand has potentialfor

appliationsin measurementsofdirationindexes. A

single mode quantum theory is enough to explain the

behaviorof the frequeny of the patterns and it is in

(2)

II The two-photon interferene

Let us analyze the situation skethed in Fig. 1. The

pump laser passes throughtwo nonlinear rystals,

la-beled rystal 1 and rystal 2. Twin photons an be

produedin eah oneofthe rystals. Signal and idler

photonsproduedinrystal1arediretedtodetetors

A andBrespetively, sothat oinidenebetween

sig-nal andidlerhannelsanbemeasured. Supposethat

degeneratephotonpairsproduedinrystal2,analso

be direted to the same detetors. This ondition is

simplyfullledbytiltingrystal2relativelytothe

ver-tial axis.

Figure1. Outlineoftheexperiment.

Thesituation desribedaboveissuitablefor

quan-tuminterferene.Notethatthetimeofemissionof

pho-tonpairsannotbespeied,sineitisaspontaneous

emissionandtheoherenelengthofthepumplaseris

largerthanthedistanebetweenrystals. Inthisase,

oinideneountsproduedbyphotonpairsoriginated

in rystal 1are indistinguishablefrom thoseof rystal

2. Interferenefringesintheoinideneountingrate

anbeobserved,aslongasthephasedierenebetween

thesetwoprobabilitiesisvaried. Aseahrystalworks

likeanextendedsoure,nointerfereneisobservedfor

theindividualintensities.

Thisinterfereneproessanbedesribedina

sim-pliedform withtheuseof amonomodequantum

ap-proah. It isenoughto explainthemain propertiesof

the oinidenepatterns, inludingthe eetive

wave-length. However,fortakingintoaountforthedegree

of oherene and its onsequenes in the visibility of

the fringes, a multi-mode theory would be neessary.

In this work, wewill restrit ourselves to the simpler

ase.

The quantum state of the eld produed by both

rystalsisgivenby:

j i= 1 p 2 (j1i i1 j1i s1 j0i i2 j0i s2 +j0i i1 j0i s1 j1i i2 j1i s2 ): (1)

The eletri eld operators for signal and idler

E (+) A =a 1s e i( 1s +kr 1s ) +a 2s e i( 2s +kr 2s ) ; (2) E (+) B =a 1i e i( 1i +kr 1i ) +a 2i e i( 2i +kr 2i ) ; where jx

isthephaseoftheeldattheemissionpoint,

withj=1,2 andx =s,iandkisthewavenumberfor

bothsignalandidlermodes. r

jx

isthedistanebetween

rystalj andthedetetoratthex side.

The oinideneountingrate anbe easily

alu-lated:

C = jE (+) A E (+) B j ij 2 (3)

= 2[1+os(

1i + 1s +kr 1i +kr 1s 2i 2s kr 2i kr 2s )℄:

From the phase mathing onditions we havethat

1i + 1s = 1p and 2i + 2s = 2p , where 1p and 2p

are the pump laser phases at rystals 1and 2

re-spetively. Wesee thatoneonditionforobserving

in-terfereneisthat

1p

2p

=onst. Thatistosaythe

oherenelengthofthepumplasermustbelargerthan

thedistane betweenrystals.

Eq. 3anbeputin theform:

C=2f1+os[k(Æ

i +Æ

s

)+℄g; (4)

where

=

1p

2p +k(r

1i +r

1s r

2i r

2s ); (5)

r

1i = r

1i +Æ 1i ; r 1s = r

1s +Æ 1s ; r 2i = r

2i +Æ 2i ; r 2s = r

2s +Æ 2s ; Æ i = Æ 1i Æ 2i ; Æ s = Æ 1s Æ 2s :

With theaidofEqs. 3and4itislearlyseenthat

theinterferenefringes aresensible to phasesthat

de-pend on thepaths from rystals1and 2 todetetors.

ItisworthnotingthatphaseÆ

i

anbevaried

indepen-dently fromÆ

s

. Displaing signaloridler detetorone

anvary eah one of these phases. Considerthe ase

whereÆ

i =Æ

s

. Inthis ase,thevariablephasein Eq.

4anbewrittenas:

C=2f1+os[k(1+)Æ

s

+℄g: (6)

Theparameterintheaboveequationanassume

any value and we demonstrate experimentally in this

(3)

III The Experimental Set-up

The experimental set-up shown in Fig. 1 was

imple-mentedwith a.w. He-Cd laseroperatingat 442nm.

Theoutput powerwasabout 200mW.It was used to

pump two1mlongLiIO

3

rystals. Thedistane

be-tween rystalswas around 2 m and the distane

be-tweenrystal1andbothdetetorsAandBwasnearly

1.5m. Crystalswereutforollineardegenerate

down-onversion,thatistosaytheoptialaxisat37.3degrees

relativelytothe input/outputfaes. Inorderto make

degeneratebeamsemergefromtherystalatangles

dif-ferentfromzero,itwasneessarytotiltitslightly

rela-tivelytothevertialdiretion.Inourase,thediretion

ofpropagationofthetwinbeamswerenearly7degrees

with the pump beam diretion. The output angle of

the beams produed in rystal 2 were slightly bigger,

in ordertoahievesuperposition atthedetetorswith

thebeamsoriginatedatrystal1.

The detetors were avalanhe photodiodes inside

photon ounting modules (SPCM-AQ/ EG&G). The

inoming light passes through a small vertial slit

(about0.5mm) andanAR oatedlens with25.4mm

foal length,before reahing theativedetetion area

of about 0.2 mm. The modules are mounted on

X-Y translation stages, sothat the transverse detetion

planeanbesannedwithupto5m resolution. The

outputpulsesweresenttoounters(SR-400andSR-620

/SRS),wheresinglerateswereountedandthe

oini-denelogiwasimplemented. Counterswereontrolled

byamiroomputerwhihwasusedtosavedata.

IV Experimental Results

We havearried outoinidene interferene patterns

for several values of the parameter in Eq. 6. For

doingso,wehavesimplyhangedtherelative

displae-mentbetweendetetorsA andB.

For=0, detetorBwaskept xed,while

dete-torAwassannedtransversallyinthehorizontalplane.

The single photonand the oinidene ountingrates

were thenregistered. The resultsare shownin Fig. 2.

Whilethesinglesshowanearlygaussianprole,the

o-inidenesshowinterferenefringes. Thevisibilityand

thewavevetoroftheoinidenefringeswereobtained

byanonlinearurvettingwiththeusualfuntionfor

thedouble-slit interferene. Thewavevetorfor=0

will be alled k

0

. It isassoiatedto thesingle photon

interferene. Notethattheabsolutevalueofk

0

depends

onthegeometry. Intheanalogywith adouble-slit

ex-periment,eahrystalorrespondtooneslit. However,

thelightisnotemittedinthediretionthatwould

or-respond toaentral(zeroorder)maximum. It is

emit-tedinadiretionorrespondingtoahigherorder. This

meansthattheassoiatedwavelengthismultipliedbya

largeinteger,whihis notimportantinthis work. For

traryunits. Theproedureisrepeatedkeepingdetetor

A xed and sanning detetor B. The result shows a

prolesimilartothatofFig. 2,showingthesymmetry

between sans with oneof the detetors xed. These

patternsanbeinterpretedassinglephotonwavepaket

interfereneones. Thisisaonsequeneofthefatthat

onlysignaloridlerpathsarehanged,whenonlysignal

oridlerdetetorsaremovedindividually.

Figure2.Singlesandoinideneprolefor=0.Detetor

AissannedanddetetorBisxed.

For = + 1, detetors A and B were

simultane-ously displaedwith thesame veloity. This is

equiv-alent to sayingthat the detetorswere displaedwith

equal steps. The resultis shown in Fig. 3. The

on-vention usedestablishes that thepositive impliesin

additive phase shifts in signal and idler sides. In the

experiment, this ondition was ahieved bydisplaing

both detetors towards the pump beam. The

visibil-ity and the wavenumber, that gives thefrequeny of

the osillations,wereset as free parametersin the

t-tings. As a result, we observethat the wave number

for the urve in Fig. 3 is two times the one in Fig.

2. k

+1

(signal side)=k

+1

(idler side)=2k

0

. This was

predited by Eq. 6 for =+ 1and itworks alsofor

= -3. The pattern of Fig. 3 anbe interpreted as

atwo-photonwavepaketinterferene. Wewilladdress

thispointagainin nextsetion.

Figure3. Coinidene prolefor =+1. DetetorAand

Baresannedsimultaneouslywiththesameveloity.

For = + 1

2

(4)

so that detetors get together to the position

orre-spondingtotheoinidenepeakdetetioninprevious

measurements. With this proedure it is possible to

take are for the symmetry of the interferene urve.

Theresultsareshownin Fig. 4. InFig. 4athe

oini-dene ountsare plotted as afuntion of thedetetor

ApositionandinFig. 4b,thesameoinideneounts

are plotted as a funtion of the detetor B position.

This is neessary now, beause the displaements are

dierent, we do not have a ommon oordinate

any-more, as in previous ases. The tting of the urves

leadto k

+ 1

2

(signalside)= 3

2 k

0

, whih orrespondsto

=+ 1

2 andk

+ 1

2

(idlerside)=3k

0

whihorresponds

to

i

=+2whenthephaseshiftiswrittenintermsof

theidleroordinates. ThisisinagreementwithEq. 6.

Figure4. Coinideneprolesfor=+ 1

2

. DetetorAand

Baresannedsimultaneouslywithdierentveloities.

For = -1

2

,detetor Aisstilldisplaedtwotimes

slowerthan detetor B, but now the negativesign

in-diates that the sense of one of the displaements is

hanged. Detetor A movestowardsthe pump beam

whiledetetorBmovebakwardsthepumpbeam. The

resultsareshownin Fig. 5. InFig. 5atheoinidene

ountsareplottedasafuntionofthedetetorA

posi-tion whilein Fig. 5b theyareplotted asafuntionof

thedetetor Bposition. Fromthepointofviewof

de-tetorA= -1

2

andthewavevetorisk 1

2

(idlerside)

= 1

2 k

0

. FromthepointofviewofdetetorB

s =-2

andk 1(signalside)=k

0 .

Figure5. Coinideneprolesfor=+ 1

2

. DetetorAand

Baresannedsimultaneouslywithdierentveloities.

V Disussion

FromEq. 6and experimental resultspresentedin

pre-vioussetion,itislearthatthewavelengthassoiated

totheoinidenepatternsanbeontinuouslyvaried

andthat itanassumeanyvalue,evenafration ora

multipleofthesinglephotonone. Thisfat anbe

ex-plainedbythephaseentanglementbetweensignaland

idlerphotons. Italsoseemsthatithasnoimpliations

ontheenergyoftheindividual photonsneitheronthe

totalenergyofthebiphotons. Itislearfromall

experi-mentsutilizingtwinphotonsfromtheparametri

down-onversion,thattheproessbehindallquantumeets

isentanglement. Theentanglementisaonsequeneof

aproessthat weouldalltransferof spetrumfrom

the pump beam to the biphotons. A partiular ase

ofthat isthetransferofangularspetrumdesribedin

Ref. [11℄ dealing with the transverse degrees of

free-domoftheeld. Intheexperimentwepresenthere,it

is nie to be able to understand the main features in

onnetionwith entanglementand transfer of angular

spetrum for a simple ase utilizing a monomode

ap-proah. Thisisoneofthevirtuesoftheinterferometer

presented.

It is interesting however, to analyze some possible

interpretations. When=0,onedetetorisxedand

(5)

anbeviewed asa singlephoton wavepaket

interfer-enebeausethephasedierenedependsonlyon

tra-jetoriesforthesamephoton. When=+1or=-2,

bothdetetorsaremovedsimultaneouslywiththesame

veloity. Inthisase,theexperimentorrespondstoan

unfolded versionof atwo-photon wavepaket

interfer-ene. Note that inoneof thepreviousexperiments[4℄,

it was neessary to prepare the state of the eld by

manipulating thepumpbeam,in orderto avoidsingle

photoninterferene. Inthepresentonguration,eah

rystal plays the role of one slit in the analogy with

a double slit experiment. However, eah twin photon

pairisalways(the probabilityismuh bigger)emitted

bythesamerystalandnever(theprobabilityismuh

smaller)bydierentones. Thisorrespondsto having

bothphotonspassingthroughoneoftheslitsandnever

onephotonthrougheahslit. Forthisreason,itisnot

neessarytohange thepump laserbeamprole. But

theanalogyisomplete.

When=+ 1

2

,forexample,itisnotpossibleto

as-signsomephysialmeaningtothewavelengthobserved

by one of the detetors anymore. For the same set

of measurements, the wavevetoris three times larger

than the singlephoton one(orresponding to a

wave-lengththreetimessmallerthanthesinglephotonone)

fromthepointofviewoftheonjugateddetetor. This

resultshowsthat assigning awavelengthto something

we all biphoton an be dangerous. The energy of

eahindividualphotonisnothangedduringthe

inter-ferene proess, neither during the detetion proess,

andthedisussionaboutthisapparentwavelengthmay

turn into speulation. However, diration properties

are atuallyhangedand that mayhaveonsequenes

in imagingand other appliations. Some possible

ap-pliations an be envisaged. For example, the

oin-idene patterns ould be used for measuring the

re-fration index forsomematerial plaedin the pathof

the beams. Dierential measurements ould be

per-formed in a ollinear onguration with both beams

passing through the sample. We ould also think of

twinbeamswithrossedpolarizationsusedfor

birefrin-genemeasurements. Theinterferometerisquiteuseful

forfundamental researh onthe prodution,detetion

andmanipulationof entangledstates. Reently,itwas

used in our laboratory for produing position

entan-gledstateswihwereoupledtopolarization

entangle-ment sothat wewere ableto measure theplarization

entanglementthorughpositioninterferene[14℄.

Exper-imentsurrentlyinprogressshowthatitisalsosuitable

for studying quantum distilation, puriation and

de-oherene.

VI Conlusion

A two-photon interferometer without double-slits and

withoutbeam-splitters ispresented. The frequenyof

isvaried. Thesefrequeniesareassoiatedtothesingle

and to the two-photon wavepakets. Frequenies that

arefrationsandmultiplesofthesinglephotononeare

observed,inagreementwiththeory. Thesevariable

fre-quenyosillationsarewellunderstood intermsofthe

quantum theoryandtwopartileentanglement. Some

appliations in the new eld of quantum imaging and

measurementsof refrationindexesarepromising

pos-sibilities. Theinterferomenter is being usedin

experi-mentsforproduingandmanipulatingentangledstates.

Theentangledstatesareessentialin theeld of

quan-tum information.

Aknowledgment

We thank Drs. Carlos Monken and Sebasti~ao de

Padua for lending one of the detetors and also for

many helpfull disussions. Finanial support was

pro-videdbyBrazilianageniesCNPq,PRONEX,FAPERJ

andFUJB.

Referenes

[*℄ Correspondingauthor.

E-mailaddress: phsrif.ufrj.br

[1℄ Greenberger, HorneandZeilinger, Phys.Today 8, 22

(1993)

[2℄ AntonZeilinger, Review ofModern Physis71, S288

(1999)

[3℄ J. Jaobson, G. Bjork, I.Chuangand Y. Yamamoto,

Phys.Rev.Lett.74,4835 (1995)

[4℄ E.J.S.Fonsea,C.H.Monkenand S.Padua,Phys.

Rev.Lett.82,2868(1999)

[5℄ X.Y.Zou,L.J.WangandL.Mandel,Phys.Rev.Lett.

67,318(1991)

[6℄ T. J. Herzog, J. G. Rarity, H. Weinfurter and A.

Zeilinger,Phys.Rev.Lett.72,629(1994)

[7℄ A.V.Burlakov,D.N.Klyshko,S.P.KulikandM.V.

Chekova,JETPLett.69,831(1999)

[8℄ P.H.SoutoRibeiro,S.Padua,J.C.MahadodaSilva,

andG.A.Barbosa,Phys.Rev.A49,4176 (1994).

[9℄ P.H.SoutoRibeiroandG.A.Barbosa,Phys.Rev.A

54,3489(1996).

[10℄ E.J.daSilvaFonsea,P.H.SoutoRibeiro,S.Padua

andC.H.Monken,Phys.Rev.A60,1530(1999).

[11℄ C.H.Monken,P.H.SoutoRibeiroandS.Padua,Phys.

Rev.A573123(1998).

[12℄ E. J. S. Fonsea, Z. Paulini, P. Nussenzveig, C. H.

Monken,andS.Padua,Phys.Rev.A63,043819(2001)

[13℄ A. G.White,D. F.V.James, P.H. Eberhard andP.

G.Kwiat,Phys.Rev.Lett.83,3103(1999)

[14℄ M.FranaSantos,P.Milman,A.Z.Khoury,andP.H.

Imagem

Figure 1. Outline of the experiment.
Figure 3. Coinidene prole for  = +1. Detetor A and
Figure 5. Coinidene proles for  = + 1

Referências

Documentos relacionados

 O consultor deverá informar o cliente, no momento do briefing inicial, de quais as empresas onde não pode efetuar pesquisa do candidato (regra do off-limits). Ou seja, perceber

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

No campo, os efeitos da seca e da privatiza- ção dos recursos recaíram principalmente sobre agricultores familiares, que mobilizaram as comunidades rurais organizadas e as agências

H„ autores que preferem excluir dos estudos de prevalˆncia lesŽes associadas a dentes restaurados para evitar confus‚o de diagn€stico com lesŽes de

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

Na hepatite B, as enzimas hepáticas têm valores menores tanto para quem toma quanto para os que não tomam café comparados ao vírus C, porém os dados foram estatisticamente