• Nenhum resultado encontrado

End-to-EndprobabilityforaninteractingcentervortexworldlineinYang-Millstheory

N/A
N/A
Protected

Academic year: 2021

Share "End-to-EndprobabilityforaninteractingcentervortexworldlineinYang-Millstheory"

Copied!
16
0
0

Texto

(1)

End-to-end probability for an interacting center

vortex worldline in Yang-Mills theory

Bruno Fernando Inchausp Teixeira

August-2011

IX Oficina de Teoria Quˆ

antica de Campos-IX OTQC

CBPF-RJ

(2)

1

Introduction

Motivations and Objective

2

Integration on an ensemble of intantons chains

End-to-end probability for an interacting center vortex worldline in Yang-Mills theory

(3)

Motivations

Try to understand better one of the existent confinament scenarios, in

particular, the dual superconductivity mechanism;

The CFN formalism allows us to represent monopoles as center vortices like

topological defects in a local color frame;

Objective

We want to determine the partition function with interactions for one center

vortex attempting to derive all the possible topological configurations involving

ensemble of instantons and anti-instantons connected for a couple of center

vortices;

(4)

Partition Function of defects

By applying of the Cho-Faddeev-Niemi decomposition in the Yang-Mills action we can to demonstrate that the partition function involving the center vortices that are coupled with monopoles is given by:

Zv ,m= Z

[Dm][Dv ]ei R

d 3 x λµdµ, (1)

where dµis on the defects and contain all the singularities and λµis a dual field associated to the charged sector. Using dµ(α)=2π g Z d σdx α µ d σδ (3) (x − xα(σ)), (2)

is easy to show that

Zv ,m= Z

[Dφ]e−SφX n

Zn, (3)

where we have defined

Zn= Z [Dm]n[Dv ]nexp " i2π g 2n X k=1 ZLk 0 ds ˙xα(k)λα(x(k)) − Sd # , (4)

(5)

Partition Function of defects and Sd= 2n X k=1 ZLk 0 ds " µ + 1 2κ˙u (k) α ˙u (k) α + φ(x (k) ) # . (5) Fenomenological Parameterization

The action of defects is purely fenomenological; The first term is related to tensile center vortices;

The second term is related to the stiffness of the center vortices (curvature energy); Finally, the last term represents the excluded volume effects.

It’s so easy to see from the partition function that exists a “fundamental block”representing an integration of the only one center vortex with fixed edges:

Q(x , x0) = Z∞ 0 dL e−µLq(x , x0, L), q(x , x0, L) = Z [Dx (s)] e− RL 0ds h 1

2κ˙uα ˙uα+φ(x(s))−i2πguα(s)λα(x(s)) i

(6)

Fenomenological Parameterization

where [Dx (s)] represents an integral over all the possibles center vortices of length L and fixed edges x and x0. We identified the action Sφas:

e−Sφ= e12 R

d 3 xd 3 x 0 φ(x )V −1 (x ,x 0 )φ(x 0 )

, (7)

and using the density ρ(x ) =P k

RLk

0 ds δ(x − x(k)(s)), this action can be integrated, and then

e− 12 R d 3 xd 3 x 0 ρ(x )V (x ,x 0 )ρ(x 0 ) , Z d3yV−1(x , y )V (y , z) = δ(x − z). (8)

If the interaction is V (x − y ) = (1/ζ)δ(x − y ) we obtain a contact interaction:

e−Sφ= e R

d 3 xζ2φ2

. (9)

(7)

Stiffness in string-like objects

It’s hard even in the non-interacting case;

Stiffness allows us to define an effective size for a monomer in polymer field theory; The end-to-end probability for a random chain is:

qN(x , x0) = N Y n=1 " Z (d3∆xn) 1 4πa2δ(|∆xn| − a) # δ(x − x0− N X n=1 ∆xn). (10)

For large N we obtain a gaussian distribution:

qN(x , x0) ≈ 3 2πNa2 !3/2 exp " −3(x − x0) 2 2Na2 # . (11)

Note that we can not apply the continuum limit in a straightforwardly form. However, if we consider the effective monomer size Na2/3 → L/α, α = 3/a

effin the stiffness case, we obtain:

q(x , x0, L) = α 2πL !3/2 e− α2L(x −x0)2= Z d3k (2π)3e − Lk2 eik·(x −x0), (12)

(8)

Stiffness in string-like objects

and the integration in L yields:

Q(x , x0) = 2α Z d3k (2π)3 eik·(x −x0) k2+ m2 , m 2= 2αµ, (13) that satisfies (−∇2+ m2)Q(x , x0) = 2αδ(x − x0). (14) Introduction of interactions

We can write also:

Q(x , x0) = Z∞ 0 dL e−µL Z d2u 0 4π d2u 4π q(x , u, x0, u0, L). (15) A discretized version of the function q(x , u, x0, u0, L) can be obtained from a recursive relation given by:

(9)

Figure:

Interacting center vortices with fixed endpoints, orientations, and

length are associated with the weight q(x , u, x

0

, u

0

, L).

(10)

Introduction of interactions

qj +1(x , u, x0, u0) = e−ω(x,u) Z

d3x0d2u0Φ(u − u0)δ(x − x0− u∆L) qj(x0, u0, x0, u0), (16)

with the initial condition

q0(x , u, x0, u0) = δ(x − x0)δ(u − u0) e−ω(x,u). (17)

For example, to j = 0 we obtain:

q1(x , u, x0, u0) = e−[ω(x,u)+ω(x0,u0)]Φ(u − u0)δ(x − x0− u∆L), (18)

and continuing the iteration, it is not difficult to see that for N iterations we will have (defining x = xNe u = uN): qN(x , u, x0, u0) = Z d3x1d2u1. . . d3xN−1d2uN−1e− PN i =0ω(xi ,ui )× × N−1 Y j =0 Φ(uj +1− uj)δ(xj +1− xj− uj +1∆L). (19)

(11)

Introduction of interactions

Choosing a normalized angular distribution (stiffness term in the discretized version) and the interaction function: Φ(u − u0) = N e− 12κ∆L  u−u0 ∆L 2 , (20) ω(x , u) = ∆L  φ(x ) − i2π g u · λ(x )  , (21)

we can see that this is the discretized version for N monomers, in other words, q(x , u, x0, u0, L) = lim

N→∞qN(x , u, x0, u0), (22)

(12)

Introduction of interactions

From the recursive relation we can write:

qN+1(x , u, x0, u0) = e−ω(x,u) Z

d3x0d2u0Φ(u − u0) qN(x − u∆L, u0, x0, u0), (23)

such that for large N we expanded in the variable ∆L = NL in both sides of the last equation, and knowing that Φ(u − u0) is localized, the following difusion equation is obtained when we expand

qN(x − u∆L, u0, x0, u0) around u ≈ u0, ∂Lq(x , u, x0, u0, L) = κ 2 ∇2u− φ(x) − u · Dx  q(x , u, x0, u0, L), (24)

where u · u = 1, u0· u0= 1, ~∇~u2is the Laplacian on an unitary sphere, Dx= ∇x− i2πgλ(x ), and when we take the limit ∆L → 0 we apply the following initial condition to solve this equation:

q(x , u, x0, u0, 0) = δ(x − x0)δ(u − u0). (25)

“Gymnastics”of functions

We must integrate initially, the function q(x , u, x0, u0) in the u0variable in order to obtain Q(x , x0). So,

(13)

“Gymnastics”of functions

q(x , u, x0, L) = Z d2u

0

4π q(x , u, x0, u0, L), (26)

whose integration in the equations (21) and (22) yields:

∂Lq(x , u, x0, L) = κ 2 ∇2u− φ(x) − u · Dx  q(x , u, x0, L), (27) q(x , u, x0, 0) = δ(x − x0). (28)

In addition, one can integrate over the differents possible lengths

Q(x , u, x0) = Z∞

0

dL e−µLq(x , u, x0, L). (29)

(14)

“Gymnastics”of functions " κ 2∇ 2 u− φ(x) − u · Dx # Q(x , u, x0) = Z∞ 0 dL e−µL∂Lq(x , u, x0, L) = Z∞ 0 dL ∂L[e−µLq(x , u, x0, L)] + µ Z∞ 0 dL e−µLq(x , u, x0, L) = −q(x , u, x0, 0) + µQ(x , u, x0), (30) in other words, " −κ 2∇ 2 u+ φ(x ) + u · Dx+ µ # Q(x , u, x0) = δ(x − x0). (31)

Expansion in spherical harmonics

Finally we can obtain Q(x , x0) from Q(x , u, x0) making the following expansion in spherical harmonics

Q(x , u, x0) = X

l =0

Ql(x , u, x0) −→ Q(x , x0) ≡ Q0(x , x0). (32)

(15)

Expansion in spherical harmonics So, u · DxQ(x , x0, u) = X l =0 u · DxQl= X l =0 Rl, (33) where R0 = [u · DxQ1]0 R1 = [u · DxQ0+ u · DxQ2]1 R2 = [u · DxQ1+ u · DxQ3]2 . . . (34)

and when l = 0 we obtain

[φ(x ) + µ]Q0+ R0= δ(x − x0). (35) For l 6= 0 we have 1 fl(x ) Ql+ Rl= 0, fl(x ) = " φ(x ) + µ +l (l + 1)κ 2 #−1 . (36)

(16)

Expansion in spherical harmonics

It’s possible determine the R0and then we find the following differential equation for Q0(x , x0)

 −1

3κD

2+ φ(x ) + µQ

0(x , x0) = δ(x − x0). (37)

The solution of this equation provides us a Green function associated to a center vortice. From this result we can to generate all the contributions of the topological defects in the generating function Znand one becomes possible derive an effective theory for this model.

Referências

Documentos relacionados

considering these constructs, as well as motivational elements. The data gathered indicate that students’ perceptions and behavioural intentions are modulated by cognitive,

Using the latest demographic projections and a model of capital accumulation and productivity growth, we map out GDP growth, income per capita and currency movements in the

É uma ramificação da ginástica que possui infinitas possibilidades de movimentos corporais combinados aos elementos de balé e dança teatral, realizados fluentemente em

A ideia para a abordagem deste tema surgiu depois das minhas primeiras aulas de observação numa aula do nível A1.2 1 do Curso Anual de Português para Estrangeiros na Faculdade

Para finalizar, pode-se afirmar que os sistemas de custos na administração pública estão mais suscetíveis ao sucesso se conseguirem ir além da apropriação e gestão

Na segunda etapa trabalhou-se com soluções de corantes, materiais sorventes e método para determinação quantitativa dos corantes (espectrofotômetro UV –

This log must identify the roles of any sub-investigator and the person(s) who will be delegated other study- related tasks; such as CRF/EDC entry. Any changes to

1.6 Somente serão válidas as vendas realizadas: (i) nas operadoras de turismo participantes relacionadas ao final do Regulamento; (ii) efetivas de pacotes de