• Nenhum resultado encontrado

Production of docosahexaenoic acid by Aurantiochytrium sp. ATCC PRA-276

N/A
N/A
Protected

Academic year: 2021

Share "Production of docosahexaenoic acid by Aurantiochytrium sp. ATCC PRA-276"

Copied!
7
0
0

Texto

(1)

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Food

Microbiology

Production

of

docosahexaenoic

acid

by

Aurantiochytrium

sp.

ATCC

PRA-276

Valcenir

Júnior

Mendes

Furlan

a,∗

,

Victor

Maus

b

,

Irineu

Batista

c

,

Narcisa

Maria

Bandarra

c

aUniversidadeFederaldoPampa(UNIPAMPA),Itaqui,RS,Brazil

bInternationalInstituteforAppliedSystemsAnalysis(IIASA),Laxenburg,Austria cPortugueseInstituteofSeaandAtmosphere(IPMA,I.P./DMRM),Lisbon,Portugal

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received3August2015

Accepted13October2016

Availableonline20January2017

AssociateEditor:RosaneFreitas

Schwan

Keywords:

Carbonsource

Docosahexaenoicacid

Nitrogensource

Polyunsaturatedfattyacids

Thraustochytrids

a

b

s

t

r

a

c

t

The highcostsandenvironmentalconcernsassociatedwithusingmarineresourcesas

sourcesofoils richinpolyunsaturatedfattyacidshaveprompted searchesfor

alterna-tive sources ofsuch oils. Some microorganisms, among them members of the genus

Aurantiochytrium,cansynthesizelargeamountsofthesebiocompounds.However,various

parametersthataffectthepolyunsaturatedfattyacidsproductionoftheseorganisms,such

asthecarbonandnitrogensourcessuppliedduringtheircultivation,requirefurther

eluci-dation.Theobjectiveofthisinvestigationwastostudytheeffectofdifferentconcentrations

ofcarbonandtotalnitrogenontheproductionofpolyunsaturatedfattyacids,particularly

docosahexaenoicacid,byAurantiochytriumsp.ATCCPRA-276.Weperformedbatchsystem

experimentsusinganinitialglucoseconcentrationof30g/Landthreedifferent

concentra-tionsoftotalnitrogen,including3.0,0.44,and0.22g/L,andfed-batchsystemexperiments

inwhich0.14g/Lofglucoseand0.0014g/Loftotalnitrogenweresuppliedhourly.Toassess

theeffectsofthesedifferenttreatments,wedeterminedthebiomass,glucose,totalnitrogen

andpolyunsaturatedfattyacidsconcentration.Themaximumcellconcentration(23.9g/L)

wasobtainedafter96hofcultivationinthebatchsystemusinginitialconcentrationsof

0.22g/Ltotalnitrogenand30g/Lglucose.Undertheseconditions,weobservedthe

high-estlevelofpolyunsaturatedfattyacidsproduction(3.6g/L),withdocosahexaenoicacidand

docosapentaenoicacid␻6concentrationsreaching2.54and0.80g/L,respectively.

©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis

anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Introduction

The search for nutraceutical products that can prevent

and/ortreatdiseaseshasintensifiedduringthelastdecade.

Correspondingauthor.

E-mail:juniorfurlan@yahoo.com.br(V.J.Furlan).

Among these products, types ␻3 and ␻6 polyunsaturated

fatty acids (PUFAs) havereceived a great dealof attention

duetotheirhealthbenefitsandtheirextensiveapplications

in the food and pharmaceutical industries.1

Docosahe-xaenoic acid (DHA, C22:6 ␻3), for example, is necessary

for the brain development of newborn children and

con-tributes to increasing their intelligence and verbal and

reasoning skills.2 Furthermore, DHA is helpful in treating

http://dx.doi.org/10.1016/j.bjm.2017.01.001

1517-8382/©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC

(2)

atherosclerosis, rheumatoid arthritis, and Alzheimer’s

disease,3 aswellasinpreventingbreastandcoloncancer.4

Docosapentaenoicacid(DPA,C22:5␻6)isanotherPUFAthatis

importantforhumanhealth.DPAhasbeenfoundtohelp

pre-ventvariousdiseases,suchascardiovasculardisorders(such

as myocardial infarction, thrombosis, and atherosclerosis),

diabetes,asthma,inflammationandrheumatism(including

arthritisandosteoporosis).5

Themaincommercialsourceofthesecompounds,

partic-ularlyDHA,isoilobtainedfrommarinefish.6 However,the

widespreadconsumptionoftheseoilsislimitedbymarine

chemicalpollution,decliningfishstocks,seasonalvariations

inthecompositionoffishoils,theirpooroxidativestability,

typicalunpleasantodourandtaste,andthehighcostoftheir

extractionand purification processes.7 Thisproblems have

inspiredthedevelopmentofnewmethodsforthelarge-scale

productionofoilsbysafeandhealthysources.1,8

Heterotrophic microorganisms that are members ofthe

Thraustochytridgrouparealternative sourcesofthese oils.

Theseoleaginousmicroorganismscanaccumulatemorethan

50%oftheir weightaslipids,with ahigh concentrationof

DHA ofgreater than 25% ofthe total lipids.9 Furthermore,

thelipidsofthraustochytridscontainaspecificPUFA(DHA)

insteadofamixtureofPUFAs.Therefore,theiroilhasahigher

levelofoxidativestabilitythanthatoffishoil.10 The

appro-priateconcentrationsofcarbonandnitrogenareessentialfor

thraustochytridstobiosynthesizeandaccumulate

polyunsat-urated fatty acids.Theconcentration ofthe carbon source

affects the synthesis of organic molecules and the

avail-abilityofenergy,whereastheconcentrationofthenitrogen

sourceaffectsthesynthesisofaminoacidsandnucleicacids.

Therefore,understanding theeffectsofthesesubstrateson

cultivatedmicroorganismsiscrucialforoptimizingtheiroil

production.Herein,wepresenttheresultsofastudyofthe

effectofdifferentconcentrationsofcarbonandnitrogenon

thePUFAsproductionofAurantiochytriumsp.ATCCPRA-276.

Materials

and

methods

Microorganism

Aurantiochytriumsp.ATCCPRA-276cellswereobtainedfrom

theAmericanTypeCultureCollection(Manassas,VA,USA).

Preparingtheinoculum

Aurantiochytriumsp.ATCCPRA-276cellsgrownonpotato

dex-troseagarandstoredat4◦Cweretransferredto500mLflasks

containing100mLofculturemediumconsisting(g/L)ofyeast

extract (1.0), peptone (15.0) and glucose (20.0) dissolved in

seawater(1.5% w/v).Theglucosestock solutionwas

steril-izedseparately.Thecellswereincubatedinanorbitalshaker

(Ika,KS260B)rotatingat150rpmat30◦Cwithout lightfor

48h.11

Preparingtheculturemedia

Wecultivated the microorganismina Biostat®Bplus

biore-actor (Sartorius Stedim Biotech., Germany) containing a

5L borosilicate glass vessel and equipped with pressure

flow meters and gas and liquid-flow controllers. We

con-ducted batch and fed-batch experiments. For the batch

systemexperimentsweusedamediumconsistingofKH2PO4

(0.3g/L),MgSO4·7H2O(5.0g/L),NaCl(10.0g/L),NaHCO3(0.1g/L),

CaCl2·2H2O(0.3g/L),KCl(0.28g/L),glucose(30.0g/L)and

dif-ferent total nitrogen (TN) concentrations: 3.0g/L (1.36g/L

(NH4)2SO4,13.63g/Lyeastextractand13.63g/Lmonosodium

glutamate), 0.44g/L (0.2g/L (NH4)2SO4, 2.0g/L yeast extract

and 2.0g/Lmonosodiumglutamate),and 0.22g/L(0.1g/Lde

(NH4)2SO4,1.0g/Lyeastextractand1.0g/Lmonosodium

glu-tamate). For the fed-batch system experiments, 0.14g/Lof

glucoseand0.0014g/Loftotalnitrogenweresuppliedhourly

(6.66×10−4g/Lhof(NH4)2SO4,6.66×10−3g/Lhofyeastextract

and 6.66×10−3g/Lhof monosodiumglutamate). Theyeast

extract,monosodiumglutamateandglucosesolutionswere

separatelysterilizedbytreatmentat121◦Cfor15minina

Cer-toClavCV-EL-18Lautoclave.Thebioreactorwassterilizedin

anAJCUniclave77-127Lautoclavefor60min.Theother

com-ponentsofthemediumwerefiltered-sterilizedusing0.22␮m

membranes(Millipore).

Aftersterilization,thedissolvedcomponentswereadded

to the bioreactor along with the following metal

solu-tions: MnCl2·4H2O (8.6mg/L), ZnCl2 (0.6mg/L), CoCl2·4H2O

(0.26mg/L), CuSO4·5H2O (0.02mg/L), FeCl3·6H2O (2.9mg/L),

H3BO3 (34.2mg/L), and Na2EDTA (30.0mg/L) and the

fol-lowing vitamin solutions: thiamine (9.5mg/L) and calcium

pantothenate(3.2mg/L),allofwhichhadbeensterilizedusing

0.22␮mmembranefilters(Millipore).Theinoculum(350mL)

wasthenaddedtotheculturemedium(10%v/vrelativetothe

totalvolumeoftheculturemedium).

Cultivation was performed at 23◦C with agitation at

100rpmand thepHofthemediaadjustedto6.0using4N

NaOH.Duringthefirst120hofcultivation,theculturemedium

was aeratedat2.5vvm.Afterthisperiod,airinjectionwas

discontinued.

Biomassconcentration

Thebiomasswasdeterminedevery24husingthemethodof

Min etal.12 Analiquot oftheculture mediumwasfiltered

usingapreviouslyweighedglass-microfiberfilterpaper(GF/C:

1.2␮m, Whatman). Thebiomass retained in the filter was

washedtwiceusingdistilledwateranddriedinanoven

(Mem-mert)at60◦Cfor24h.Thebiomasscontentwascalculatedas

thedifferencebetweentheinitialandfinalweights.

Glucoseconcentration

The glucosecontent ofthe culturesupernatant was

deter-mined each 24h using the spectrophotometric method

described byMiller,13 usingaUV/Visdualbeamabsorption

spectrophotometer(AtiUnicamHeliosAlpha,UK).

Totalnitrogenconcentration

Thetotalnitrogen(definedandcomplexsources)contentof

theculturesupernatantwasdeterminedeach24hfollowing

(3)

Fattyacidprofile

Culturesamplescollectedat24hintervalswerecentrifuged

(Kubota,6800)at8742×gfor15minat4◦C,afterwhichthe

biomass was washed with distilled water and centrifuged

again. This process was repeated twice. Thebiomass was

frozenat−20◦Canddriedfor48husingafreezedryer(Heto

PowerDryLL3000).

Between 20 and 100mg ofthe lyophilized biomasswas

weighedand added to50␮LoftheinternalC21:0 standard

solution(10mg/mL)topermitexpressingtheresultsasgof

fattyacids/goflyophilizedbiomass.

Methylestersofthefattyacidswere preparedby

esteri-ficationusingtheacidcatalysismethoddescribedbyCohen

et al.14 A gas chromatography system (Varian, CP 3800)

equippedwithanautosampler,injector,andflameionization

detector(FID),bothofthelatterat250◦C,wasusedtoidentify

themethylestersinthesamples.Themethylesterswere

sep-aratedusingaDB-WAXpolyethyleneglycolcapillarycolumn

(Agilent,30mlong,0.25mminternaldiameter and0.25␮m

thick)usingthefollowingprogram:heatingat180◦C(5min),

graduallyincreasing at4◦C/min to 220◦C (and holding for

25min),andthengraduallyincreasingat20◦C/minto240◦C

(andholdingfor15min).Themethyl esterswereidentified

bycomparingtheirretentiontimeswiththoseof

chromato-graphicstandards(Sigma–AldrichCo,St.Louis,MO,USA).

Theresultswere analyzedusingananalysisofvariance

(ANOVA) and the mean values were compared using the

Tukeytest,withthesignificancelevelsetat5%.Before

per-formingtheANOVA,thenormalityofthedatadistributions

wereevaluatedusingtheKolmogorov–Smirnovtestandthe

homoscedasticityofthedatawasevaluatedusingtheCochran

test.15

Results

Growthkinetics,glucoseandtotalnitrogenconsumption

Fig.1showstheaveragebiomass,glucoseandtotalnitrogen

concentrationsover timeinculturesofAurantiochytriumsp.

ATCCPRA-276growingunderfourdifferentconditions.

As shownin Fig. 1(A), inthe experimentsusing an

ini-tial total nitrogen concentration of 3.0g/L, the maximum

biomassconcentration(9.3g/L)wasreachedat120h,foran

average yieldof0.07g/Lh ofbiomass. Theaverage glucose

consumption rate in these experiments was 0.13g/Lh and

0.43gofbiomasswasproducedpergramofglucoseconsumed

(YBiomass/Glucose).Theaveragetotalnitrogenconsumptionrate

was0.0010g/Lh,resultinginasubstratetobiomassconversion

factor(YBiomass/nitrogen)of65.8.

In the experiments using an initialnitrogen

concentra-tion of0.44g/L,thehighestbiomassconcentration(17.0g/L)

was obtained at 144h, foran average yield of 0.11g/Lh of

biomass (Fig. 1(B)). The average glucose consumption rate

was0.15g/Lh, resultinginaglucosetobiomassconversion

factor (YBiomass/glucose) of 0.65. The average total nitrogen

consumption rate was 0.0018g/Lh. Each gram of nitrogen

that was consumed was converted into 50.7g of biomass

(YBiomass/Nitrogen).

A

0 24 48 72 96 120 144 168 192 Culture time (h) 1 2 3 4 5 6 7 8 9 10 Biomass (g/L) 0 5 10 15 20 25 30 Glucose (g/L) 2.8 2.82 2.84 2.86 2.88 2.90 2.92 2.94 2.96 2.98 3.0 Total nitrogen (g/L)

B

0 24 48 72 96 120 144 168 192 Culture time (h) 2 4 6 8 10 12 14 16 18 Biomass (g/L) 0 5 10 15 20 25 30 35 Glucose (g/L) 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 Total nitrogen (g/L)

C

0 24 48 72 96 120 144 168 192 Culture time (h) 2 4 6 8 10 12 14 16 18 20 22 24 26 Biomass (g/L) 0 5 10 15 20 25 30 Glucose (g/L) 0,0 0.05 0.10 0.15 0.20 0.25 0.30 Total nitrogen (g/L)

D

0 24 48 72 96 120 144 168 192 Culture time (h) 2 4 6 8 10 12 14 Biomass (g/L) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Glucose (g/L) 0.0 0.05 0.10 0.15 Nitrogen total (g/L)

Biomass (g/L) Glucose (g/L) Total nitrogen (g/L)

Fig.1–Concentrationsofbiomass,glucoseandtotalnitrogenovertimeintheculturemediaofAurantiochytriumsp.ATCC PRA-276.Thegraphsshowthedataobtainedusingdifferenttreatments,asfollows:abatchsystemwithan(A)initial nitrogenconcentrationof3.0g/L,(B)initialnitrogenconcentrationof0.44g/Lor(C)initialnitrogenconcentrationof0.22g/L or(D)afed-batchsystemwith0.14g/Lofglucoseand0.0014g/Lofnitrogensuppliedhourly.

(4)

25 20 15 10 Biomass (g/L) PUFAs (mg/g) PUFAs (g/L) 5 0 0 24 48 72 Culture time (h) 96 120 144 168 0 50 100 150 200 4.0 3.0 2.0 1.0 0.0 PUFAs (mg/g): 3.0 (g/L) TN 0.44 (g/L) TN 0.22 (g/L) TN Fed-batch Biomass (g/L): 3.0 (g/L) TN 0.44 (g/L) TN 0.22 (g/L) TN Fed-batch PUFAs (g/L): 3.0 (g/L) TN 0.44 (g/L) TN 0.22 (g/L) TN Fed-batch

Fig.2–PUFAsconcentrationsinthebiomassofAurantiochytriumsp.ATCCPRA-276cultivatedunderdifferentconditions. PUFAs,polyunsaturatedfattyacids;TN,totalnitrogen.

Intheexperimentsusinganinitialnitrogenconcentration

of0.22g/L,thehighestbiomassconcentration(23.9g/L)was

observedat96h(Fig.1(C)),foramaximumyieldof0.23g/Lhof

biomass.Intheseexperiments,theaverageglucose

consump-tionratewas0.17g/Lhandtheglucosetobiomassconversion

factor (YBiomass/Glucose) was1.28. Theaverage nitrogen

con-sumptionratewas0.0022g/Lh,resultinginaYBiomass/Nitrogen

conversionfactorof104.7,meaningthat 104.7gofbiomass

wasproducedpergramofnitrogenconsumed.

When the fed-batch cultivation process was used, the

highestbiomassconcentration(13.2g/L)wasreachedat120h

(Fig.1(D)),foramaximumyieldof0.10g/Lhofbiomass.The

average glucose consumption rate was 0.13g/Lh, resulting

inaglucosetobiomassconversionfactor(YBiomass/Glucose)of

0.64.Usingthis cultivationprocess,theaveragetotal

nitro-genconsumptionratewas0.0016g/LhandtheYBiomass/Nitrogen

conversionfactorwas49.15,meaningthat49.15gofbiomass

wasproducedpergramofnitrogenconsumed.

Fattyacidprofile

Fig.2showstheaveragePUFAsconcentrationsinthebiomass

thatwerereachedthroughoutAurantiochytriumsp.ATCC

PRA-276cultivationinthedifferentexperiments.

EvaluatingthePUFAsconcentrationsinthebiomass(g/L)

showed that there were significant differences among the

valuesatdifferenttimesthroughoutcultivationinallofthe

experiments.ThehighestPUFAsconcentration(3.6g/L)was

observedat96hofcultivationintheexperimentsusingan

initialnitrogen concentrationof 0.22g/L. Thesecond

high-est PUFAs concentration (2.85g/L) was obtained at 168h

of cultivation in the experiments using an initial

nitro-gen concentrationof 0.44g/L. Inthe fed-batch culture, the

maximal PUFAs concentration of 1.89g/L was reached at

144h of cultivation. In the experiments using an initial

nitrogen concentration of 3g/L, the maximal PUFAs

con-centration of 0.84g/L was reached at 120h of cultivation

(Fig.2).

Fig.3showsthefattyacidprofileatthetimepointwhenthe

highestPUFAsyieldwasobtainedineachexperiment(g/L).

Intheexperimentsusinganinitialnitrogenconcentration

of3.0g/L,9%(w/w)ofthebiomasswascomposedofPUFAsat

120hofcultivation,ofwhich20%wasDPA␻6(Fig.3),which

represented1.8%ofthebiomass(0.17g/L).AsshowninFig.3,

DHAaccountedfor61.3%ofthePUFAspresent,i.e.,5.5%ofthe

biomass(0.51g/L).

Using an initial nitrogen concentration of 0.44g/L, 18%

(w/w)ofthebiomasswascomposedofPUFAsat168hof

cul-tivation,ofwhich22%wasDPA␻6,i.e.,3.9%ofthebiomass

(0.63g/L). We alsoobserved that DHA accounted for 69.2%

ofthePUFAs,whichwas12.5%ofthetotalbiomass(1.97g/L)

(Fig.3).

Intheexperimentsusinganinitialnitrogenconcentration

of0.22g/L,15%(w/w)ofthebiomasswascomposedofPUFAsat

96hofcultivation,ofwhich22.3%wasDPA␻6(Fig.3),

(5)

C14:0 C15:0 C16:0 C16:1ω9 C18:1ω9 C16:2ω4 C20:4ω6 C20:5ω3 C22:5ω6 (DPA) C22:5ω3

C22:6ω3 (DHA) Other fatty acids

3.0 (g/L)

0.44 (g/L)

0.22 (g/L)

Fed-batch

0 10 20 30

Total fatty acids, %

40 50 60 70 80 90

Fig.3–Fattyacidprofilesofthebiomassof

Aurantiochytriumsp.ATCCPRA-276whenbatch-cultured for120husinganinitialnitrogenconcentrationof3.0g/L totalnitrogen,at168hwhenbatch-culturedusinganinitial nitrogenconcentrationof0.44g/L,at96hwhen

batch-culturedusinganinitialnitrogenconcentrationof 0.22g/L,andat144hwhenculturedusingthefed-batch process.

thatDHAcomprised70.5%ofthePUFAs(Fig.3),i.e.,10.62%of

thebiomass(2.54g/L).

After144hofcultivationusingthefed-batchsystem,14.9%

(w/w)ofthebiomasswascomposedofPUFAs,ofwhich23.1%

wasDPA␻6(Fig.3),i.e.,3.43%ofthetotalbiomass(0.44g/L).

Inaddition,DHAaccountedfor70.5%ofthePUFAs(Fig.3),i.e.,

10.5%ofthetotalbiomass(1.33g/L).

Discussion

Intheexperimentsusinganinitialnitrogenconcentrationof

3g/L,thecellsconsumedtheleastamountofTN(0.0010g/Lh),

resultinginthelowestcellyield(0.07g/Lh).Thisresultcould

beduetothelowC/N substrateratiointheculture(4). An

excess of nitrogen may have inhibited the growth of the

evaluatedstrain. Chenet al.16 conductedastudy inwhich

theyoptimizedthenitrogensourcesforAurantiochytriumsp.

BR-MP4-A1andobtainedamaximumbiomassconcentration

(9.27g/L)bysupplying2.4g/LofTN(asmonosodium

gluta-mate,yeastextract,and tryptone),whichresultedinaC/N

ratio (5). In the experiments in which we used an initial

nitrogenconcentrationof3g/L,asimilarmaximumbiomass

concentrationof9.3g/Lwasreached(Fig.1(A)).

Using an initial TN concentration of 0.44g/L to

culti-vate Aurantiochytrium sp.BR-MP4-A1, Li et al.17 obtained a

maximum biomass concentration of 14.5g/L, whereas we

observeda maximum biomass concentrationof 17.0g/L in

culturesofAurantiochytriumsp.ATCCPRA-276(Fig.1(B)).This

differenceisduetothesubstratetobiomassconversionrate

(YBiomass/Glucose)being0.53inthepreviousstudy,whereasin

thisstudy,eachgramofglucoseconsumedwasconcertedto

0.65g/Lofbiomass.Thedifferenceintheconversionratecan

beattributedtotheuseofdifferentspeciesinthestudies.

Cultivation using aninitial TNconcentration of0.22g/L

(Fig. 1(C)) resulted in higher substrate consumption rates

(0.17g/Lhglucoseand0.0022g/LhTN)andhighercellbiomass

productivity(0.23g/Lh)comparedwiththoseobtainedusing

the other TN concentrations tested in this study. In

addi-tion, the glucose to biomass conversion factor (1.28) was

higher undertheseconditionsthan underthe other tested

conditions,whichalsoresultedalsoinahighercell

concentra-tion(23.9g/L).GanuzaandIzquierdo18usedSchizochytriumsp.

G13/2Stostudytheeffectofsubstratelevelsonlipid

accumu-lation.Theseauthorsfoundthatusinginitialconcentrations

of0.30g/LofTNand40g/Lofglucoseresultedinabiomass

yieldof15.7g/L.

Intheexperimentsusingfed-batchsystem(Fig.1(D)),the

concentration of TN decreased over time because its

con-sumptionratewashigher(0.0016g/LhofTN)thanitssupply

rate(0.0014g/LhofTN).Theconcentrationofglucoseinthe

culturemediumdecreaseduntil144hofcultivationand

sub-sequentlyincreased.Thisphenomenoncanbeexplainedby

theglucosesupplybeinggreaterafter144hthanthatrequired

forcelldevelopmentandmaintenance.

Thefattyacidprofilesobservedinourexperiments(Fig.3)

aresimilartothosepreviouslyobtainedbyZhuetal.19 and

Furlan et al.20 using Schizochytrium limacinum OUC88 and

Thraustochytrium sp. ATCC 26185, respectively. Zhu et al.19

foundC14:0(3.8–9.6%),C15:0 (2.1–10.1%),C16:0 (32.6–43.3%),

DPA ␻6 (7.1–8.2%)and DHA (29.8–36.5%) as the mainfatty

acids. Furlan et al.20 found C14:0 (1.5–9%), C15:0 (21–35%),

C16:0 (5–33%), DPA ␻6 (7–9%) and DHA (20–31.5%) as the

main fatty acids. These results are similar to our results:

C14:0(1.8–16%),C15:0(5–16%),C16:0(9–32.5%)andthe

polyun-saturated, including DPA ␻6 (6.5–14%) and DHA (20–43%).

Therefore,thefattyacidsproducedbymembersofthe

Thraus-tochytriidaefamilyarelikelytobemainlyC14:0,C15:0,C16:0,

DPA␻6andDHA.

Lietal.17studiedthecompositionoftheAurantiochytrium

sp.BR-MP4-A1biomassandconcludedthatDPA␻6andDHA

comprised6.6%and28.9%,respectively,ofthetotalfattyacids.

TheseauthorsalsoobservedthattheDPA␻6(18%)andDHA

(78%)levelswerehigherthanthoseoftheotherPUFAsthat

werequantitated,similartotheresultsobtainedinthisstudy

(Fig.3).

WealsoobservedareductioninPUFAsproduction

rela-tivetothatofthetotalfattyacidswhentheTNconcentration

decreased.Incontrast,C16:1␻9andC18:1␻9productionwas

increasedbecausethesefattyacidsaretheprecursorsusedfor

PUFAssynthesis.Therefore,thesmallerthefractionsofC16:1

␻9andC18:1␻9,thehigherthefractionofPUFAs(Fig.3).

AmongthemajorfattyacidsthatarePUFAs,thecontent

ofDPA␻6(20–23.1%)variedlittle,whereasthecontentofDHA

(61.3–70.5%)variedgreatly. Highconcentrationsofavailable

totalnitrogenintheculturemediumfacilitatethesynthesis

ofother fattyacids inadditiontoDHA andDPA ␻6,which

formasignificantfractionofthePUFAspresent.Forexample,

(6)

Table1–TotalfattyacidcontentoftheAurantiochytriumsp.ATCCPRA-276biomasswiththehighestPUFAs

concentrationundereachexperimentalcondition.

Totalnitrogen 3.0g/L 0.44g/L 0.22g/L Fed-batchb

C/N 4 27 54 100

Culturetime(h) Totalfattyacids(mg/g)a

120 129.15±0.15

168 448.47±0.05

96 455.62±0.09

144 526.20±0.20

a Meanvalues±standarddeviation.

b 0.14g/Lofglucoseand0.0014g/Loftotalnitrogensuppliedeachhour.

2.06%,respectively,ofthefattyacidsobservedinthebiomass

obtainedinculturesgrownusinganinitialnitrogen

concentra-tionof3g/LTNandC16:2␻comprised1.95%ofthefattyacids

observedinculturesgrownusinganinitialnitrogen

concen-trationof0.44g/L(Fig.3).

The main commercial sources of PUFAs are species of

fatty fish,suchasherring,mackerel, salmonand sardines.

TheAurantiochytriumstrainusedinthis studyaccumulated

higherconcentrationsofPUFAs(28–70%)thanthosereported

in sardineoil (31.1%) by Morais.21 The DHA concentration

(20–43%)producedbythisoleaginousmicroorganismwas

2-to4-fold higherthan that foundinthe sardineoil(11%).21

CultivatedAurantiochytriumsp.ATCCPRA-276isapromising

alternativesourceofoilrichinPUFAs.Usingfishforthe

large-scaleproductionofsuchoilislimitedbythechangesinthe

lipidcompositionsandcontentsandthefattyacidprofilesof

fish,whichareaffectedbytheseasonsandtheirspecies,sex,

size,reproductivestatus,catchlocation,dietandnutritional

status.22Moreover,fishoilexhibitsagreatdiversityoffatty

acidswithdifferentchainlengthsanddegreesof

unsatura-tionandthus,requiresexpensiveextractionandpurification

processes.8

Cultivatingan oleaginous microorganism in the

labora-toryundercontrolledenvironmentalconditionsreducesthe

risk ofcontamination and can increase fatty acid

produc-tionatalowcost. Inthisstudy,weobservedthatthetotal

fattyacidcontentofthebiomass(%,w/w)increasedasthe

TNconcentrationwasdecreased.Thisphenomenonoccurred

becauselipids generallyaccumulateinoleaginous

microor-ganismswhenthemediumcontainsanexcessofthecarbon

sourceandalimitedamountofnitrogen(highC/Nratio).In

thepresenceoflow-levelnitrogen,thesynthesisofproteins

andnucleicacids islimitedbythe enhancedconversionof

carbontooil.23,24 Thisprocesswasobservedinthe

experi-mentsusingafed-batchsystem,inwhichC/Nratiowashigh,

eventuallyleadingtotheaccumulationofahighleveloftotal

fattyacids(526.20mg/g)inthebiomass(Table1).However,

fed-batchculturesexhibitedlowerPUFAsproduction(1.89g/L)and

consequentlylowerDPA␻6(0.44g/L)andDHA(1.33g/L)

pro-ductionthanthoseofthebatchculturesbecausetheyieldsof

thesefattyacidsaredependentontheaccumulationofPUFAs

inthetotallipidsaswellasontheaccumulationofoilsinthe

biomass.Additionally,thefattyacidyieldwasalsorelatedto

thecellconcentrationatagiventime.

For example, in the experiments using an initial TN

concentrationof0.22g/L,therewasahighersubstrate

con-sumptionrate,increasedbiomassproductivityandahigher

C/N ratio (54), which resulted in higher yields of DPA ␻6

(0.80g/L)andDHA(2.54g/L).

Ganuza and Izquierdo18 observedgreater DPA␻6(3.85%

w/w) and DHA(15.4% w/w)accumulation bySchizochytrium

sp. G13/2S cells grown using initial nitrogen and glucose

concentrationsof0.30g/Land40g/L,respectively,than was

observedinourexperiments(3.34%w/wDPA␻6,and10.62%

w/wDHA)usinganinitialnitrogenconcentrationof0.22g/L.

However, their DPA ␻6 (0.6g/L) and DHA (2.42g/L)

produc-tionrateswerelowerthanours,whichcanattributedtothe

highermaximumbiomassconcentration(23.9g/L)obtainedin

ourexperimentscomparedwiththatreportedbyGanuzaand

Izquierdo18(15.7g/L).

UsingasimilarculturemediumwithaninitialTN

concen-trationof0.44g/LtogrowSchizochytriumsp.ATCC20889,Jiang

etal.8observedthatDHAaccountedfor26%ofthetotalfatty

acids after120hofcultivation,whichisverysimilartothe

25.5%DHAlevelinthetotalfattyacidsobservedinourstudy.

Inourstudy,theaccumulatedbiomassconsistedof

approxi-mately12.5%(w/w)DHA,whichishigherthanthevalue(8.8%)

reportedbyJiangetal.8

Burjaetal.24 evaluatedtheeffectofdifferent

concentra-tionsofnitrogenonfattyacidproductionbyThraustochytrium

sp. ONC-T18. Using aninitial TNconcentrationof 0.75g/L,

these authors obtained 0.04g/L of DHA, corresponding to

0.53%(w/w)ofthebiomass,andreportedalowbiomass

con-centration (7.5g/L) and alow levelofDHA inthe biomass.

Burjaetal.24alsoobservedthatusingahigherinitialTN

con-centration(1.23g/L),1.56g/LofDHAwasobtained,whichis

approximately3timestheDHAconcentration(0.51g/LDHA)

observedinourexperimentsusinganinitialTNconcentration

of3.0g/L.

Conclusions

Herein,wepresentedthe resultsofastudy oftheeffectof

differentconcentrationsofcarbonandnitrogenonPUFAs

pro-ductionbyAurantiochytriumsp.ThePUFAsproductionofthis

microorganism dependson the accumulationoftotal fatty

acidsandontheconcentrationofthebiomass.Therefore,the

culturemediumshouldfacilitatethegrowthofthis

microor-ganismandprovideanadequatenitrogensupplywithrespect

totheC/Nratiobecauseitaccumulates oilswhenthetotal

nitrogensupplyislimited.

Themainpolyunsaturatedfattyacidsfoundinthe

(7)

and DHA(61.3–70.5%). Themaximum cellconcentration of

23.9g/L (with45.5% of its weight consisting offatty acids)

wasobservedat96hofcultivation usinginitial

concentra-tionsof30g/Lofglucoseand0.22g/Loftotalnitrogen.Under

these conditions, the highest PUFAs concentration (3.6g/L)

wasreached,withtheDHAandDPA␻6concentrationsbeing

2.54and0.80g/L,respectively.

Theresultsofthisstudyshowedthatthegrowthof

Auran-tiochytriumsp.ATCCPRA-276anditsaccumulationofPUFAs,

particularly DHA, are dependent on the concentrations of

thecarbonandnitrogensubstrates.Theresultsalso

demon-stratedthatthecultivationperiodisanimportantvariablefor

PUFAsproductionbyAurantiochytriumsp.ATCCPRA-276.

Aurantiochytriumsp.ATCCPRA-276iscapableofproducing

highlevelsofPUFAs.Therefore,developingnewtechniques

forcultivatingthismicroorganismcouldreducethecostand

increasetheproductionofoilsforuseinfoodandmedicines.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

This study was supported by the Coordenac¸ão de

Aperfeic¸oamento de Pessoal de Nível Superior of Brazil

(CAPES)anddevelopedatthePortugueseInstituteofSeaand

Atmosphere(IPMA)inLisbon,PT,withtheaidofascholarship

grant awarded to the first author by the Doctoral in the

CountrywithInternshipAbroadProgramme(PDEE)(grantno.

6906/10-9).TheauthorsalsothanktheALGAENEProjectand

DepsiextractaBiologicalTechnologies,Lda.fortheirsupport.

r

e

f

e

r

e

n

c

e

s

1.SijtsmaL,SwaafDeME.Biotechnologicalproductionand applicationsofthe␻-3polyunsaturatedfattyacid docosahexaenoicacid.ApplMicrobiolBiotechnol. 2004;64:146–153.

2.Shwu-TzyW,Shih-TsungY,Liang-PingL.Effectofculture conditionsondocosahexaenoicacidproductionby Schizochytriumsp.S31.ProcBiochem.2005;40:3103–3108.

3.SimopoulosAP,KiferRR,MartinRE,BarlawSM.Health effectsofomega3polyunsaturatedfattyacidsinseafoods. WorldRevNutrDiet.1991;66:1–592.

4.CorsinoviL,BiasiF,PoliG,LeonarduzziG,IsaiaG.Dietary lipidsandtheiroxidizedproductsinAlzheimer’sdisease. MolNutrFoodRes.2011;55:S161–S172.

5.NaurothJM,LiuYC,ElswykMV,etal.Docosahexaenoicacid (DHA)anddocosapentaenoicacid(DPAn-6)algaloilsreduce inflammatorymediatorsinhumanperipheralmononuclear cellsinvitroandpawedemainvivo.Lipids.2010;45:375–384.

6.ManikanV,KalilMS,HamidAA.Responsesurface optimizationofculturemediumforenhanced docosahexaenoicacidproductionbyaMalaysian thraustochytrid.SciRep.2015;5:1–8.

7.QuL,RenL-J,LiJ,etal.Biomasscomposition,lipid characterization,andmetabolicprofileanalysisofthe fed-batchfermentationprocessoftwodifferent

docosahexanoicacidproducingSchizochytriumsp.strains. ApplBiochemBiotechnol.2013;171:1865–1876.

8.JiangY,FanKW,WongRT,ChenF.Fattyacidcomposition andsqualenecontentofthemarinemicroalgaSchizochytrium mangrovei.JAgricFoodChem.2004;52:1196–1200.

9.RaghukumarS.Thraustochytridmarineprotists:production ofPUFAsandotheremergingtechnologies.MarBiotechnol. 2008;10:631–640.

10.KendrickA,RatledgeC.Lipidsofselectedmoldsgrownfor productionofn-3andn-6polyunsaturatedfattyacids.Lipids. 1992;27:15–20.

11.FurlanVJM,PauloMC,BatistaI,BandarraNM,SantoMLE, PrenticeC.Effectoftheconcentrationofglucoseinthe docosahexaenoicacid(DHA)productionbyThraustochytrium sp.ATCC26185.AdvJFoodSciTechnol.2012;4:257–264.

12.MinKH,LeeHH,AnbuP,ChaulagainBP,HurBK.Theeffects ofcultureconditionsonthegrowthpropertyand

docosahexaenoicacidproductionfrom

ThraustochytriumaureumATCC34304.KoreanJChemEng. 2012;29:1211–1215.

13.MillerGL.Useofdinitrosalicylicacidreagentfor

determinationofreducingsugar.AnalChem.1959;31:426–428.

14.CohenZ,VonshakA,RichmondA.Effectofenvironmental conditionsonfattyacidcompositionoftheredalgae Porphyridiumcruentum:correlationtogrowthrate.JPhycology. 1988;24:328–332.

15.TriolaMF.Introduc¸ãoàestatística.10thed.RiodeJaneiro:Ltc; 2008.

16.ChenGQ,FanKW,LuFP.Optimizationofnitrogensourcefor enhancedproductionofsqualenefromThraustochytrid Aurantiochytriumsp.NewBiotechnol.2010;27:382–389.

17.LiQ,ChenGQ,FanKW,LuFP,AkiT,JiangY.Screeningand characterizationofsqualene-producingThraustochytrids fromHongKongmangroves.JAgricFoodChem.

2009;57:4267–4272.

18.GanuzaE,IzquierdoMS.LipidaccumulationinSchizochytrium G13/2Sproducedincontinuousculture.ApplMicrobiol Biotechnol.2007;76:985–990.

19.ZhuL,ZhangX,JiL,SongX,KuangC.Changesoflipid contentandfattyacidcompositionofSchizochytrium limacinuminresponsetodifferenttemperaturesand salinities.ProcBiochem.2007;42:210–214.

20.FurlanVJM,PauloMC,MausVW,FerreiraJ,BatistaI, BandarraNM.Productionofdocosahexaenoicacid(DHA) fromThraustochytriumsp.ATCC26185usingdifferents nitrogenconcentrations.BCentPesquiProcA.2014;32: 1–10.

21.MoraisMM.Estudodoprocessoderefinodoóleodepescado. Brasil:RioGrande;2000:100[MScDissertation.Engenhariae CiênciadeAlimentos,FURG].

22.Gonc¸alvesAA.Tecnologiadopescado:ciência,tecnologia, inovac¸ãoelegislac¸ão.SãoPaulo:Atheneu;2011.

23.RatledgeC,WynnJP.Thebiochemistryandmolecular biologyoflipidaccumulationinoleaginousmicroorganisms. AdvApplMicrobiol.2002;51:1–51.

24.BurjaAM,RadianingtyasH,WindustA,BarrowCJ.Isolation andcharacterizationofpolyunsaturatedfattyacidproducing Thraustochytriumspecies:screeningofstrainsand

optimizationofomega-3production.ApplMicrobiolBiotechnol. 2006;72:1161–1169.

Referências

Documentos relacionados

The electrooxidation of the SDZ (volume of 0.5 L, with a SDZ initial concentration of 250 mg L -1 ) obtained at optimized conditions (current density of 36 mA cm -2 , pH 7.0

Para tanto, são apresentadas as rotinas necessárias para sistematizar a legislação acerca do licenciamento referente à atividade de revenda de GLP; o modelo de

Em específico, não se verificou uma influência direta das ações autocompassivas em menores níveis de atitudes e comportamentos alimentares maladaptativos, sugerindo

Then, this equation was used to fit the experimental data of a specific growth rate of biomass for each batch culture with initial different catechol

The experiments showed that the final levan concentration depended on initial sucrose concentration, temperature and agitation velocity and that the initial concentration of

Optimization of enzyme production using nitrogen source / NaCl concentration / Agitation and stationary culture condition.. The enzyme productions were further

An experiment under hydroponic conditions - the NFT system - was conducted with the aim of evaluating the effect of the concentration of nitrogen in the nutrient solution on

biological efficiency of Agaricus brasiliensis in compost prepared with different initial concentrations of nitrogen, according to the composting methodology and to the