• Nenhum resultado encontrado

DEFB1 gene polymorphisms and tuberculosis in a Northeastern Brazilian population

N/A
N/A
Protected

Academic year: 2021

Share "DEFB1 gene polymorphisms and tuberculosis in a Northeastern Brazilian population"

Copied!
5
0
0

Texto

(1)

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Medical

Microbiology

DEFB1

gene

polymorphisms

and

tuberculosis

in

a

Northeastern

Brazilian

population

Ronaldo

Celerino

da

Silva

a,c,∗,1

,

Heidi

Lacerda

Alves

da

Cruz

a,c,1

,

Lucas

André

Cavalcanti

Brandão

c,d

,

Rafael

Lima

Guimarães

a,c

,

Lilian

Maria

Lapa

Montenegro

b

,

Haiana

Charifker

Schindler

b

,

Ludovica

Segat

e

,

Sergio

Crovella

a,c

aDepartmentofGenetics,FederalUniversityofPernambuco(UFPE),Recife,Pernambuco,Brazil

bDepartmentofImmunology,AggeuMagalhãesResearchCenter(CPqAMFIOCRUZPernambuco),Recife,Pernambuco,Brazil cLaboratoryofImmunopathologyKeizoAsami(LIKA),FederalUniversityofPernambuco(UFPE),Recife,Pernambuco,Brazil dDepartmentofPathology,FederalUniversityofPernambuco,Recife,Pernambuco,Brazil

eInstituteforMaternalandChildHealthIRCCS“BurloGarofolo”,Trieste,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received17September2014 Accepted5September2015 Availableonline2March2016 AssociateEditor:JorgeLuizMello Sampaio Keywords: Tuberculosis Innateimmunity DEFB1 Genotyping Polymorphism

a

b

s

t

r

a

c

t

␤-Defensin-1,anantimicrobialpeptideencodedbytheDEFB1gene,isknowntoplayan importantroleinlungmucosalimmunity.InourassociationstudyweanalyzedthreeDEFB1

functionalpolymorphisms−52G>A(rs1799946),−44C>G(rs1800972)and−20G>A(rs11362) in92tuberculosispatientsand286healthycontrols,bothfromNortheastBrazil:no associ-ationwasfoundbetweenthestudiedDEFB1polymorphismsandthedisease.Howeverwe cannotexcludethatthislackofassociationcouldbeduetothelownumberofsubjects analyzed,assuggestedbythelowstatisticalpowerachievedforthethreeanalyzedSNPs (valuesbetween0.16and0.50).

©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Correspondingauthor.

E-mail:ronaldocelerino@yahoo.com.br(R.CelerinodaSilva). 1 R.C.S.andH.L.A.C.contributedequallytothewritingofthearticle.

http://dx.doi.org/10.1016/j.bjm.2015.09.001

1517-8382/©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

Introduction

Mycobacterial diseases are a majorhealth concern, affect-ingapproximatelyone-thirdoftheworld’spopulation.1The most common clinical form of the disease is pulmonary tuberculosis,agranulomatousdiseaseofthelungscausedby

Mycobacteriumtuberculosis.Extrapulmonarytuberculosismay occurwhenthebacillusinfectsotherorgans.2–4

The general risk of infected individuals to develop the disease duringtheir lifetimeranges between5 and 10%.2,3 A possible genetic predisposition to tuberculosis (TB) has been suggested in several studies.5–8 Moreover evidence existthatextrapulmonaryTBistheresultofanunderlying immunedefect,4however,thefunctionalcorrelationbetween geneticpolymorphismsandimmunologicdefectshouldbeyet unraveled.7

Themucosalimmunityofairepitheliaiscomplex,andthe innateimmunesystem,mainlybythemucosalsecretionof antimicrobialpeptidesgradient,isthoughttoplayan impor-tantroleindefenseagainstM.tuberculosis,althoughtheexact mechanismsareyetpoorlyunderstood.9,10

The human ␤-defensin-1 (hBD-1) is a small (29–47 aminoacids)cationicantimicrobialpeptide,11constitutively expressedinairwayepitheliathatplaysanimportantrolein mucosalimmunityinthelung.12–15 Thispeptideisencoded byDEFB1gene,locatedatchromosome8p22-23.16

Three single nucleotide polymorphisms (SNPs), located at −52G>A (rs1799946), −44C>G (rs1800972) and −20G>A (rs11362)positioninthe5 untranslatedregion(UTR)ofthe

DEFB1genehavebeenreportedtopromotefunctional alter-ationofhBD-1expressionindifferentcellmodels.17,18These SNPs were firstly described byDörk and Stuhrmann19 and have been then associated with chronic obstructive pul-monary disease,20 increased levels of Candida albicans in the oral cavity,21 increased risk for Human Immunodefi-ciencyVirus1infection,22–25 susceptibilitytomycobacterial diseases8,26andotherdiseases.27–31

Consideringthepossibleroleoftheinnateimmune sys-tem in the risk of tuberculosis infection, this study aims toexaminewhetherfunctional polymorphismsat5UTRin

DEFB1 gene are associated with the occurrence of active tuberculosis.

Patients

and

methods

Studypopulation

Ninety-twoTBpatientswereenrolledfromfivereference cen-terforTBfollowupinRecife(Pernambuco,NortheastBrazil): HospitaldasClínicas–UniversidadeFederaldePernambuco (HC-UFPE),InstitutodeMedicinaIntegralProfessorFernando Figueira(IMIP),HospitalBarãodeLucena(HBL/US)and Hos-pitalOtáviodeFreitas.Ofthe92patientsanalyzed,64(69.6%) presentedwithpulmonaryTB(36malesand28females,mean age21years±18.7)and28(30.4%)withextrapulmonaryTB(17 malesand11females,meanage23years±21.7).The diagno-siswasbasedonclinicalsymptomsandradiographicfindings, alongwithbacteriologicalconfirmation(culture,smearand/or polymerase chainreaction) as described bythe Diagnostic

Standards and Classificationof Tuberculosis inAdults and Children.32

As control group, we enrolled 286 healthy individ-uals (163 females/123 males; mean age 27 years±20.3), unrelated to patients, with negative Mantoux test, show-ing no symptoms of tuberculosis or previous history of the disease. All patients and control subjects came from the same geographical area (Pernambuco, Brazil), were all HIV-1 negative and were not under immunosuppressive medication.

Sinceethnicityisanimportantissueingeneticanalyses, patientsandcontrolsreportedtheirself-declaredskinbased ethnic origin.During ethnicity reporta healthprofessional accompaniedtheprocedureguaranteeingthecorrectnessof theprocedure.Afterethnicityassessmentweverifiedthe self-reportedandhealthprofessionalcheckedresults,byanalyzing in the controls 12 Ancestry informativemarkers (AIMs) as recently reported by Coelho et al.33 Absence or extremely poorcorrelationbetweenskinbasedethnicity and thetrue geneticbackground,asrevealedbythe12AIMsanalysis,was observed.So,wediscardedtheself-declaredskinbased eth-nicoriginandconsideredonlythegeneticAIMsfindings.In fact,ourstudiedpopulationconsistsofastrongadmixtureof European-Caucasian,AfricanandSouthAmerican Amerindi-ans population, leading the genetic North East Brazilian compositionunique;consequentlyitisimpossibletostratify our populationforethnicity,being anadmixtureofaround 58%European,24%Africanand18%Amerindianasrecently reported.33

Written informed consent was obtained from the par-ticipants or their parents. The CPqAM/FIOCRUZ Ethics Committee (CEP Registration – 55/05) approved the study. Patients underwent a standardizedclinical–epidemiological questionnaire.

DEFB1genotyping

GenomicDNAwasextractedfromwholebloodusingQIAamp DNA Blood Kit according to manufacturer instructions (QIAampDNABloodMidiKit,Qiagen).

The DEFB1 5UTR polymorphisms −52G>A (rs1799946), −44C>G (rs1800972) and −20G>A (rs11362) were geno-typed by direct sequencing, according to Braida et al.22 Sequences were handled using the 4Peaks

(http://nucleobytes.com/index.php/4peaks) and CodonCode

Alignersoftware(http://www.codoncode.com/aligner/).

Statisticalanalysis

Chi-square test was used to verify the Hardy–Weinberg equilibrium and the Fisher’s exact test was employed for pair-wisecomparisonofallele,genotypeandhaplotype fre-quencies using contingency tables as appropriate; only p

values<0.05 were considered to besignificant. All the sta-tistical analyses were carried out using the open-sourceR package (http://www.r-project.org). The power ofthe study wascheckedbysoftwareG*powersoftwareversion3.1.34 Hap-lotypeswerecomputed usingtheArlequinversion 3.5.1.335 andHaploviewsoftware.36

(3)

Table1–AllelesandgenotypesdistributionofSNPs–inthe5untranslatedregion(UTR)ofDEFB1geneintuberculosis patients(TB)andhealthycontrols(HC)fromNortheastBrazil.

SNPs TBpatients n=92 Healthycontrols n=268 p-value,OR(95%CI) All pTB Allvs.HC pTBvs.HC -52G>A(rs1799946) G 97(0.53) 68(0.54) 309(0.54) Reference Reference A 87(0.47) 58(0.46) 263(0.46) p=0.80,1.05(0.74–1.49) p=1.00,1.00(0.67–1.50) GG 29(0.32) 19(0.30) 89(0.31) Reference Reference GA 39(0.42) 30(0.48) 131(0.46) p=0.78,0.91(0.51–1.65) p=0.87,1.07(0.54–2.15) AA 24(0.26) 14(0.22) 66(0.23) p=0.75,1.11(0.56–2.19) p=1.00,0.99(0.43–2.26) GA/AA 63(0.68) 44(0.70) 197(0.69) p=1.00,0.98(0.58–1.69) p=1.00,1.05(0.56–2.01) −44C>G(rs1800972) C 153(0.83) 102(0.81) 491(0.86) Reference Reference G 31(0.17) 24(0.19) 81(0.14) p=0.40,1.23(0.75–1.96) p=0.17,143(0.82–2.40) CC 66(0.72) 42(0.67) 213(0.74) Reference Reference CG 21(0.23) 18(0.29) 65(0.23) p=0.89,1.04(0.56–1.88) p=0.29,1.40(0.71–2.69) GG 5(0.05) 3(0.05) 8(0.03) p=0.32,2.01(0.50–7.25) p=0.40,1.90(0.31–8.32) CG/GG 26(0.28) 21(0.34) 73(0.26) p=0.59,1.15(0.65–1.99) p=0.21,1.46(0.77–2.71) −20G>A(rs11362) G 118(0.64) 82(0.65) 361(0.63) Reference Reference A 66(0.36) 44(0.35) 211(0.37) p=0.86,0.96(0.66–1.37) p=0.76,0.92(0.60–1.40) GG 39(0.42) 26(0.41) 115(0.40) Reference Reference GA 40(0.43) 30(0.48) 131(0.46) p=0.70,0.90(0.52–1.54) p=1.00,1.01(0.54–1.90) AA 13(0.14) 7(0.11) 40(0.14) p=1.00,0.96(0.42–2.06) p=0.66,0.77(0.26–2.02) GA/AA 53(0.57) 37(0.59) 171(0.60) p=0.72,0.91(0.55–1.52) p=0.89,0.96(0.53–1.74) pTB,pulmonarytuberculosis;OR,oddsratio;95%CI,95%confidenceinterval;SNP,singlenucleotidepolymorphism.Referenceindicatesthe mostfrequentallelesandgenotypes.

Results

Thegenotypingresultsofthethree5UTRDEFB1functional

polymorphisms−52G>A(rs1799946),−44C>G(rs1800972)and

−20G>A (rs11362) in TBpatients and healthy controls, are

showninTable1.AllSNPswereinHardy–Weinberg

equilib-riumforbothTBpatientsandhealthycontrols.

DEFB1 SNPs allele and genotype frequencies were sim-ilar in TB patients and healthy controls and no signif-icant difference has been found (p>0.05), also when TB patientswerestratifiedaccordingtothepulmonaryformof disease.

Wecomputedthehaplotypesandobservedthatthethree SNPsinthe5UTRofDEFB1areinstronglinkagedisequilibrium (D>0.9),formingfourhaplotypes(Table2).However,no sig-nificantdifferenceswerefoundwhencomparingTBpatients andhealthycontrols(Table2).

In addition, we estimated the linkage disequilibrium andthe possiblehaplotypes,using Haploviewsoftware,for Brazilianhealthy controls (BRA)and healthy individuals of African (AFR), Caucasian (CEU) and Ad Mixed American (AMR) origin, provided by 1000 Genome Project Database

(www.1000genomes.org). We noted that DEFB-1 SNPs were

in perfect linkage disequilibrium (D=1.0) and have dif-ferent haplotype distributions in the studied populations

(Table3).

Thepost hocanalysisofthestudy throughtheG*power software,indicate the followingpowerfor threeSNPs:0.30 (−52G>A),0.5(−44C>G)and0.16(−20G>A).

Discussion

In the current study, no association was found between −52G>A (rs1799946), −44C>G(rs1800972), −20G>A (rs11362)

DEFB1polymorphismsandTBinaBrazilianpopulation,also whenconsideringthepulmonaryformofthedisease.

Inacase–controlstudy,Wuetal.8analyzedDEFB15UTR

polymorphismsin102patientswithpulmonaryTBand148 healthy controlsofChinese Han populationobserving that theDEFB1−44C/Cgenotypewasassociatedwithpulmonary TBsusceptibility(OR=2.096)andtheGGG(−52/−44/−20) hap-lotype was associated with the pulmonary TB protection (OR=0.348).

In a recent work, performed on a limited number of Mexicanpatients(27withpulmonaryTBand16with extra-pulmonary TB)and controls (n=49), López Camposet al.37 described an association between DEFB1 −44C>G SNP (CG genotypeinacodominantgeneticmodel)andsusceptibilityto extrapulmonaryTB,butnotwiththepulmonaryTB, hypoth-esizing a role forhBD-1 inthe fight againstM. tuberculosis

outsidethelung.

Ourfindingshavediscrepancieswiththeresultsobtained byWuetal.8onHanpopulationandbyLopezCamposetal.37 inMexicans:wecanhypothesizethatthedifferencescouldbe, atleastinpart,duetoethnicity,sincethefrequenciesDEFB1

SNPsvaryindifferentpopulations.AccordingtotheNCBIand HapMapdatabases,38for−52SNP(rs1799946)thefrequency oftheancestralalleleis0.64inEuropean(CEU),0.56in Sub-SaharaAfrican(YRI)and0.40inAsian(HCB);thefrequency

(4)

Table2–Haplotypesfrequencydistributionof5UTRDEFBSNPsintuberculosispatients(TB)andhealthycontrols(HC) fromNortheastBrazil.

Haplotypes(−52/−44/−20) TBpatients Healthycontrols 2n=572 p-value,OR(95%CI) All 2n=184 pTB 2n=126 Allvs.HC pTBvs.HC

ACG 86(0.47) 58(0.46) 264(0.46) Reference Reference

GCA 64(0.35) 42(0.34) 210(0.37) p=0.78,0.94(0.63–1.38) p=0.74,0.91(0.57–1.44) GGG 30(0.16) 22(0.18) 80(0.14) p=0.61,1.15(0.68–1.91) p=0.47,1.25(0.68–2.23) GCG 4(0.01) 4(0.02) 18(0.03) p=0.61,0.68(0.16–2.15) p=1.00,1.01(0.24–3.23) pTB,pulmonarytuberculosis;OR,oddsratio;95% CI,95%confidenceinterval;nc,notcalculable.Referenceindicatesthemostfrequent haplotypes.

Table3–Haplotypesfrequenciesinhealthyindividualofdifferentethnicorigin.

Haplotypes Frequencies

Brazilian(BRA) African(AFR) Caucasian(CEU) AdMixed American(AMR)

ACG 0.460 0.588 0.399 0.297

GCA 0.369 0.300 0.354 0.438

GGG 0.142 0.064 0.000 0.000

GCG 0.030 0.049 0.247 0.261

of ancestral allele of −44 SNP (rs1800972) is 0.26 in

Euro-pean(CEU),0.04inSub-SaharaAfrican(YRI)and0.12inAsian

(HCB);for−20SNP (rs11362),thefrequencyis0.61in

Euro-pean(CEU),0.60inSub-Sahara(YRI)and0.71inAsian(HCB).

Inaddition,theSNPsanalyzedinBrazilianhealthyindividuals

andhealthy individualofAfrican (AFR),inCaucasian (CEU)

andAdMixedAmerican(AMR)origin,wereinperfectlinkage

disequilibrium (D=1.0) and presented different haplotypic

distribution(Table3),suggestingthatethnicsbackgroundmay

beresponsibleforthedifferencesobservedinpopulationsthat havebeenstudied.Additionally,intheHanChinese popula-tionnolinkagedisequilibriumwasdetected(D<0.5)8andas aconsequencecomparingDEFB1haplotyperesultswithour findingshasnotbeenpossible.Moreover,whenlookingatthe Mexicanpopulationithastoberemarkedthatthestudyof LopezCamposetal.37justanalyzedoneDEFB1SNP−44C>G andotherSNPsincathelicidinencodingCAMPgene.So,itwas notpossibletocompareourDEFB1haplotypeswiththeresults reportedforMexicanpatients.Furthermore,DEFB1rs1800972 alleleandgenotypefrequenciesreportedintheMexican popu-lation(notinHardy–WeimbergEquilibrium)weresignificantly different(0.0002)fortheCalleletoBrazilianones.

However,wecannotexclude,thatthelackofassociation reportedinourstudy,couldbeduetothelimitedsamplesize; thepowerofourstudy(posthocPower≤0.5)indicatesthatnot findinganassociationbetweenSNPswithTBdevelopment, couldbeduetoatypeIIerror.Thisisastronglimitationof ourstudy,andseeingthatalsotheworks ofWuetal.8and LopezCamposetal.37sufferthesamesamplesizeproblem,we areconvincedthatanyfurtherstudydealingwithassociation betweendefensinsgenepolymorphismandTB,shouldenroll greaternumberofpatients,maybejoiningseveralresearch groups,inordertoachievebetterstatisticalpowertoprovide adefinitiveanswerontheroleofdefensinsinsusceptibilityto TB.

Allthisconsidered,evenifourresultsseemtoexcludean associationbetweenDEFB1polymorphismsandTB develop-mentinNortheastBrazilianpopulation,sinceDEFB1couldbea potentialcandidategeneforsusceptibilitytoTBandonlyvery fewstudieshaveaddressedthistopicachievingcontroversial results,wedothinkthatfurtherstudiesonalargernumberof patientsandinotherpopulationsareneededtodisclosethe roleofDEFB1variationsintuberculosisdevelopment.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

Theauthorsthankallthehealthprofessionalsfromthe hospi-talsinvolvedinthestudythatcollaboratedwiththeresearch. We thank the Laboratory of Immunoepidemiology – Cen-trode PesquisasAggeuMagalhões/Fundac¸ão Oswaldo Cruz (CPqAM/FIOCRUZ),theLaboratoryofImmunopathologyKeizo Asami, the Department of Genetics, Federal University of Pernambuco, theGraduateProgram inGenetics for suppor-tingphysicalandscientific,aswellasFundac¸ãodeAmparo à Ciência eTecnologiadoEstado de Pernambuco(FACEPE), Coordenac¸ão deAperfeic¸oamentoPessoaldeNívelSuperior (CAPES)andConselhoNacionaldeDesenvolvimento Cientí-ficoeTecnológico(CNPq),forfinancialsupport.

r

e

f

e

r

e

n

c

e

s

1.WHO.GlobalTuberculosisReport;2012.

http://www.who.int/tb/publications/globalreport/en/

(5)

2.DucatiRG,Ruffino-NettoA,BassoLA,SantosDS.The

resumptionofconsumption–areviewontuberculosis.Mem

InstOswaldoCruz.2006;101:697–714.

3.Clark-CurtissJE,HaydelSE.Moleculargeneticsof

Mycobacteriumtuberculosispathogenesis.AnnuRevMicrobiol.

2003;57:517–549.

4.GonzalezOY,AdamsG,TeeterLD,BuiTT,MusserJM,Graviss

EA.Extra-pulmonarymanifestationsinalargemetropolitan

areawithalowincidenceoftuberculosis.IntJTubercLung

Dis.2003;7:1178–1185.

5.BellamyR,RuwendeC,CorrahT,McAdamKP,WhittleHC,

HillAV.VariationsintheNRAMP1geneandsusceptibilityto

tuberculosisinWestAfricans.NEnglJMed.1998;338:640–644.

6.BellamyR,RuwendeC,CorrahT,etal.Tuberculosisand

chronichepatitisBvirusinfectioninAfricansandvariation

inthevitaminDreceptorgene.JInfectDis.1999;179:721–724.

7.BerringtonWR,HawnTR.Mycobacteriumtuberculosis,

macrophages,andtheinnateimmuneresponse:does

commonvariationmatter?ImmunolRev.2007;219:167–186.

8.WuX,GongL,LinJ,WangH.Associationbetweenhuman

betadefensin-1singlenucleotidepolymorphismsand

susceptibilitytopulmonarytuberculosis.ZhonghuaYuFangYi

XueZaZhi.2012;46:912–915.

9.vanCrevelR,OttenhoffTHM,vanderMeerJWM.Innate

immunitytoMycobacteriumtuberculosis.AdvExpMedBiol.

2003;531:241–247.

10.Rivas-SantiagoB,SadaE,TsutsumiV,Aguilar-LeonD,

ContrerasJL,Hernandez-PandoR.beta-Defensingene

expressionduringthecourseofexperimentaltuberculosis

infection.JInfectDis.2006;194:697–701.

11.PazgierM,HooverDM,YangD,LuW,LubkowskiJ.Human

beta-defensins.CellMolLifeSci.2006;63:1294–1313.

12.McCrayPB,BentleyL.Humanairwayepitheliaexpressa

beta-defensin.AmJRespirCellMolBiol.1997;16:343–349.

13.BalsR.Epithelialantimicrobialpeptidesinhostdefense

againstinfection.RespirRes.2000;1:141–150.

14.KlotmanME,ChangTL.Defensinsininnateantiviral

immunity.NatRevImmunol.2006;6:447–456.

15.WallaceAM,HeJ-Q,BurkettKM,etal.Contributionof

alpha-andbeta-defensinstolungfunctiondeclineandinfectionin

smokers:anassociationstudy.RespirRes.2006;7:76.

16.LinzmeierRM,GanzT.Humandefensingenecopynumber

polymorphisms:comprehensiveanalysisofindependent

variationinalpha-andbeta-defensinregionsat8p22-p23.

Genomics.2005;86:423–430.

17.MilaneseM,SegatL,CrovellaS.Transcriptionaleffectof

DEFB1gene5untranslatedregionpolymorphisms.Cancer

Res.2007;67:5997,authorreply5997.

18.SunCQ,ArnoldR,Fernandez-GolarzC,etal.Human

beta-defensin-1,apotentialchromosome8ptumor

suppressor:controloftranscriptionandinductionof

apoptosisinrenalcellcarcinoma.CancerRes.

2006;66:8542–8549.

19.DörkT,StuhrmannM.Polymorphismsofthehuman

beta-defensin-1gene.MolCellProbes.1998;12:171–173.

20.MatsushitaI,HasegawaK,NakataK,YasudaK,TokunagaK,

KeichoN.Geneticvariantsofhumanbeta-defensin-1and

chronicobstructivepulmonarydisease.BiochemBiophysRes

Commun.2002;291:17–22.

21.JurevicRJ,BaiM,ChadwickRB,WhiteTC,DaleBA.

Single-nucleotidepolymorphisms(SNPs)inhuman

beta-defensin1:high-throughputSNPassaysand

associationwithCandidacarriageintypeIdiabeticsand

nondiabeticcontrols.JClinMicrobiol.2003;41:90–96.

22.BraidaL,BoniottoM,PontilloA,TovoPA,AmorosoA,

CrovellaS.Asingle-nucleotidepolymorphisminthehuman

beta-defensin1geneisassociatedwithHIV-1infectionin

Italianchildren.AIDS.2004;18:1598–1600.

23.MilaneseM,SegatL,PontilloA,ArraesLC,deLimaFilhoJL,

CrovellaS.DEFB1genepolymorphismsandincreasedriskof

HIV-1infectioninBrazilianchildren.AIDS.

2006;20:1673–1675.

24.FregujaR,GianesinK,ZanchettaM,DeRossiA.Cross-talk

betweenvirusandhostinnateimmunityinpediatricHIV-1

infectionanddiseaseprogression.NewMicrobiol.

2012;35:249–257.

25.FregujaR,GianesinK,DelBiancoP,etal.Polymorphismsof

innateimmunitygenesinfluencediseaseprogressionin

HIV-1-infectedchildren.AIDS.2012;26:765–768.

26.Prado-MontesdeOcaE,Velarde-FélixJS,Ríos-TostadoJJ,

Picos-CárdenasVJ,FigueraLE.SNP668C(−44)altersa

NF-kappaB1putativebindingsiteinnon-codingstrandof

humanbeta-defensin1(DEFB1)andisassociatedwith

lepromatousleprosy.InfectGenetEvol.2009;9:617–625.

27.ZaninV,SegatL,BiancoAM,etal.DEFB1gene5

untranslatedregion(UTR)polymorphismsininflammatory

boweldiseases.Clinics(SaoPaulo).2012;67:395–398.

28.Sandrin-GarciaP,BrandãoLAC,GuimarãesRL,etal.

Functionalsingle-nucleotidepolymorphismsintheDEFB1

geneareassociatedwithsystemiclupuserythematosusin

SouthernBrazilians.Lupus.2012;21:625–631.

29.TiszlaviczZ,SomogyváriF,SzolnokiZ,etal.Genetic

polymorphismsofhuman␤-defensinsinpatientswith

ischemicstroke.ActaNeurolScand.2012;126:109–115.

30.CrovellaS,SegatL,AmatoA,etal.Apolymorphisminthe5

UTRoftheDEFB1geneisassociatedwiththelung

phenotypeinF508delhomozygousItaliancysticfibrosis

patients.ClinChemLabMed.2011;49:49–54.

31.NurjadiD,HerrmannE,HinderbergerI,ZangerP.Impaired

␤-defensinexpressioninhumanskinlinksDEFB1promoter

polymorphismswithpersistentStaphylococcusaureusnasal

carriage.JInfectDis.2013;207:666–674.

32.DiagnosticStandardsandClassificationofTuberculosisin

AdultsandChildren.ThisofficialstatementoftheAmerican

ThoracicSocietyandtheCentersforDiseaseControland

PreventionwasadoptedbytheATSBoardofDirectors,July

1999.Thisstatement.AmJRespirCritCareMed.2000;161(Pt

1):1376–1395.

33.CoelhoA,MouraR,CavalcantiC,etal.Arapidscreeningof

ancestryforgeneticassociationstudiesinanadmixed

populationfromPernambuco,Brazil.GenetMolRes.

2015;14:2876–2884.

34.FaulF,ErdfelderE,LangA-G,BuchnerA.G*Power3:aflexible

statisticalpoweranalysisprogramforthesocial,behavioral,

andbiomedicalsciences.BehavResMethods.2007;39:175–191.

35.ExcoffierL,LavalG,SchneiderS.Arlequin(version3.0):an

integratedsoftwarepackageforpopulationgeneticsdata

analysis.EvolBioinformOnline.2005;1:47–50.

36.BarrettJC,FryB,MallerJ,DalyMJ.Haploview:analysisand

visualizationofLDandhaplotypemaps.Bioinformatics.

2005;21:263–265.

37.LópezCamposGN,VelardeFélixJS,SandovalRamírezL,

etal.Polymorphismincathelicidingene(CAMP)thatalters

Hypoxia-induciblefactor(HIF-1␣::ARNT)bindingisnot

associatedwithtuberculosis.IntJImmunogenet.

2014;41:54–62.

38.TheInternationalHapMapConsortium.Ahaplotypemapof

Referências

Documentos relacionados

Therefore, we evaluated the distribution of GSTM1 and GSTT1 genotypes within the Bahian rural worker group and compared it to GST polymorphism frequency in groups of whites,

Three hundred and forty-one subjects (127 women and 214 men) with coronary artery disease (CAD) were classified as having significant disease (CAD+ patient group) when they showed

In the present study, we analyzed the frequency of CYP2A6 and CYP2E1 poly- morphisms in individuals living in the city of Rio de Janeiro, a highly admixed popula- tion,

The aims of this study were to evaluate the frequencies of CYP2C19 and ABCB1 polymorphisms and to identify the clopidogrel-predicted metabolic phenotypes according to ethnic groups in

In this study, five functional polymorphisms (namely g-52G&gt;A, g-44C&gt;G and g-20G&gt;A in the 5’UTR and c.*5G&gt;A and c.*87A&gt;G in the 3’UTR) in the DEFB1 gene encoding

Table 1 - Allele and genotype count (and frequencies) of 5 9 UTR DEFB1 single-nucleotide polymorphisms in Crohn’s disease patients, ulcerative colitis patients and healthy

Abstract The high tuberculosis (TB) rates ob- served in the Brazilian prison population high- lights the need for more efficient TB control mea- sures in this population,

Our study analyzed the association of polymorphisms of folate-related gene ( TCN2 and MTRR ) with NSCL/P in a..