• Nenhum resultado encontrado

Evaluation of sample extracting methods of FCSM by Lactobacillus acidophilus based on a UPLC-Q-TOF-MS global metabolomics analysis

N/A
N/A
Protected

Academic year: 2021

Share "Evaluation of sample extracting methods of FCSM by Lactobacillus acidophilus based on a UPLC-Q-TOF-MS global metabolomics analysis"

Copied!
9
0
0

Texto

(1)

h ttp : / / w w w . b j m i c r o b i o l . c o m . b r /

Biotechnology

and

Industrial

Microbiology

Evaluation

of

sample

extracting

methods

of

FCSM

by

Lactobacillus

acidophilus

based

on

a

UPLC-Q-TOF-MS

global

metabolomics

analysis

Yongqiang

Wang

a,b

,

Wenju

Zhang

a,∗

,

Cunxi

Nie

a

,

Cheng

Chen

a

,

Xiaoyang

Zhang

a

,

Jianhe

Hu

b

aShiheziUniversity,CollegeofAnimalScienceandTechnology,Shihezi,Xinxiang,PRChina

bHenanInstituteofScienceandTechnology,CollegeofAnimalScienceandTechnology,Xinxiang,Henan,PRChina

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received29March2017 Accepted3August2017 Availableonline31October2017 AssociateEditor:RosaneSchwan

Keywords: Metabolomics Extract Fermentation FCSM Lactobacillusacidophilus UPLC-Q-TOF-MS

a

b

s

t

r

a

c

t

Thestudyofmetabolomicsrequiresextractingasmanymetabolitesaspossiblefroma biologicalsample.Thisstudyaimedtodeterminetheoptimalmethodfortheextractionof metabolitesfromsolid-statefermentedcottonseedmeal(FCSM).TheUPLC-Q-TOF-MSglobal metabolomicstechnologywasusedtodetectthemetabolitesinFCSM,andtheextraction quantityandextractionefficiencyofsevendifferentextractionmethods,specificallythe WA,50MeOH,50MeOHB,50MeCNB,80MeOHB,80MeOHandAMFmethodswereevaluated. TheresultsshowedthatthenumberofVIPmetabolitesextractedbyAMFmethodare196 and184inESI+andESI−moderespectively,itisthelargestnumberofallexacted meth-ods;andtheAMFmethodsalsoprovidedahigherextractionefficiencycomparedwiththe othermethods,especiallyinindoleacrylicacid,dl-tryptophanandepicatechin(p<0.01).As aresult,AMF/−4◦Cmethodwasidentifiedasthebestmethodfortheextractionof

metabo-litesfromFCSMbyLactobacillusacidophilus.Ourstudyestablishesatechnicalbasisforfuture metabolomicsresearchoffermentedfeed.

©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/ licenses/by-nc-nd/4.0/).

Introduction

Cottonseedmeal(CSM)isthemostimportantplantproteinin theworld.However,itsapplicationinanimalhusbandryis lim-itedduetoitscomplexcontent,whichincludesfreegossypol (FG),cyclopropenefattyacids(CPFA)andotheranti-nutritional factors,suchasahighfibrecontent,poorproteinprofile,etc.

Correspondingauthor.

E-mail:zhangwj1022@sina.com(W.Zhang).

ThemostcriticalprobleminCSMisFG,whichhasanegative effect onanimalproduction.1–3 Microbialfermentationwas usedtopromotetheapplicationandpopularizationofCSM because itcould reducethe FGeffectively andimprove the nutritionalvalueofCSM,asreportedrecently.4–7Lactobacillus

acidophilus isan importantlactic acid bacteria and intesti-nalmicrobethatregulatestheintestinalmicro-florabalance, enhancesimmunity,andreducescholesterollevels.8–10Butits useforfeedfermentationremainsrareandfewstudieshave investigatedsolid-statefermentedcottonseedmeal(FCSM)by

L.acidophilus.

https://doi.org/10.1016/j.bjm.2017.08.008

1517-8382/©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

brazilian journal of microbiology49(2018)392–400

393

A prerequisite for a metabolomics study of the target metabolitesofFCSMbyL.acidophilusistheoptimizationof the pretreatment of the biological samples, including sci-entificsampling, reasonablequenching and high-efficiency extraction.11,12 Theidealmethod shouldproducea sample ofallintracellularand extracellularmetabolites simultane-ouslyfortheanalysisofcomplexbiologicalsamplesforglobal metabolomics.13Bothintracellularandextracellular metabo-lites exert a significant effect on the results of microbial metabolomicstudies.14Fermentedfeedisacomplex biolog-icalsample;thefermentationproductsnotonlyincludethe metabolitesofmicrobial fermentation but alsoincludethe fermentationsubstratenutrients.Totrulyreflectthe fermen-tationprocess,thepretreatmentmethodsofquenchingand extractingmetabolitesmustbeoptimized.

Previousstudiesofthepretreatmentofbiologicalsamples havedemonstrated thatdifferentquenchingandextracting methodsweresuitablefordifferentmicroorganisms,suchas

Escherichiacoli,Yeast,Lacticacidbacteria,etc.15–19 These stud-iesmainlyincludedextractingmicroorganismmetabolitesby screeningdifferentpretreatmentmethodsandexaminingthe effectsofdifferentquenching solventsontheextractionof metabolitesandsamplegrindingdegree.However,these eval-uationsstudiedhowtousedifferentresearchplatformsand indicatorsoftheextractionmethod.Themajorityofstudies wereoftheextractionofdifferentquenchingsolvents,with aresearchplatformbasedontraditionalGC–MSandLC–MS. RecentdevelopmentshaveprovedthatUPLC-Q-TOF-MScould detect complex multi-component substances more effec-tively,faster andmoreaccuratelythan other methods.20–22 Atthesametime,theUPLC-Q-TOF-MSplatformcanalsobe analysed quantitatively for the number of metabolites. So far,afewapplicationsofL.acidophilustometabolomicshave beenstudied. SinceL.acidophilusfermentedproteinfeed is rarefortraditionalfeedproduction,themethodofextracting metabolitesfromFCSMhasnotreceivedsufficientattention. Therefore,itwasdesirabletoestablishanextractionmethod thatcanbeappliedtoawide rangeofmetabolitesfrom L. acidophilus.

ToidentifythefinalmetabolitesinFCSMbyL.acidophilus,

bothintracellularandextracellularmetabolitesmustbe anal-ysed. We used the global metabolomics profiling way to evaluate the efficiency of seven extraction methods (WA, 50MeOH,50MeOHB,50MeCNB,80MeOHB,80MeOHandAMF) systematicallywiththeaimofidentifyingthebestmethodfor theextractionfromtheFCSM.Sevendifferentpretreatment methodswereevaluatedthroughaglobalmetabolomics anal-ysisbasedonUPLC-Q-TOF-MS. Thequantity andefficiency ofthemetabolitesextractedfromFCSMwereevaluated.This studywillprovideagoodbasisforfutureanalysesofthetotal metabolitesintheFCSM.

Materials

and

methods

Chemicals

LC–MS-grademethanolandacetonitrilewerepurchasedfrom FisherChemical(FisherScientific,USA)orSigma–Aldrich(St.

Louis,MO,USA).ThewaterwaspurifiedwithanEPED-E2-T device(Nanjing,China).

Samplepreparation

L.acidophilus(JJ-0787)wasacquiredfromtheChinaCenterof IndustrialCultureCollection(CICC).Fermentationsubstrates werecomposedof65.89%CSMand34.11%corn,withatotal proteinof30%.JJ-0787strainswereculturedat37◦Cfor24h inMRSbroth(SolarbioLifeSciencesLtd.,Beijing,China),and theninoculated6mLJJ-0787strainsculturefluidin100g ster-ilizedfermentationsubstrate (themoisturecontentis40%), mixedthoroughly,sealedinthetrianglebottle,andthen stat-ically placed in an incubator at 37◦C for48h. Each group containedthreerepetitions.TheresultingsamplesofFCSM wereimmediatelyfrozeninliquidnitrogenandthenstoredat −80◦Cuntilanalysis.

Metaboliteextraction

Toinvestigatetheoptimalmethodfortheextractionofthe metabolites inFCSM, thedifferent quenchingsolvents and pretreatment methods used in the studies conducted by TokuokaandChenweremodifiedasfollows.18,19

WA(J1group):AsampleofFCSMwastreatedwithhigh-speed homogenization (HHM).Then,a0.2-g samplewas rapidly quenchedanddissolvedin2mLofultra-purewater(4◦C). Thesampleswerequicklyhomogenizedfor10minusinga high-fluxtissuehomogenizer(TisssueLyserII,Qiagen, Ger-many).Thecentrifugetubeswereincubatedfor30minonice. Theextractsolutionwascentrifuged(−20◦C,10,000r/min, 5min), and the residual debris was removed. The super-natantwasdissolvedin10volumesofultrapurewater(4◦C) andfilteredwitha0.22-␮msyringefilter(004022NL-SEPTFE, Shanghai,China).Thesampleswerestoredat−80◦Cuntil

furtheranalysis.

50MeOH (J2 group): Theextraction process wasthe same as that usedin the WAmethod exceptthat the quench-ingsolventwasreplacedbya50%coldmethanolsolution (methanol:water=50:50,−20◦C).

50MeOHB (J3 group): The extraction process was identi-cal tothat used in50MeOH methodexcept that the 50% coldmethanol solution (−20◦C) was replaced witha 50%

coldmethanolsolution(room temperature),and afterthe addition ofquenchingsolventto thesample,the method incorporatedaboilingprocedure(70◦C,5min)immediately followedbythesameprocessasusedin50MeOHmethod. 50MeCNB (J4 group): The extraction procedures were identicaltothoseusedin50MeOHBmethodwiththe excep-tion that the 50% methanol solution (room temperature) was replaced by a 50% acetonitrile solution (acetoni-trile:water=50:50,roomtemperature).

80MeOHB (J5 group): The 50% methanol solution used in 50MeOHBmethodwasreplacedwitha80%methanol solu-tion(methanol:water=80:20,roomtemperature),followedby thesamemethodasin50MeOHB.

80MeOH(J6Group):Theextractionprocedureswereidentical tothoseusedin50MeOHmethodexceptthatthe50%cold

(3)

methanolsolutionwasreplacedwithan80%methanol solu-tion(methanol:water=80:20,−20◦C),followedbythesame

methodasin50MeOH.

AMF(J7group):The50%coldmethanolsolutionusedinthe 50MeOHmethodwasreplacedbyacoldAMFsolution (ace-tonitrile:methanol:water=2:2:1,formicacid0.1mol/L,−4◦C),

andtheothermethodologicaldetailsarethesameasthose usedinthe50MeOHmethod.

Thesampleswerediluted20-foldwiththecorresponding extractionsolvent,vortexedandcentrifugedat13,200r/min for2min. A150␮Lvolumeofsupernatantfrom each sam-plewasanalysedbyUPLC-Q-TOF-MS.Finally,themetabolites wereidentifiedandanalysedbasedontheobtaineddata.

UPLC-Q-TOF-MSdetectionmethod

Thechromatographicconditionswereasfollows:Theanalysis wasperformedonanACQUITYUPLCBEH,whichwas config-uredwithdirectinjectionusingaC18column(100m,2.1mm, 1.7mm,Waters,USA).Thecolumnvolumewas10␮L,andthe columntemperaturewassetto35◦C.ThemobilephaseAwas ultrapurewater,whilemobilephaseBwasHPLC-grade ace-tonitrile with0.1%(v/v)formicacid,and the flowratewas 0.35mL/minstartingwith2%acetonitrileuptothefull gra-dientof98%inmobilephaseB(0–12min).Afterequilibration for1min,mobilephaseBrangedfrom98%to2%for1min andequilibrationfor1minafterthesamplewascollected.The injectionvolumewas2␮L,thecolumntemperaturewasset to35◦C,andtheautosamplertemperaturewasmaintainedat 4◦C.

Massspectrometryconditions:Anelectrosprayionization (ESI) sourcewas usedto scaninthe positive and negative ionization modes. Theion source temperature was 120◦C, and the desolvation temperature was 500◦C.The nitrogen flowrateforsolventevaporationwas 800L/h,and theflow rate of tapered blowing nitrogen was 50L/h. The positive-andnegative-ionmodecapillaryionizationvoltageswere3.0 and2.5kV,respectively;thesamplingconevoltageswere27 and30V,respectively;thecollisionenergywas6eV;andthe samplingconevoltageswere27and30V,respectively.The col-lisionenergywas6eV,andthequadrupolescanningrangewas between50and1000m/z.

Datastatisticsandanalysis

TherawdatadetectedbyUPLC-Q-TOF-MSwereanalysedby XCMSsoftware(http://xcmsonline.scripps.edu)forpeak iden-tification and matching.23 The chromatographic peak data werenormalizeduniformly,andthe multidimensionaldata wereanalysedusingSIMCA-Psoftware(version13.0,Sweden). Datapre-processingwasperformedusingtheParetoScaling method.A partialleastsquares-discriminateanalysis (PLS-DA)wasthenusedtoperformsupervisedmultidimensional statisticalanalysis,andthepermutationtestwasusedto pre-vent over-fittingofthe PLS-DA model.24 Thedifferentiated expressedmetabolites(VIPmetabolites)wereidentifiedand thenumberofdifferentmetaboliteswerecomparedthrougha

t-test(pvalue<0.05)andfold-changes(foldchange>2or<0.5), revealingamultiplerelationshipbetweenthetwogroups.22

Tandemmassspectrometrywasusedtoidentify metabo-litesbasedonexactmolecularweights(molecularweighterror of<30ppm).TheMasslynx i-FITalgorithmwasusedto fur-therconfirmthepossiblestructuralformulasaccordingtothe isotopeprinciple. Subsequently,accurateMS/MS’s fragmen-tation informationwasqueriedinthe HumanMetabolome Database(HMDB,http://www.hmdb.cawebcite)andtheMetlin database (http://metlin.scripps.edu/website) forthe screen-ingandidentificationofpotentialbiomarkersubstances.25–27 ThedatawereanalysedbyANOVAusingtheSPSS22.0 statis-tical software.Multiple comparisonswereperformed using the Duncan method. Thetest data were expressed as the mean±SD,andp<0.05wasusedasthecriterionforsignificant differences.

Results

PLS-DAanalysis

ThePLS-DA3Dscoring chart(Fig. 1)shows thatthe differ-ent metabolite extraction methodsare clearly divided into three-dimensionalspatialarrangements.Theresultsshowed significant differences in type, amount and concentration ofmetabolitesextractedfromdifferentFCSMsamplesusing thedifferentpretreatmentmethods.Allofthesampleswere withinthe95%confidenceintervalandalmostallofthegroups weredistinguishablefromtheothers.

Analysisofthenumberofmetabolites

Thenumbersofmetabolitesextractedusingdifferent meth-odsareshowninFig.2.Preliminaryevaluationofthemerits oftheextractionmethoddependingontheamountof small-moleculemetabolitesdetectedbythedifferentionscan(ESI+ andESI−)modescanallowacomprehensively characteriza-tionofthesamples.

AsshowninFig.2A,ananalysisofthemetabolitesrevealed byscanningintheESI+modeshowedthattheJ1grouphadthe lowestandtheJ6grouphadthehighestnumbersof metabo-lites. The number ofextracted metabolitesin the J6,J2, J3 andJ4groupswereincreased12.55,11.70,11.08and10.98%, respectively,comparedwiththatintheJ1group(p<0.05).The numbersofmetabolitesintheJ5andJ7groupswerehigher thanthatintheJ1group,butthedifferencewasnotsignificant (p>0.05).Thegroupscanbesortedasfollowsbasedonthe numberofmetabolites,J6>J2>J3>J4>J5>J7>J1.After scan-ning inthe ESI− mode, thenumbers ofmetabolites inthe J1groupisthefewestinallgroups,andtheJ2groupwasthe highestinallgroups.Thenumbersofextractedmetabolitesin theJ2,J5,J3andJ6groupswereincreasedby20.91,18.85,17.86 and17.15%,respectively,comparedwiththeJ1group(p<0.05). TheJ4andJ7groupshadmoremetabolitesthantheJ1group, butthedifferenceswerenotsignificant(p>0.05).Thegroups canbeorderedbasedonthenumberofmetabolitesasfollows: J2>J5>J3>J6>J4>J7>J1.

Fig. 2B shows the numbers of VIP metabolites in each group compared withthe control group. Afterscanning in both theESI+ andESI− modes,the J7group hadmore VIP metabolites than the other groups, and the J3 group had

(4)

brazilian journal of microbiology49(2018)392–400

395

-10 10 20 30 0 -20

A

50

B

40 30 20 10 -10 -20 20 0 15 10 5 0 30 20 10 -10 -20 0 -20 0 -10 10 20 30 40 50 20 15 10 5 0 t[3] t[2] t[1] t[1] t[3] t[2] -10 -5 0 5 10 30 20 10 10 -20 -30 -40 -5015 10 5 -5 -10 -10 -5 0 5 10 -15 -20 0 0 15 10 5 0-5 -10 -20 -15 30 20 10 -10 -20 -30 -40 -50 0 J1-WA J2-50MeOH J3-50MeHB J4-50MeCNB J5-80MeCNB J6-80MeOH J7-AMF

Fig.1–PLS-DA3Dscoreplotsfortheextractedmetabolitesofdifferentpretreatments.(A)PLS-DA3DscoreplotinESI+.(B) PLS-DA3DscoreplotinESI−.t[1]–t[3]indicatingtheseparationbetweendifferentgroups.

J1 J2 J3 J4 J5 J6 J7

A

2500

B

2250 2000 1750 1500 1250 1000 750 500 Number of metabolites Number of VIP metabolites ESI+ ESI+ ESI- ESI-b b b a a a a a a a a ab ab ab 200 150 100 50 0 J2-J1 J3-J1 J4-J1 J5-J1 J6-J1 J7-J1 34 104 20 59 44 117 30 56 135 142 196 184

Fig.2–ComparisonofthenumberofmetabolitesextractedwithdifferentpretreatmentinESI+andESI−mode.(A) Comparisonofthenumberofmetabolitesaftermolecularfeatureextraction.Differentlowercaselettersmeansthatthere aresignificantlydifferent(p<0.05)ineachsameseriousbar.(B)ComparisonofthenumberofVIPmetabolites(foldchange >2or<0.5)betweeneveryexperimentgroupandcontrolgroup.J1–WA,J2–50MeOH,J3–50MeOHB,J4–MeCNB,J5– 80MeOHB,J6–80MeOH,J7–AMF.

the fewest VIP metabolites. The groups can beordered as follows basedon the number of VIP metabolitesidentified inthe EDI+ and ESI− modes was J7>J6>J4>J2>J5>J3 and J7>J6>J5>J4>J2>J3,respectively.

ComparisonofextractionefficiencyofcommonVIP metabolites

Themetabolitesamplesofdifferentextractionmethodswere analysedbyUPLC-Q-TOF-MS.Fifteencommonpeakvariables werescreenedintheESI+andESI−modes,and15kindsof small-moleculemetaboliteswereidentifiedbym/zandRT cor-relationdatabases,asshowninTable1.Comparedwiththe normalizedpeakareaofthemetabolites,thepeakarea val-uesofdl-tryptophan,indoleacrylicandepicatechininseven groupswere very significantly different(p<0.01). Thepeak areavalueofdl-tryptophan washigher intheJ6,J5, J7,J2, andJ3groups.TheJ6groupshowedthehighestvalue,butthe differencebetweenthefivegroupswasnotsignificant.There weresignificantdifferencesbetweenthefivegroupscompared

withthoseingroupsJ1andJ4(p<0.01).Thelargestpeakarea forthe indoleacrylic acid levelwas foundforthe J7 group, andthisgrouprevealedverysignificant(p<0.01)differences comparedwiththeJ1andJ4groups,butthedifferenceswith theJ6andJ2groupswerenotsignificant(p>0.05).Thehighest peakareaofepicatechinwasfoundfortheJ7group,butthis areawasnotsignificantly(p>0.05)differentcomparedwith the J6group.TheJ7grouppresentedsignificant differences comparedwiththeJ5,J2,J3,andJ4groups(p<0.05)andavery significantdifferencecomparedwiththeJ1group(p<0.01).In additiontotheabove-mentionedmetabolites,therewasa sig-nificantdifferencebetweencAMPandlacticacid.Forthepeak areaofcAMP,theJ2andJ3groupwerehigherthantheJ1groups (p<0.05),buttherewasnosignificantdifferencewiththeother groups(p>0.05).Forthepeakareaoflacticacid,theJ1group wasthehighestandtherewasasignificantdifferencebetween theJ7andJ1groups(p<0.05).However,theothergroupsand the J1 group had nosignificant differences (p>0.05). There wasnosignificantdifferencebetweentheothermetabolites (p>0.05)besidesabovemetabolites.

(5)

b r a z i l i a n j o u r n a l o f m i c r o b i o l o g y 4 9 (2 0 1 8) 392–400

Table1–Normalizedpeakareaofmetabolitesextractedbydifferentquenchingmethod.

ID Scanning mode m/z RT Metabolite identity Normalized peakarea

J1 WA J250MeOH J350MeOHB J4 MeCNB J580MeOHB J6 80MeOH J7 AMF p sem

11 ESI− 89.03 54.06 Lacticacid 1.89±1.62a 1.33±0.05ab 1.52±0.13ab 1.34±0.13ab 1.52±0.13ab 1.56±0.10ab 0.67±0.10b 0.41 0.14

84 ESI− 146.05 51.94 l-Glutamate 1.71±1.27 2.17±0.21 2.04±0.18 1.62±0.19 1.76±0.19 1.78±0.23 1.76±0.23 0.83 0.11

122 ESI− 164.07 118.8 dl-Phenylalanine 0.11±0.09 0.14±0.02 0.18±0.01 0.13±0.01 0.15±0.01 0.18±0.02 0.14±0.02 0.29 0.01

125 ESI− 165.06 219.26 Phenyllacticacid 1.01±0.82 1.75±0.09 1.38±0.40 1.85±0.51 1.77±0.51 1.68±0.49 1.60±0.49 0.43 0.11

142 ESI− 173.11 47.45 l-Arginine 4.34±2.74 6.02±0.28 6.08±0.41 5.14±0.58 5.28±0.58 5.31±0.56 5.05±0.56 0.55 0.24

152 ESI− 179.06 53.12 ␣-d-Glucose 4.80±3.83 3.99±0.36 4.20±0.22 3.77±0.53 4.07±0.53 4.21±0.12 3.13±0.12 0.9 0.32

186 ESI− 195.05 53.11 Gluconicacid 3.42±2.88 4.03±0.43 3.73±0.59 2.68±0.66 1.86±0.66 1.93±0.37 1.59±0.37 0.11 0.25

206 ESI− 203.08 144.56 dl-Tryptophan 1.30±1.09b 2.79±0.08a 2.68±0.37a 1.14±0.1b 3.17±0.10a 3.22±0.35a 2.80±0.35a <0.01 0.11

245 ESI+ 175.12 47.65 l-Asparticacid 0.56±0.55 0.74±0.09 0.61±0.05 0.55±0.14 0.50±0.14 0.59±0.15 0.61±0.15 0.92 0.05

275 ESI+ 188.07 148.17 Indoleacrylic

acid

2.79±2.55bc 5.15±0.45ab 4.77±0.51b 1.44±0.31c 4.40±0.31b 5.67±1.04ab 7.18±1.04a <0.01 0.27

531 ESI− 328.05 88.37 cAMP 0.88±0.76b 1.63±0.18a 1.60±0.19a 1.40±0.38ab 1.37±0.38ab 1.49±0.26ab 1.26±0.26ab 0.27 0.08

585 ESI− 344.04 92.14 cGMP 2.58±2.19 4.11±0.21 3.79±0.41 3.73±0.75 3.24±0.75 3.46±0.45 2.35±0.45 0.25 0.2

723 ESI+ 291.08 153.99 Epicatechin 0.04±0.06c 0.21±0.04b 0.16±0.07b 0.11±0.03bc 0.22±0.03b 0.27±0.04ab 0.36±0.04a <0.01 0.01

973 ESI+ 343.12 54.15 Beta-d-lactose 0.42±0.31 0.57±0.05 0.54±0.07 0.47±0.09 0.44±0.09 0.51±0.05 0.39±0.05 0.64 0.03

1487 ESI+ 451.36 355.6 Phylloquinone 7.90±2.31 7.26±0.26 5.12±4.40 5.18±4.43 8.09±4.43 7.62±0.36 3.71±0.36 0.3 0.56

RT,RetentionTime;ESI,ElectronicSprayIon;cAMP,cyclicAdenosinemonophosphate;cGMP,cyclicguanosinemonophosphate.

Note:p<0.05indicatethatthereissignificantlydifferenceinnormalizedpeakarea.p<0.01indicatethatthereisverysignificantlydifferenceinnormalizedpeakarea.Underlinednumberrepresent

(6)

brazilian journal of microbiology49(2018)392–400

397

Phylloquinone D-Glucose L-Arginine Gluconic acid Indoleacr ylic acid cGMP Lactic acid L-Glutamate DL-T ryptophan cAMP Phen yllactic acid L-Aspar tic acid BET A-D-LA CT OSE DL-Phen ylalanine Epic atechin F

old change (log2)

3 2 1 0 -1 J2-J1 J3-J1 J4-J1 J5-J1 J6-J1 J7-J1

Fig.3–Peakareasfoldchangeof15kindsofmetabolitesextractedfromFCSMwithdifferencepretreatments.Foldchange >0meansthattherelativecontentofmetabolitesisimproved,while<0meansthatitisreduced.J1–WA,J2–50MeOH,J3– 50MeOHB,J4–MeCNB,J5–80MeOHB,J6–80MeOH,J7–AMF.

Thefoldchangesinpeakareawerecalculatedusingthe formulalog2fortheratioofnormalizedpeakareavaluesof themetabolitesextractedbydifferentmethodstothecontrol group.Thefoldchangeinthepeakareareflectedthedegree ofchangeinmetaboliteconcentrationbetweenthetrialgroup and the controlgroup.As Fig. 3shows, the comparisonof ploidy areavariation isseen inapproximately 15 common smallmoleculemetabolitesfromFCSMbydifferentextraction methods.Itcanbeseenthatthechangeinthefoldchangearea betweenJ7andJ1groupwasthemostsignificant(p<0.05).

Discussion

Samplepretreatmentisakeystepinthestudyofbiological system metabolites because it directly affects the extrac-tionefficiencyofintracellularandextracellularmetabolites fromfermentedfeedsamples.Soitisnecessarytostudythe pretreatment methods usedin metabolomics study of fer-mentedfeeds.Manypretreatmentmethodsforthequenching andextracting ofmetabolitesfrom biologicalsampleshave beenproposed;however,sinceKoningandDamproposeda rapidquenchingmethodinvolvingthedirectlyaddition60% methanol at −40◦C and followed by centrifugation of the

cells,28 this technique has not been changed and remains the most common method for the sampling of microbial cultures.15,29,30 By comparing differentquenching methods forE.coli,Winderalsodemonstratedthat60%coldmethanol solution(−48◦C)isthemostsuitableE.coliquenchmethod

andrecommendedmultiplecyclesof−48◦C100%methanol

freeze–thaw extraction to extract metabolites effectively.17 However,thestudyfoundthatdifferentmethanol/waterratios

have differentmetaboliceffects significantly,with thecold methanol/water extractionmethod extracting triphosphate compoundsandotherenergeticcompoundsinE.coli metabo-lites(e.g.,ATP,CTP,UTP,etc.)andthatcoldmethanol/water extractionwasnotnecessarilythebestwaytoextractE.coli

intracellular metabolites.Basedon thestudy conductedby Kimball,31 Rabinowitz comparedthe effects of 10 quench-ing solventson the extractionofE. colimetaboliteson the basisofLC/MSanalysisofthepeakheightofeachpeak com-paredtothe totalmetaboliteyield.32 Thestudy foundthat theoptimalextractionyieldwasobtainedusingAMF(acidic acetonitrile/methanol/aqueoussolution).Tokuokaconducted a systematic study of 11 methods for the quenching of

Aspergillus oryzae-fermented samples using 50MeCNB (50% acetonitrile/water)astheextractionsolvent.18 Theuse ofa waterbathat70◦Cwaterbathfor5minwasidentifiedasthe mostefficientextractionmethod.Methodsinvolving quench-ingwith60%methanol/water,80%methanol/waterand80% methanol/glycerol at−40◦C were used to study the effect

of 80% methanol/water on extraction. These solvents can effectivelyreducethedegreeofmetaboliteleakageand intra-cellular metabolite levels more suitable for the quenching of Lactobacillusbulgaricus.19 Differentsamples and research objectives are associated withdifferent extraction require-ments, and the optimal extraction method will vary from that recommendedbythe abovestudy.Atpresent,thereis nostandardoperatingprocedure(SOP)fortheextractionof differentbiologicalsamples.Toextractthemetabolitesfrom different samples,the corresponding pretreatment method wasused.Itrequiredoptimizationandstandardizationofthe samplequenchingandextractionmethod,whichistheonly wayforthefuturedevelopmentofmetabolomics.Basedon

(7)

theresultsoftheabovestudies,methanol,acetonitrileand acidicacetonitrile/methanol/water(AMF)werechosenasthe threemainquenchingsolventsforourstudy.Wealsosetup twogradient(50%,80%)quenchingsolventstostudy. Simulta-neously,thedifferencesinextractionmethodsbetweencold methanolandhotmethanolwereinvestigated.Thecontrol groupwasselectedbyultra-purewaterextraction.Thus,in thisexperiment,wehavechosensevenextracting methods forsystematicassessment.

The development of LC/MS, GC/MS and other technol-ogyplatforms allowsfor the simultaneous qualitative and quantitative determination of a large number of probiotic fermentation metabolites. In this study, UPLC-Q-TOF-MS was used as the research platform. UPLC and Time-of-FlightMassSpectrometry(TOF-MS)canbeusedtoperform multi-componentanalysesofcomplexmaterials. Ultra-high-performanceliquidchromatography(UPLC)wouldbeagreat boost in the field of microbial fermentation metabolites research.20–22,33,34 The platform ensures the accuracy, high efficiency and reliability ofthe test results. In the present study, we foundthat 15 different small molecule metabo-litescanbeextractedbysevendifferentextractionmethods through the global metabolomic analysis, including amino acids,organicacids,vitaminsandsmallmolecularactive sub-stancesassociatedwiththemetabolitesofbeneficialmicrobial fermentationproteinfeeds.Thesemetabolitesplayan impor-tantrole inthegrowth,developmentand immunizationof animals.

The number of extracted metabolites and the number ofVIP metaboliteswereusedasthepreliminaryevaluation indexes,especiallythenumberofVIPmetabolite,itcanreflect the extractionaccuracyforthe metabolites. From the PLS-DA3D score(Fig. 1),it wasfoundthat differentquenching extractionmethodshaddifferentextractioneffects.The num-berofdetectablepeakswasalsosignificantlydifferent,which meansthattherewasacleardistinctionbetweenthenumber ofdetectablemetabolitesandhowmuchthenumberofVIP metabolitesreflectedthenumberofsmallmolecule metabo-litesthatmayplayaroleinthedetectionofmetabolites.In contrasttothenumberofdetectablemetabolites,itwasclear fromFig.2Athat80MeOH(J6)wasoptimalinthepositiveion mode(ESI+)and50MeOH(J2)wasoptimalinthenegativeion mode(ESI−).Thepositiveandnegativeionmodemetabolite sumrankingtrendwas50MeOH(J2)>80MeOH(J6)>50MeOHB (J3)>80MeOHB (J5)>50MeCNB (J4)>AMF(J7)>WA (J1). How-ever,incontrasttothe numberofVIP metabolites(Fig.2B), we found that the ranking trend was AMF (J7)>80MeOH (J6)>80MeOHB (J5)>50MeCNB (J4)>50MeOH (J2)>50MeOHB (J3) in positive and negative modes. The AMF method (J7) has a significant advantage in either positive or negative ion modes. To compare the extraction efficiency of dif-ferent methods of quench extraction, the fifteen common metabolitesextractedfromsevenmethodswerescreenedand the normalized peak area and fold change index of these metaboliteswere compared(Table1andFig.3).Theresults showed that significantly different metabolites included indoleacrylicacid,dl-tryptophanandepicatechin.The extrac-tionefficiencyofthesemetaboliteswasthebestinAMF(J7), followedby80MeOH(J6)and50MeOH (J2).Itisworth men-tioningthatfor50MeOHB(J3),thepeakareavalueofextracts

ofthesemetaboliteswasalsohigher,withanextraction effi-ciencysecondonlytotheabovethreemethods.

The differences in the extraction efficiency of various methodsmaybecloselyrelatedtothepolarity,watercontent and temperatureoftheextractionsolvent.Allthe reagents used in this experimentwere analytical-gradeorganic sol-vents,inwhichthepolarityofmethanolishigherthanthat ofacetonitrile.However,thewatercontentoftheextraction solvent willalsoaffectthe polarity.Thecontentofsolvent moisture inthe AMF, 80MeOH and 80MeOHBsolvents was 20%;the50MeOH,50MeOHBand50MeCNBsolventmoisture contentwas50%;andthewatercontentofthecontrolgroup (J1)reached100%.Thestudyshowedthatthewatercontent inthesolventdirectlyaffectstheextractionefficiency,which wereconsistentwithKimball’sreport.31Kimballprovedthat thehighyieldofnucleosidewasrelatedtothedecomposition ofnucleotidesintheextractionsolventenrichedinwater.The differentconcentrationsofcoldmethanol/waterleadahuge deviation inthe extracted metabolites. A higher thewater content,aworsetheextractionefficiencyofmetabolites.In thisstudy,theextractiontemperaturesofthedifferent extrac-tion methods werealso different,50% acetonitrile at−4◦C

and a water bath at70◦C during the extraction. The 50% and80%hotmethanolsolutionwerealsoheatedinawater bathat70◦C,and thetemperature ofthe ultrapurewater was−4◦C.Somestudies haveconfirmedthatlow

tempera-tureextractioncanextractmetabolitesmoreefficiently.15,17 Winderevenproposedamethodofmulti-cyclefreeze–thaw extractionofmetabolitesusing−48◦C100%methanol.

How-ever,somestudieshaveconfirmedthatheatextractionisalso aneffectivemethodofextractingmetabolites.17Forexample, amethodforquenchingfermentedsamplesofA.oryzaewas studiedusing50%acetonitrile/water(v:v=50:50)for5minin a70◦Cwaterbath,18butthespecificreasonforthe tempera-turedifferenceintheextractionofmetabolitesremainstobe elucidated.

The results showed that the quality performance of the seven quenching and extraction methods was AMF>80MeOH>50MeOH>80MeOHB>50MeOHB>50%MeCNB>WA. Therefore, wecan see that the AMF method was the best methodtoextractFCSMwithL.acidophilus.Thesetestresults were consistent with Rabinowitz.32 His experiments con-firmed thatthe acidic acetonitrile/methanol/water solution not onlyreduced the degradation of triphosphatebut also reduced the lossofhigh-energymetabolites and promoted its conversion to low-energy derivatives, which ultimately improved the extraction concentration of metabolites. It hasahigherextractionefficiency,butRabinowitz’sresearch objectwasE.coli,andthisstudywasofL.acidophilusFCSM, indicatingthatthemethodalsohasapplicability.

Conclusions

In conclusion, this study only focused on the comparison of metabolite extraction methods from FCSM with L. aci-dophilusformetabolomicprotocols.Theexperimentalresults showed thatthe−4◦CAMF solutionextractionmethodwas

themostaccuraterepresentationandthehighestextraction ofthemetabolitesofFCSMbyLactobacillus.Sincemetabolites

(8)

brazilian journal of microbiology49(2018)392–400

399

differremarkablydependingonmicroorganismsandgrowth conditions,agoodextractionmethodmightonlyworkin cer-tainsituations.Astandardextractionmethodwasdifficultto establish,anddifferentextractionmethodsmayneedtobe usedfordifferentstudyobjects.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

Weare very grateful to Suzhou BioNovoGene (http://www. bionovogene.com)fortechnicalsupportsinthe comprehen-siveanalysisoftheMS/MSdata.Thisstudywassupportedby theNationalNaturalScienceFoundationofChina(31360564) and Graduate Research & Innovation Project in Xinjiang AutonomousRegionofChina(XJGRI2014058).

r

e

f

e

r

e

n

c

e

s

1.YinYL,HuangRL,ZhangHY,etal.Nutritivevalueof feedstuffsanddietsforpigs.I.Chemicalcomposition, apparentilealandfecaldigestibility.AnimFeedSciTechnol. 1993;44(1–2):1–27.

2.TabatabaiF,GolianA,SalarmoeiniM.Determinationand DetoxificationMethodsofCottonseedMealGossypolforBroiler ChickenRations.Yazdi;2002.

3.NagalakshmiD,RamaRaoSV,PandaAK.Cottonseedmealin poultrydiets:areview.JPoultSci.2007;44(2):119–134. 4.ZhangWJ,XuZO,SunJY,etal.Studyonthereductionof

gossypollevelsbymixedculturesolidsubstrate

fermentationofcottonseedmeal.AsianAustralasJAnimSci. 2006;19(9):1314–1321.

5.ZhangWJ,XuZR,ZhaoSH,etal.Developmentofamicrobial fermentationprocessfordetoxificationofgossypolin cottonseedmeal.AnimFeedSciTechnol.2007;135(1–2): 176–186.

6.JiaXF,LiAK,YaoJH,etal.Effectofsolid-statefermentation ongossypoldetoxificationandproteindegradationin cottonseedmeal.JNorthwestA&FUniv.2009;28(264): 245–250.

7.VellaichamyM,ParvezN.Gossypoldetoxificationandlysine enrichmentincottonseedcakebysolidstatefermentation.J PureApplMicrobiol.2016;10(2):1333–1339.

8.VincentJG,VeomettRC,RileyRF.Antibacterialactivity associatedwithLactobacillusacidophilus.JBacteriol. 1959;78(4):477–484.

9.KashketER.Theprotonmotiveforceinbacteria:acritical assessmentofmethods.AnnuRevMicrobiol.1985;39:219–242. 10.JackRW,TaggJR,RayB.BacteriocinsofGram-positive

bacteria.MicrobiolRev.1995;59(1):171–200.

11.Taymaz-NikerelH,DeMM,RasC,etal.Developmentand applicationofadifferentialmethodforreliablemetabolome analysisinEscherichiacoli.AnalBiochem.2009;386(1):9–19. 12.CanelasAB,RasC,PierickAT,etal.Leakage-freerapid

quenchingtechniqueforyeastmetabolomics.Metabolomics. 2008;4(3):226–239.

13.HajjajH,BlancPJ,GomaG,Franc¸oisJ.Samplingtechniques andcomparativeextractionproceduresforquantitative determinationofintra-andextracellularmetabolitesin

filamentousfungi.FEMSMicrobiolLett.1998;164(1): 195–200.

14.SchaubJ,SchieslingC,ReussM,etal.Integratedsampling procedureformetabolomeanalysis.BiotechnolProg. 2006;22(5):1434–1442.

15.MaharjanRP,FerenciT.Globalmetaboliteanalysis:the influenceofextractionmethodologyonmetabolomeprofiles ofEscherichiacoli.AnalBiochem.2003;313(1):145–154.

16.FaijesM,MarsAE,SmidEJ.Comparisonofquenchingand extractionmethodologiesformetabolomeanalysisof Lactobacillusplantarum.MicrobCellFactories.2007;6(1):27. 17.WinderCL,DunnWB,SchulerS.Globalmetabolicprofilingof

Escherichiacolicultures:anevaluationofmethodsfor quenchingandextractionofintracellularmetabolites.Anal Chem.2008;80(8):2939–2948.

18.TokuokaM,SawamuraN,KobayashiK,etal.Simple metaboliteextractionmethodformetabolicprofilingofthe fermentedAspergillusoryzae.JBiosciBioeng.

2010;110(6):665–669.

19.ChenMM,LiAL,SunMC,etal.Optimizationofthe

quenchingmethodformetabolomicsanalysisofLactobacillus bulgaricus.JZhejiangUnivSciB.2014;15(4):333–342.

20.RainvillePD,StumpfCL,ShockcorJP,etal.Novelapplication ofreversed-phaseUPLC-oaTOF-MSforlipidanalysisin complexbiologicalmixtures:anewtoolforlipidomics.J ProteomeRes.2007;6(2):552–558.

21.LacinaO,UrbanovaJ,PoustkaJ,etal.

Identification/quantificationofmultiplepesticideresiduesin foodplantsbyultra-high-performanceliquid

chromatography-time-of-flightmassspectrometry.J ChromatogrA.2010;1217(5):648–659.

22.TheodoridisG,GikaH,FranceschiP,etal.LC–MSbased globalmetaboliteprofilingofgrapes:solventextraction protocoloptimisation.Metabolomics.2012;8(2):

175–185.

23.FragaCG,ClowersBH,MooreRJ,etal.Signature-discovery approachforsamplematchingofanerve-agentprecursor usingliquidchromatography–massspectrometry,XCMS,and chemometrics.AnalChem.2010;82(10):4165–4173.

24.ErikssonL,JohanssonE,Kettaneh-WoldN,etal.Multi-and MegavariateDataAnalysis.PartI.BasicPrinciplesand

Applications.Vol45(4),2ndrevisedandenlargeded;2006:362. 25.BijlsmaS,BobeldijkI,VerheijER,etal.Large-scalehuman

metabolomicsstudies:astrategyfordata(pre-)processing andvalidation.AnalChem.2006;78(2):567–574.

26.WishartDS,JewisonT,GuoAC,etal.HMDB3.0—TheHuman MetabolomeDatabasein2013.NucleicAcidsRes.

2013;41:801–807.

27.ZhuZJ,SchultzAW,WangJ,etal.Liquidchromatography quadrupoletime-of-flightmassspectrometry

characterizationofmetabolitesguidedbytheMETLIN database.NatProtoc.2013;8(3):451–460.

28.KoningWD,DamKV.Amethodforthedeterminationof changesofglycolyticmetabolitesinyeastonasubsecond timescaleusingextractionatneutralpH.AnalBiochem. 1992;204(1):118.

29.OldigesM,TakorsR.Applyingmetabolicprofilingtechniques forstimulus-responseexperiments:chancesandpitfalls. AdvBiochemEng/Biotechnol.2005;92:173.

30.MashegoM,RumboldK,DeMeyM,etal.Microbial metabolomics:past,presentandfuturemethodologies. BiotechnolLett.2007;29(1):1–16.

31.KimballE,RabinowitzJD.Identifyingdecomposition productsinextractsofcellularmetabolites.AnalBiochem. 2006;358(2):273–280.

32.RabinowitzJD,KimballE.Acidicacetonitrileforcellular metabolomeextractionfromEscherichiacoli.AnalChem. 2007;79(16):6167–6173.

(9)

33.SpaggiariD,GeiserL,RudazS.Couplingultra-high-pressure liquidchromatographywithmassspectrometryforin-vitro, drug-metabolismstudies.TrACTrendsAnalChem.

2010;29(1):15–27.

34.YuanL,ZhangZ,HouZ,etal.Rapidclassificationand identificationofcomplexchemicalcompositionsin

traditionalChinesemedicinebasedonUPLC-Q-TOF-MS coupledwithdataprocessingtechniquesusingtheKuDieZi injectionasanexample.AnalMethods.2015;7(12):

Referências

Documentos relacionados

Na hepatite B, as enzimas hepáticas têm valores menores tanto para quem toma quanto para os que não tomam café comparados ao vírus C, porém os dados foram estatisticamente

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

Este relatório relata as vivências experimentadas durante o estágio curricular, realizado na Farmácia S.Miguel, bem como todas as atividades/formações realizadas

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

Peça de mão de alta rotação pneumática com sistema Push Button (botão para remoção de broca), podendo apresentar passagem dupla de ar e acoplamento para engate rápido

Remelted zone of the probes after treatment with current intensity of arc plasma – 100 A, lower bainite, retained austenite and secondary cementite.. Because the secondary