• Nenhum resultado encontrado

New in silico insights into the inhibition of RNAP II by α-amanitin and the protective effect mediated by effective antidotes

N/A
N/A
Protected

Academic year: 2021

Share "New in silico insights into the inhibition of RNAP II by α-amanitin and the protective effect mediated by effective antidotes"

Copied!
8
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Journal

of

Molecular

Graphics

and

Modelling

jo u r n al ho me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / J M G M

New

in

silico

insights

into

the

inhibition

of

RNAP

II

by

␣-amanitin

and

the

protective

effect

mediated

by

effective

antidotes

Juliana

Garcia

a,∗

,

Alexandra

T.P.

Carvalho

b

,

Daniel

F.A.R.

Dourado

b

,

Paula

Baptista

c

,

Maria

de

Lourdes

Bastos

a

,

Félix

Carvalho

a,∗

aREQUIMTELaboratoryofToxicology,DepartmentofBiologicalSciences,FacultyofPharmacy,UniversityofPorto,RuaJoséViterboFerreiran228,4050-313Porto,Portugal

bDepartmentofCellandMolecularBiology,ComputationalandSystemsBiology,UppsalaUniversity,BiomedicalCenterBox596,75124Uppsala,Sweden

cCIMO/SchoolofAgriculture,PolytechnicInstituteofBraganc¸a,CampusdeSantaApolónia,Apartado1172,5301-854Braganc¸a,Portugal

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Accepted3May2014

Availableonline14May2014

Keywords: ␣-Amanitin Benzylpenicillin Ceftazidime Silybin RNApolymeraseII Triggerloop Bridgehelix

a

b

s

t

r

a

c

t

Poisonous␣-amanitin-containingmushroomsareresponsibleforthemajorcasesoffatalitiesafter mush-roomingestion.␣-AmanitinisknowntoinhibittheRNApolymeraseII(RNAPII),althoughtheunderlying mechanismsarenotfullyunderstood.Benzylpenicillin,ceftazidimeandsilybinhavebeenthemost fre-quentlyuseddrugsinthemanagementof␣-amanitinpoisoning,mostlybasedonempiricalrationale. ThepresentstudyprovidesaninsilicoinsightintotheinhibitionofRNAPIIby␣-amanitinandalsoon theinteractionoftheantidotesontheactivesiteofthisenzyme.

Dockingandmoleculardynamics(MD)simulationscombinedwithmolecularmechanics-generalized Bornsurfaceareamethod(MM-GBSA)werecarriedouttoinvestigatethebindingof␣-amanitinand threeantidotesbenzylpenicillin,ceftazidimeandsilybintoRNAPII.

Ourresultsrevealthat␣-amanitinshouldaffectsRNAPIItranscriptionbycompromisingtriggerloop (TL)function.Theobserveddirectinteractionsbetween␣-amanitinandTLresiduesLeu1081,Asn1082, Thr1083,His1085andGly1088alterstheelongationprocessandthuscontributetotheinhibitionof RNAPII.Wealsopresentevidencesthat␣-amanitincaninteractdirectlywiththebridgehelixresidues Gly819,Gly820andGlu822,andindirectlywithHis816andPhe815.Thisdestabilizesthebridgehelix, possiblycausingRNAPIIactivityloss.

Wedemonstratethatbenzylpenicillin,ceftazidimeandsilybinareabletobindtothesamesiteas ␣-amanitin,althoughnotreplicatingtheunique␣-amanitinbindingmode.Theyestablishconsiderablyless intermolecularinteractionsandtheonesexistingareessentialconfinetothebridgehelixandadjacent residues.Therefore,thetherapeuticeffectoftheseantidotesdoesnotseemtobedirectlyrelatedwith bindingtoRNAPII.

RNAP II ␣-amanitin binding site can be divided into specific zones with different proper-ties providing a reliable platform for the structure-based drug design of novel antidotes for ␣-amatoxinpoisoning.Anidealdrugcandidateshouldbe acompetitiveRNAPIIbinderthat inter-acts withArg726, Ile756,Ala759,Gln760 and Gln767,but not with TLand bridgehelixresidues. ©2014ElsevierInc.Allrightsreserved.

1. Introduction

ThepoisonousAmanitamushroomspeciesAmanitaphalloides

(DeathCap),Amanitaverna(WhiteDeadlyAmanita)andAmanita

virosa(DestroyingAngel)areresponsiblefor90–95%ofthe

fatal-∗ Correspondingauthors.Tel.:+351220428597;fax:+351226093390.

E-mailaddresses:jugarcia18@hotmail.com,garciaju1987@gmail.com

(J.Garcia),felixdc@ff.up.pt(F.Carvalho).

ities occurring after mushroomingestion [1]. Toxinscontained

in these species include bicyclic octapeptides and consist of

nine defined members: ␣-amanitin, ␤-amanitin, ␥-amanitin,

␧-amanitin,amanin,amaninamide,amanullin,amanullinicacid,and

proamanullin[2].Fromthese,␣-amanitinaccountsforabout40%

oftheamatoxins[2].

Specific properties characterize these toxins. They are

ther-mostableandarenotremovedbyboilinganddiscardingwateror

byanyformofcookingordrying,andbelongtothemostviolent

http://dx.doi.org/10.1016/j.jmgm.2014.05.002

(2)

J.Garciaetal./JournalofMolecularGraphicsandModelling51(2014)120–127 121

Fig.1. StructureofRNAPII/␣-amanitincomplex.Triggerloop,activesite,DNAand

␣-amanitinarecoloredred,blue,magentaandyellow,respectively.Activesiteis

representedbytheAsp481,Asp483andAsp485catalyticresidues.(For

interpre-tationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothe

webversionofthearticle.)

poisons from higher fungi: only one medium-size

amatoxin-containing specimen contains from 10 to 12mg amatoxins, a

potential lethal dose for human adults (lethal dose: LD50 of

0.1–0.5mg/kgbodyweight)[3].

AfteringestionpoisonousAmanitamushrooms,amatoxinsare

readilyabsorbedandaccumulateintheliveruponuptakeviaan

organicanion-transportingoctapeptide(OATP)locatedinthe

sinu-soidalmembraneofhepatocytes[4],whichisthesametransport

systemforbiliaryacids.Themainmolecularmechanismof

toxic-ityistheirstronginhibitionofRNAPII[5]whichisresponsiblefor

thetranscriptionoftheprecursorofmessengerRNA.Thisinturn

causesinhibitionofDNAandproteinsynthesisprocessesandleads

tocelldeath[6].

RNAPIIconsistsofa 10-subunit coreenzyme and a

periph-eralheterodimerofsubunitsRpb4andRpb7(Rpb4/7subcomplex).

The core enzyme comprises subunits Rpb1, Rpb2, Rpb3, Rpb5,

Rpb6,Rpb8, Rpb9,Rpb10,Rpb11andRpb12[7].The activesite

islocatedin theinterfacebetweenthecoresubunitsRpb1and

Rpb2.Thecatalyticprocessinvolvesthenucleotideadditioncycle

(NAC)andbeginswithbindingofanucleosidetriphosphate(NTP)

substratetotheelongationcomplex(EC).Catalyticadditionofthe

nucleotidetothegrowing3-endoftheRNAleadstoformation

ofapyrophosphateion.Pyrophosphatereleaseleadstothe

pre-translocation state,inwhich thenewly added,3-terminal RNA

nucleotideremainsinthesubstratesite.Finally,translocationof

DNAandRNAresultsinthepost-translocationstate,inwhichthe

substratesiteisfreeforbindingthenextNTP,andtheNACcanbe

repeated[8].Thisprocessinvolveastructuralelementnamed

trig-gerloop(TL),whichmakesbothdirectandindirectcontactwithall

featuresofthenucleotideinthepolymeraseactivecenterandthe

bridgehelixwhichguidesthetemplateDNAstrandintheactive

siteandpositionstheDNA-RNAhybridrelativetotheactivesite

[9].TLhasbeenhypothesizedtohaveseveralconformations,but

twoofthem,the“open”(Fig.1)and“closed”conformationswere

observedinX-raystructures[9,10].IntheopenTLstructurethe

substrateentersontheenzyme,andthentheTLrotates(seearrow

inFig.1)totheactivesite(closedconformation)[9].Theflexibility

ofthetriggerlooponthecatalysisisdirectlyinfluencedbythe

con-formationofthebridgehelix[11].Recentlyacrystalstructureof

␣-amanitinwithyeastRNAPIIwaspublishedrevealingseveralkey

molecularinteractionsthatmaycontributetoinhibitionofRNAPII

[10].Multiplerelevantinteractionsbetween␣-amanitinwithRNAP

IIarelocatedinthebridgehelix(previouslydefined“cleft”region)

andinadjacentpartofRpb1(previouslydefinedfunnelregion).

Basedonthis␣-amanitinmayblocktranslocationbyinteracting

withbridgehelixandpreventingtheconformationalchangeofthe

TLandconsequentlytranscriptionalelongation(Fig.1)[12].

No specific antidote for intoxications with amatoxins is

available. Based onpre-clinical findings several antidoteshave

beenusedin amatoxinpoisonings,includinghormones(insulin,

growthhormone,glucagon),steroids,vitaminC,vitaminE,

cime-tidine, thioctic acid, antibiotics (benzylpenicillin, ceftazidime),

N-acetylcysteine,and silybin. Fromthese,only benzylpenicillin,

ceftazidime,N-acetylcysteineandsilybinbeenreportedsome

suc-cessinthepharmacologicmanagement ofamatoxinpoisonings,

though withvaryingextent[1].Furthermore,theprecise

phar-macologicalmechanism ofactionfor thesedrugs remainstobe

elucidated.

Inthecurrentstudywereportthemodeofinteractionof

␣-amanitinand three antidotes(benzylpenicillin, ceftazidimeand

silybin) with RNAP II, using docking methods and molecular

dynamics simulations. To secure significant sampling, we

per-formed3moleculardynamic simulations(ina totalof34ns)in

explicitwater of each one of theRNAP II/␣-amanitin/antidotes

complexes.Inordertoprovideanewinsightintotheinhibition

mechanismofRNAPIIby␣-amanitin,andthepossibletherapeutic

mechanismofactionofbenzylpenicillin,ceftazidimeandsilybinin

amatoxinpoisoning,weusedbindingenergydecompositionbased

onthemolecularmechanicsgeneralizedBornsurfacearea

(MM-GBSA)approach.

2. Materialsandmethods

2.1. Moleculardocking

MolecularDockingof severalcompoundsishelpfulin

eluci-datingkeyfeaturesofligand–receptorinteractions.Thismethod

allowsustoexploretheinteractionoftheantidoteswithRNAPII

andpredicttheirpreferredorientation,whichwouldforma

com-plexwithoverallminimumenergy.ThecrystalstructureofRNAP

IIcomplexedwith␣-amanitin(ProteinDataBankentry3CQZand

2VUM)wasusedtoobtainthestartingstructuresforthemolecular

docking[8,11]andonlysubunitsRpb1andRpb2wereused.

TheoptimizedRpb1andRpb2subunitsweredockedwith

␣-amanitin, benzylpenicillin,silybin andceftazidime. Thedocking

procedurewasmadewiththeAutoDock4program[13,14].This

automateddockingprogramusesagridbasedmethodforenergy

calculationoftheflexibleligandincomplexwitharigidprotein.

Theprogramperformsseveralrunsineachdockingexperiment.

Eachrunprovidesonepredictedbindingmode.TheLamarckian

geneticalgorithm(LGA)wasusedinalldockingcalculations.The

48×44×44gridpointsalongthex,yandzaxeswascenteredonthe

␣-amanitinwhichwaslargeenoughtocoverallpossiblerotations

ofthetoxinandantidotes.Thedistancebetweentwoconnecting

gridpointswas0.375 ´˚A.Thedockingprocesswasperformedin250

LGAruns.Thepopulationwas150,themaximumnumberof

gener-ationswas27,000andthemaximumnumberofenergyevaluations

was2.5×106.AftercompleteexecutionofAutoDockten

confor-mations ofligandin complexwiththereceptor wereobtained,

whichwerefinallyrankedonthebasisofbindingenergy[15].The

resultingconformationswerevisualizedintheVisualMolecular

Dynamics[16].

Afteranalysisofall thesolutionsobtained, thebestdocking

solutionswerechosen asstartingstructuresfor thesubsequent

(3)

Fig.2.Chemicalstructures:(a)␣-amanitin;(b)benzylpenicillin;(c)ceftazidime;and(d)silybin.

2.2. Optimizationofantidotesand˛-amanitin

Thestructuresof␣-amanitin,benzylpenicillin,ceftazidimeand

silybin (Fig. 2) wereconstructed and optimized in Gaussian at

theHF/6-31G*leveloftheory.For eachantidote,weperformed

twooptimizations:oneinvacuumandanotherinthecondensed

phase.ThepartialchargeswerecalculatedresortingtotheRESP

method.

2.3. Moleculardynamicsimulations

TheenzymewasfirstneutralizedbyaddingNa+ionsand

sol-vatedinacubicboxofTIP3watermolecules,suchthattherewere

atleast10.0 ´˚A ofwaterbetweenthesurfaceoftheproteinandthe

edgeofthesimulationbox.Theinitialgeometryoptimizationof

theenzymewasminimizedintwostages.Inthefirststageonlythe

hydrogenandwateratomswereminimized;inthesecondstage

theentiresystemwasminimized.

TheparametersofthechosenmodelswerevalidatedwithMD

simulations in explicit solvent.The MDs were performedwith

ff99SBforcefieldandthegeneralizedamberforcefield(Gaff)[17].

Aninitialminimizationwasperformedfollowedbyan

equilibra-tionof500ps.TheequilibrationwasperformedinaNVTensemble

using Langevin dynamics with small restraints on the protein

(100kcalmo1−1).Foreachofthefoursystemsaninitial

produc-tionsimulationof10nswasperformedfollowedbytworandom

initialvelocitiesreplicaruns,totaling34nspersubstrate.This

rep-resentedasubstantialcomputationaleffort,sinceeachsystemis

composedby≈44,000atoms containingprotein,DNA andRNA.

Temperaturewasmaintainedat300KintheNPTensembleusing

Langevindynamicswithacollisionfrequencyof1.0ps−1.Thetime

stepwassetto2fs.Thetrajectoriesweresavedevery500steps

foranalysis.Constantpressureperiodicboundarywasusedwith

anaveragepressureof1atm.Isotropicpositionscalingwasused

tomaintainthepressurewitha relaxationtime of2ps.SHAKE

constraintswereappliedtoallbondsinvolvinghydrogen.The

par-ticlemeshEwald(PME)methodwasusedtocalculateelectrostatic

interactionswithacutoffdistanceof8.0 ˚A.

2.4. Calculationofthebindingenergy

MM-GBSAwasappliedtocomputethebindingenergybetween

theproteinandeachligandandtodecomposetheinteraction

ener-giesonaperresidue basisbyconsideringmolecularmechanics

energiesandsolvationenergies[18].

Theenergydecompositionwasperformedforgas-phase

ener-gies,desolvation freeenergiescalculated byGBmodel[19] and

nonpolarcontributionstodesolvationusingthelinear

combina-tionsofpairwiseoverlaps(LCPO)method[20].

Conformationalentropywasnotconsideredbecauseouraim

wastoidentifyimportant interactionsbetween the␣-amanitin

andtheantidoteswithRNAPIIresidues,ratherthantoobtainvery

accurateabsolutevaluesforthebindingfreeenergy.

3. Resultsanddiscussion

The determination of the crystal structures with bound

␣-amanitinitshowedthatthistoxinbindingsitewasquitefarfrom

theRNAPIIactivesite.Inhibitioncouldonlybeexplainedif

␣-amanitinbindingcouldleadtosomeconformationalchangethat

wouldaffecttheactivesite.Themysterywaspartiallysolvedwith

thedeterminationofthecomplexRNAPII/DNA.RNA/substrate[9].

InthiscomplextheTLisintheoppositedirectionandinteracting

withthesubstrate.TheTListhusahighlyflexiblestructuralmotif

withintheenzymecapableoflargeconformationalchangesateach

catalyticcycle.Superpositionofthepre-catalyticcomplexwiththe

complexwith␣-amanitinshowsthatthelargesizeofthetoxin

couldpreventthemovementoftheTL(Fig.3).

Consequently, a descriptionof the full TL movement is still

missing.Many TLconformations arestill notdescribed andthe

crystalstructuresonlygiveinitialandfinalsnapshotsforthis

move-ment.Togaindetailedinsightaboutthemostimportantresidues

forthe␣-amanitin/antidotesdynamicalinteractionwithRNAPII

weperformedandanalyzedMDsimulationsondockedcomplexes

ofRNAPII/␣-amanitinandwiththeantidotes.Moreover,we

per-formeddetailedhydrogenbondsanalyses(Table1),measuredthe

(4)

J.Garciaetal./JournalofMolecularGraphicsandModelling51(2014)120–127 123

Fig.3.Interactionof␣-amanitinwithRNAPII,demonstratedinsilico.Superposition

ofthelowestRMSDfortheaveragestructureofthesimulation(gray),pre-catalytic

complex(magenta,pdbcode2E2H),complexwith␣-amanitin.The␣-amanitinisin

licoricerepresentationandthesubstrateisinyellowlicoricerepresentation).(For

interpretationofthereferencestocolorinthisfigurelegend,thereaderisreferred

tothewebversionofthearticle.)

toxin/antidotes.Finally,weperformedenergydecomposition.The

proteinperresidueenergyvaluesgivesusafastandrelatively

reli-ableestimationofthecontributionofeachresiduetothebinding

[21].Ourgoalwasprovideanewinsightintotheinhibition

mech-anismofRNAPIIby␣-amanitinbyidentifyingthecriticalresidues

forRNAPIIbindingandsubsequentlyunderstandinghowantidotes

interactwithRNAPIIand iftheycanbindtothesameposition

withoutinhibitingtheenzyme.

3.1. Identificationofcriticalresiduesfor˛-amanitinbinding

Superpositionoftheaveragesimulationstructureandthe

crys-talstructureisshownin Fig.4.Themostnoticeabledifferences

betweenthecrystalstructure andoursimulation structurerely

inthedisplacementofTL(Fig.4),whichmaybeattributedtothe

highflexibilityandintrinsicmobilityoftheTL.Intheour

simula-tionstructure,Gly1088residueinteractswith␣-amanitinoxygen

(O33),whileinthecrystalstructurethisresidueisfarawayfrom

the␣-amanitin.Thedemonstratedaccuracyofthedocked

com-plexvalidatesourprotocolandsupportstheresultsobtainedfor

theantidotes,forwhichthereisnocrystalstructure(describedin

Section3.2).

Inordertomoreeasilyand accuratelygrasptheinteractions

between the protein and ␣-amanitin we performed an energy

decompositionanalysisofthesimulations.Weresortedtothe

MM-GBSAmethod.Thecalculatedbindingenergiesofeachcomplexcan

beseeninTable2.Evennotconsideringtheentropy,computational

studies using MM-GBSA calculations ondifferent complexes of

protein-inhibitorsshowedgoodcorrelationswithrespectto

exper-imentaldata[21].Individualenergydecompositionofallresidues

inthecomplexwasalsocalculatedinordertoqualitativelyfind

thekeyresiduesthatplayamoreimportantroleinthe␣-amanitin

binding(Figs.5aand6a).Valuesareexpressedasmean±SDofthe

3replicates.Fig.5adepictstherelativepositionoftheinhibitor

andimportantresiduesinthebindingcomplexbyusingthe

low-estroot-mean-squaredeviationRMSDstructureinrespecttothe

averageof the simulation. Thetoxin ␣-amanitin interacts with

residuesArg726,Ile756,Ala759,Gln760,Gln767,Gln768,Ser769,

Gly819,Gly820,Glu822,Leu1081,Asn1082,Thr1083,His1085and

Gly1088(Figs.5aand6a).TheguanidiniumgroupofArg726forms

cation–␲interactionswith␣-amanitinphenylgroup,which

corre-spondstoenergyof−1.71±1.51kcalmo1−1.Thebindingenergyof

residueIle756is−2.53±0.83kcalmol−1,agreeingwiththeCH–␲

interaction of Ile756 alkyl group with␣-amanitin phenylring.

At the same time, Ala759 alkyl group also forms CH–␲

inter-actionswith␣-amanitinphenylgroup(−0.67±0.04kcalmol−1).

Theside-chainnitrogenatomofGln760formsahydrogenbond

with ␣-amanitin O4 (Table 1), leading to a favorable binding

energyof −1.40±0.89kcalmol−1.Thustheindoleportionof

␣-amanitininsertsin the hydrophobicpocketcreatedby Arg726,

Ile756, Ala759 and Gln760 (Fig. 5a). The side-chain oxygen of

Gln767 forms a hydrogen bond with ␣-amanitin N30, which

Table1

Hydrogenbondsformedbetweenthetoxin/antidotesandRNApolymeraseIIa.

Toxin/Antidote Donor AcceptorH Acceptor Distanceb( ´˚A) Angleb() %pertimeframe

Gln767:OE1 ␣-amanitin:H77 ␣-amanitin:N30 1.81 166.53 60

␣-amanitin:O4 Gln768:HE2 Gln768:NE2 2.87 157.06 80

␣-amanitin ␣-amanitin:O4 Gln760:HE2 Gln760:NE2 2.11 148.55 26

␣-amanitin:O59 Ser769:H Ser769:N 2.04 157.88 88

Glu822:OE1 ␣-amanitin:1H11 ␣-amanitin:O63 2.55 172.43 60

Benzylpenicillin Benzilpenicillin:O3 Hie816:HE2 Hie816:NE2 2.51 134.78 48

Benzilpenicillin:O1 Gln760:1HE2 Gln760:NE2 1.96 167.45 56

Silybin Silybin:O56 Gln760:1HE2 Gln760:NE2 2.17 142.68 75

Silybin:O4 Gly823:H Gly823:N 2.08 150.30 47

aHydrogenbondswereanalyzedintheaveragestructuresfromMDsimulation.

bThegeometriccriterionfortheformationofH-bondsiscommonwithanacceptor-donordistancelessthan3.5 ´˚A andthedonor-H-acceptoranglelargerthan120.

Table2

Bindingenergycalculationbetweenthethreeantidotesand␣-amanitinwithRpb1andRpb2subunits(allenergiesareinkcalmol−1).

Complex Gele Gvdw GInt GGas GGBSUR GGB GGBsol GGBele Gtot

Rpb1Rpb2/␣-amanitin −60.97 −60.91 0.00 −121.88 −8.16 108.70 100.53 47.73 −21.34 Rpb1Rpb2/benzylpenicillin −19.78 −31.34 0.00 −51.12 −4.27 41.53 37.26 21.75 −13.87 Rpb1Rpb2/silybin −21.00 −42.58 0.00 −63.62 −5.87 47.96 42.09 26.95 −21.53 Rpb1Rpb2/ceftazidime −59.96 −38.20 0.00 −98.16 −5.31 89.94 84.63 29.98 −13.53 Gele:electrostaticenergy.Gvdw:vanderwaalsenergy;Gint:internalenergy;GGas:totalgasphaseenergy(sumGele,Gvdw,Gint);GGBSUR:nonpolarcontributionto

solvation;GGB:theelectrostaticcontributiontothesolvationfreeenergy;GGBSOL:sumofnonpolarandpolarcontributionstosolvation;GGBELE:sumoftheelectrostatic

(5)

Fig.4.SuperpositionofthelowestRMSDfortheaveragestructureofRNAPII(cyan)with␣-amanitin(green),crystalstructureofRNAPII(magenta,pdbcode3CQZ)in complexwith␣-amanitin(yellow).

Fig.5.Geometriesofkeyresidues,whichproducesomefavorableinteractionswithRNAPII,areplottedinthecomplexesaccordingtotheaveragestructurefromthe MDtrajectory.(a)RNAPII/␣-amanitincomplex;(b)RNAPII/benzylpenicillincomplex;(c)RNAPII/ceftazidimecomplex;and(d)RNAPII/silybincomplex.Thedashedlines representhydrogenbondsbetweenthe␣-amanitin/antidotesandRNAPII.

(6)

J.Garciaetal./JournalofMolecularGraphicsandModelling51(2014)120–127 125

Fig.6. ␣-Amanitin/antidotes-residuesinteractionspectrumof(a)RNAPII/␣-amanitincomplex;(b)RNAPII/benzylpenicillincomplex;(c)RNAPII/ceftazidimecomplexand (d)RNAPII/silybincomplex.Theresidueswithinteractionenergythan−0.5kcalmol−1arelabeled.Valuesareexpressedasmean±s.d.ofthe3replicates.

correspondstointeractionenergyof−2.70±1.60kcalmol−1.The nitrogen atomof Gln768 alsoforms a hydrogen bond with ␣-amanitinO4(Table1),whichisthestrongestinteractionamongall

residues(−2.82±0.88kcalmol−1).The␣-amanitin/Ser769

interac-tionenergyis−2.18±0.80kcalmol−1,whichisduetoahydrogen

bondbetweenSer769nitrogenatomand␣-amanitinO59(Table1).

Hydrophobicinteractionsmaybethemainforcebetweenbridge

helixresiduesGly819,Gly820and␣-amanitin,whichcorrespondto

energiesof−0.61±0.08and−0.53±0.00kcalmol−1,respectively.

Theinteraction energyof thebridgehelix residue Glu822with

␣-amanitinis−1.90±0.97kcalmol−1,correspondingtoa

hydro-genbondbetweentheGlu822sidechainoxygenand␣-amanitin

hydroxyprolineOH (Table1).The alkyls groupof Leu1081 and

Asn1082interactwith␣-amanitinalkylsbyhydrophobic

interac-tions,whichcorrespondtoenergiesof−1.14and−2.75kcalmol−1,

respectively.TheinteractionenergyofThr1083with␣-amanitinis

−2.01kcalmol−1,mostlyattributedtodipole–dipoleinteractions.

TLresiduesHis1085andGly1088formdipole–dipoleinteractions

with␣-amanitinhydroxyprolineandproduceinteractionenergies

of−0.53±0.12and−0.62kcalmol−1,respectively,whichis

sup-portingbyexperimentaldata[22].

According to Figs. 5a and 6a and the above analysis, three

valuable findings can beobserved: (1) Hydrogen bonds, CH–␲

and hydrophobic interactions drivethe bindings of ␣-amanitin

toRNAPII.(2)Ourresultsindicateinteractionswithbridgehelix

residues Gly819, Gly820 and Glu822. Moreover, indirect

con-tacts tothebridgehelix werealso observed.␣-Amanitin binds

to residue Gln768, which in turn binds to His816 and Phe815

andforms a hydrogenbond withSer769.Ser769interacts with

thebridgehelixresidueGly819.(3)␣-AmanitininteractswithTL

residuesLeu1081,Asn1082,Thr1083,His1085andGly1088.These

interactionscanpreventTLmovementandhencecontributingto

inhibittranscription.

3.2. BindingmodepredictionsofantidotestoRNAPII

Inordertoprovideanewinsightintothemechanismofaction

ofbenzylpenicillin,ceftazidimeandsilybininamatoxinpoisoning

weanalyzedtheantidotesbindingtoRNAPII.

According to Figs. 5b and 6b, several residues are involved

in theRNAP II/benzylpenicillin binding. The binding energy of

benzylpenicillin to Ile756 is −1.77±0.49kcalmol−1, agreeing

withCH–␲interactions betweenIle alkyls and benzylpenicillin

phenyl ring (Fig. 5b). Gln760 nitrogen atom binds to

ben-zylpenicillinO1byahydrogenbond,correspondingtoenergyof

−1.63±0.45kcalmol−1 (Table1).Atsametime, otherhydrogen

bond between His816 nitrogen and benzylpenicillin O3

con-tributeswith−0.69±0.14kcalmol−1(Table1).Val765alkylgroup

andbenzylpenicillinalkylgroupgeneratedispersiveinteractions

(−1.03±0.14kcalmol−1).Dipole–dipoleinteractionsareobserved

between Gly820 and benzylpenicillin (−1.54±0.00kcalmol−1).

Leu824alkylsgroupsinteractwithbenzylpenicillinalkylsgroups

by hydrophobic interactions (−0.79±0.23kcalmol−1). Finally,

Gln2218 and Pro2220 form dipole–dipole interactions with

benzylpenicillin carboxyl group, corresponding to energies of

−1.65±0.45 and −0.79±0.20kcalmol−1,respectively. Based on

the above analysis, two valuable findings can be described:

(1) Residues Ile756, Gln760and Gly820 are common sites for

(7)

benzylpenicillin interacts with bridge helix residues His816,

Gly820andLeu824.

In the case of theRNAP II/ceftazidime complex the

follow-ing residues contribute for binding energy (Figs. 5c and 6c).

Ile756alkylgroup and ceftazidime dihydrothiazine ring

gener-ateCH–␲interactions (Fig.5c), correspondingtoaninteraction

energyof−4.28±1.70kcalmol−1.TheinteractionenergyofAsn757

is−0.80±0.10kcalmol−1,whichcanbeattributedtodipole–dipole

interactionswithceftazidimecarboxylicacidgroup.Dipole–dipole

interactions between Val765 and ceftazidime propylcarboxy

moiety are responsible for energy of −1.06±0.51kcalmol−1.

At same time, identical interactions can be seen between

His816 imidazole ring and ceftazidime propylcarboxy moiety

(−1.04±0.18kcalmol−1). Hydrophobicand dipole–dipole

inter-actions are the main forces between Gln2218 and ceftazidime

propylcarboxy moiety (−1.30±1.11kcalmol−1). At same time

Ser2219formsdipole–dipoleinteractionswiththesamemoiety,

whichcorrespondtointeractionenergyof−1.09±0.38kcalmol−1.

Basedontheaboveanalysis,two importantconclusionscanbe

obtained:(1)ResidueIle756andiscommonsite for␣-amanitin

andceftazidime.(2)Ourresultsindicatethatceftazidimeinteract

withbridgehelixresidueHis816.

Finally,forRNAPII/silybinbindingthekeyresiduesareseven

(Figs. 5d and 6d). The binding energy of silybin to Ile756 is

−1.58±0.27kcalmol−1, corresponding to a CH–␲ interaction

between Ile756 alkyl and silybin phenyl group. The

interac-tion energy of Asn757 with silybin phenyl ring has energy of

−1.06±0.81kcalmol−1, which mostly results of NH–␲

interac-tions. Gln760side-chainnitrogen forms a hydrogenbond with

silybin O56 (−1.50±0.79kcalmol−1) (Table 1). Dipole–dipole

interactions between residues Ser769, Val770, Gly819, Gly820

and Arg821 with silybin result in the energies contributions

of −1.25±0.14, −1.01±0.10, 0.95±0.29, −1.40±1.17 and

−0.95±0.50kcalmol−1,respectively.Silybinphenylringcontacts

withGlu822alkylgrouptogenerateahydrophobicCH–

inter-action (−1.38±0.60kcalmol−1). The Gly823 forms a hydrogen

bondwithsilybinO4(−1.49±0.89kcalmol−1)(Table1).The␲–␲

contactsanddipole–dipoleinteractionsbetweenresidueHis1085

and silybin diphenol ring result in an energy contribution of

−1.50±0.07kcalmol−1.Fromtheseresults,wecanconclude:(1)

ResiduesIle756,Gln760,Gly819,Gly820,Glu822andHis1085are

commonsitesfor␣-amanitinandsilybin.(2)Ourresultsindicate

thatsilybininteractwithbridgehelixresiduesGly819,Gly820and

Glu822andTLresidueHis1085.

4. Conclusions

Inthisstudy,dockingand MDsimulationcoupledwith

MM-GBSAenergydecompositionhavebeencarriedouttoclarifythe

inhibitionmechanismofRNAPIIby␣-amanitinandtoprovidea

newinsightintotheplausiblemechanismofactionofthree

anti-dotesusedinamatoxinpoisoning.

WehypothesizethatTLresiduesLeu1081,Asn1082,Thr1083,

His1085andGly1088,andbridgehelixresiduesGly819,Gly820

andGlu822contributeforthehighbindingaffinityof␣-amanitin

withRNAP II. Our data clearly reinforces thehypothesis of an

importantroleofthebridgehelix[23]andTLintheelongation

process and are consistent withthe existence of a network of

functionalinteractionsbetweenthebridgehelixandTLthat

con-trolfundamentalparametersofRNAsynthesis.Ourdatasuggest

that␣-amanitininterfereswithbridgehelixmovementduringthe

translocationandwiththemovementoftheTL,whichclosesover

theactivesiteduringthenucleotideincorporation(Fig.1).

More-over,accordingtoKaplanetal.(2008),weshowthattheinteraction

of␣-amanitinwithHis1085contributesfortheinhibitionofthe

enzyme.Thisissupportedbythefindingsthatasubstitutionof

ala-nineorphenylalanineatposition1085specificallyrendersRNAPII

highlyresistantto␣-amanitin[22].Also,thereareevidencesthat

residue1085mayplayacriticalroleinthecatalyticmechanism

[24].Taken togetherourresultsareingoodagreementwithall

literaturedata.

IntheanalysisoftheantidoteswefocusedontheTL,bridge

helixandotheradditionalresiduesthatareinvolvedin␣-amanitin

binding.It seems thatbenzylpenicillin, ceftazidimeand silybin,

althoughbindingtothesameRNAPIIbindingsite,cannotreplicate

␣-amanitinbindingmode.Theantidotesestablishconsiderablyless

intermolecularinteractionsandtheonesexistingareessential

con-finetothebridgehelixandadjacentresidues.Thetherapeuticeffect

ofthestudiedantidoteson␣-amatoxinpoisoningseemsnottobe

directlyrelatedwithbindingtoRNAPII.

ThesestructuralinsightsaboutthemolecularaspectsofRNAP

IIinhibitioncanprovideareliableplatformforthestructure-based

drugdesignagainst␣-amatoxinpoisoning.Wesuggestthatanideal

drugshouldbeacompetitiveRNAPIIbinderabletostrongly

inter-actwithArg726,Ile756,Ala759,Gln760andGln767,butnotwith

bridgehelixandTLresidues.

Acknowledgements

TheauthorsgratefullyacknowledgetheFoundationforthe

Sci-enceandTechnology(FCT,Portugal)forfinancialsupportandalso

thankFCTforPhDgrantSFRH/BD/74979/2010.Weacknowledge

QtrexclusterandSNIC-UPPMAXforCPUtimeallocation.

References

[1]F.Enjalbert,S.Rapior,J.Nouguier-Soule,S.Guillon,N.Amouroux,C.Cabot, Treatmentofamatoxinpoisoning:20-yearretrospectiveanalysis,J.Toxicol. Clin.Toxicol.40(2002)715–757.

[2]J.Vetter,Toxinsofamanitaphalloides,Toxicon36(1998)13–24.

[3]T.Wieland,ProgressinTryptophanandSerotoninResearch,WalterdeGruyter &Co,Berlin,NewYork,1984.

[4]K.Letschert,H.Faulstich,D.Keller,D.Keppler,Molecularcharacterizationand inhibitionofamanitinuptakeintohumanhepatocytes,Toxicol.Sci.91(2006) 140–149.

[5]T.J.Lindell,F.Weinberg,P.W.Morris,R.G.Roeder,W.J.Rutter,Specificinhibition ofnuclearRNAPIIbyalpha-amanitin,Science170(1970)447–449.

[6]T.Wieland,Thetoxicpeptidesfromamanitamushrooms,Int.J.Pept.Protein Res.22(1983)257–276.

[7]P.Cramer,K.J.Armache,S.Baumli,S.Benkert,F.Brueckner,C.Buchen,etal., Structure ofeukaryoticRNApolymerases,Annu. Rev.Biophys.37(2008) 337–352.

[8]F.Brueckner,J.Ortiz,P.Cramer,AmovieoftheRNApolymerasenucleotide additioncycle,Curr.Opin.Struct.Biol.19(2009)294–299.

[9]D.Wang,D.A.Bushnell,K.D.Westover,C.D.Kaplan,R.D.Kornberg,Structural basisoftranscription:roleofthetriggerloopinsubstratespecificityand catal-ysis,Cell127(2006)941–954.

[10]D.A.Bushnell,P.Cramer,R.D.Kornberg,Structuralbasisoftranscription: alpha-amanitin-RNAPIIcocrystalat2.8Aresolution,Proc.Natl.Acad.Sci.U.S.A.99 (2002)1218–1222.

[11]L.Tan,S.Wiesler,D.Trzaska,H.Carney,R.Weinzierl,Bridgehelixand trig-gerloopperturbationsgeneratesuperactiveRNApolymerases,J.Biol.7(2008) 1–15.

[12]X.Q.Gong,Y.A.Nedialkov,Z.F.Burton,Alpha-amanitinblockstranslocationby humanRNAPII,J.Biol.Chem.279(2004)27422–27427.

[13]G.M.Morris,D.S.Goodsell,R.S.Halliday,R.Huey,W.E.Hart,R.K.Belew,etal., AutomateddockingusingaLamarckiangeneticalgorithmandanempirical bindingfreeenergyfunction,J.Comput.Chem.19(1998)1639–1662.

[14]G.M.Morris,R.Huey,W.Lindstrom,M.F.Sanner,R.K.Belew,D.S.Goodsell,etal., AutoDock4andAutoDockTools4:automateddockingwithselectivereceptor flexibility,J.Comput.Chem.30(2009)2785–2791.

[15]R.Huey,G.M.Morris,A.J.Olson,D.S.Goodsell,Asemiempiricalfreeenergyforce fieldwithcharge-baseddesolvation,J.Comput.Chem.28(2007)1145–1152.

[16]W.Humphrey,A.Dalke,K.Schulten,VMD:visualmoleculardynamics,J.Mol. Graph.14(1996)33–38.

[17]D.A. Case,T.E.Cheatham,T.Darden,H.Gohlke,R.Luo,K.M. Merz,etal., TheAmberbiomolecularsimulationprograms,J.Comput.Chem.26(2005) 1668–1688.

[18]P.A.Kollman,I.Massova,C.Reyes,B.Kuhn,S.Huo,L.Chong,etal., Calculat-ingstructuresandfreeenergiesofcomplexmolecules:combiningmolecular mechanicsandcontinuummodels,Acc.Chem.Res.33(2000)889–897.

(8)

J.Garciaetal./JournalofMolecularGraphicsandModelling51(2014)120–127 127 [19]A.Onufriev,D.Bashford,D.A.Case,Modificationofthegeneralizedbornmodel

suitableformacromolecules,J.Phys.Chem.B104(2000)3712–3720.

[20]J. Weiser,P.S.Shenkin, W.C.Still,Approximate atomicsurfaces from lin-ear combinations of pairwise overlaps (LCPO), J. Mol. Biol. 20 (1999) 217–230.

[21]P.D.Lyne,M.L.Lamb,J.C.Saeh,Accuratepredictionoftherelativepotenciesof membersofaseriesofkinaseinhibitorsusingmoleculardockingandMM-GBSA scoring,J.Med.Chem.49(2006)4805–4808.

[22]C.D.Kaplan,K.M.Larsson,R.D.Kornberg,TheRNAPIItriggerloopfunctions insubstrateselectionandisdirectlytargetedbyalpha-amanitin,Mol.Cell30 (2008)547–556.

[23]Y.A.Nedialkov,K.Opron,F.Assaf,I.Artsimovitch,M.L.Kireeva,M.Kashlev, etal.,TheRNApolymerasebridgehelixYFImotifincatalysis,fidelityand translocation,BBA–GeneRegul.Mech.1829(2013)187–198.

[24]A.T.P.Carvalho,P.A.Fernandes,M.J.Ramos,ThecatalyticmechanismofRNAP II,J.Chem.TheoryComput.7(2011)1177–1188.

Referências

Documentos relacionados

The integration of enzyme kinetics, structural analysis and molecular modeling studies provided important insights into the molecular basis underlying ligand binding afinity.

By using molecular docking simulations, we compared the putative binding mode of the most active compound of this series, 7g , with the crystallographic pose of the ligand

Refira-se que este questionário adapta o questionário que consta no trabalho de Correia (2017), que por sua vez adaptou-o de outros autores, aplicado aos clientes

Using Molecular Dynamics (MD) simulations, and taking as starting point the X-ray structure of the ATP-bound MJ0796 dimer, the major conformational changes induced by

The high level of genetic diversity among the studied accessions of G.cambogia was also supported by the large variation in the morphological characters observed

Considerando que a produção de estalões, rizomas e raízes é a mais importante na produção de grama, por darem maior resistência ao tapete para ser manuseado após

ESTUQUE PROJECTADO À CÔR BRANCO LAJE EM BETÃO ARMADO ISOLAMENTO TÉRMICO DO TIPO ROOFMATE BETONILHA DE REGULARIZAÇÃO TELA ASFÁLTICA BETONILHA DE ACABAMENTO HIDROFUGADO. PAREDE EM

A atividade de monitoria tem-se revelado de grande importância para a formação e capacitação de professores, principalmente, em um contexto mais amplo no âmbito do