• Nenhum resultado encontrado

Asymptotic solutions of non-stationary problems of thermal conductivity and thermoelasticity with nonclassical boundary conditions for the two-layer plates

N/A
N/A
Protected

Academic year: 2017

Share "Asymptotic solutions of non-stationary problems of thermal conductivity and thermoelasticity with nonclassical boundary conditions for the two-layer plates"

Copied!
8
0
0

Texto

(1)

Ի Ի ՈՒԹ ՈՒ Ի Ի Ի Ի Ղ Ի

А А А А А А

68, №4, 2015

536.21; 539.3

А А А А

А А

А А

А

. .

ы : , , .

Keywords: The non-classical boundary value problem, asymptotic method, the internal task.

. Ո , , :

և . .

և

և

: :

Gevorgyan R.S.

Asymptotic solutions of non-stationary problems of thermal conductivity and thermoelasticity with nonclassical boundary conditions for the two-layer plates

The practical importance of the nonclassical solutions is well known. The solutions of the nonclassical boundary value problems of stationary heat conduction and nonconnected thermoelasticity theory are constructed for the orthotropic two-layer plates. Examples are given with their analysis.

а ч

, - ,

, ,

, – , [1–5].

, , [6].

- ё [7,8].

.

-, ,

-,

.

ё . , , ё -

З [1,2,6,9].

1. ых х .

(2)

Oxyz

 

 

 

 

1

x y

,

0

x y

,

2

x y

,

,

h

Sup

1 2

l

,

x y

,

 

 

     

 

,

l

.

1

( , )

z

 

x y

(

, ):

1

1 0

1 1

11

1 1 1

( , ) :

,

( , ),

( , , ; 1, 2, 3)

y

x z

x

z

x y

T

T

q

q

q

q

x y

q

x y z

x

x

x

 

 

  

  







 

 

 

(1.1)

, :

1 1

1

1 1 1

2 2

1

( , ) :

0

(

)

, ,

,

1

,

0,1, 2

jx jy jz

i i

x x i

z

x y

x

y

u

u

x y z

i

x

y





 

 

 





 

 

(1.2)

2

( , )

z

 

x y

. (

). ,

,

[6].

ё - ,

(1) (2)

0 0 0

(1) (2) 0 (1) (2) 0 (1) (2)

( , ) :

(

)

(

)

0

x x y y z z

z

x y

q

q

q

q

q

q

x

y

 

   





(1.3)

(1) (2)

0

(1) (2)

0 0

(1) (2) (1) (2)

:

0,

,

, ,

jx jx jy jy

jz jz j j

z

x

y

u

u

j

x y z





 

  

   

   

(1.4)

а в а вых .

ё

ё ё

,

,

x y z

P

P P P

0

T

T

  

1 11 44

1 2 3

0,

,

,

1, 2, 3 ( , , ; 4, 5, 6)

xy y

xx xz x z

x yz

m m xx m yy m zz

u

u

u

P

e

a

x

y

z

x

z

y

e

a

a

a

m

y z x







   

 

 

(3)

ij

– ,

,

,

x y z

u u u

– ,

ij

a

– ,

jj

.

,

ё .

,

t

. ё

a [10,11]

11

,

, , ; 1, 2,3

y

x z

x

q

q

q

W

q

x y x

x

y

z

x



 

(1.6)

,

,

x y z

q q q

– ,

  

11

,

22

,

33

,

W

– .

(1.5), (1.6) ё

:

1

,

,

,

u

x

,

u

y

,

u

z

,

x

y

z

z

h

u

v

w

l

l

h

l

l

l

l

l

 

 

   

 

(1.7)

l

– ё .

(1.7) (1.5), (1.6), - ё

,

[7,8] .

, ,

, . ,

,

( ) ,

,

. (

), , ,

 ,

( ) ( , )

0

, ,

Q

, ,

,

0,

0,

1, 2

S

s i s

i i m

s

Q

x y z



Q

Q

m

i

  

(1.8)

( )i

Q

u

j

ij

;

Q

, ё

 

u

0

,

  

1

– , a

1,

1,

2

x y z

q q q

       

  

.

ё

(4)

 

 

2 1 3 1

0 0

(0) ( )

, ,

( , , ),

, ,

,

0,

0,

,

S S

s s

s s

x x

s s

s

j

P

l P

x y z

W

l W

Q

Q Q

s

Q

P W

     

 

  

  

(1.9)

Э , ё ё

-ё ,

, , ,

2

3.

(1.8), (1.9)

0,1, 2,

,

s

s

S

,

(1.8),

.

,

,

(

i

1, 2

) ав в а ых а ах

щ ях. :

( ) ( , ) ( , ) ( , ) ( ) 33

2 ( 2) 2 ( 2) ( , ) ( ) ( ) ( )

11 2 22 2 0 0

1

s i s i s i s

i i

z s s

i s i i i i s

i

zA

B

W

d

d

x

y

  

 

 

 

 

 

 

(1.10)

 ,  ,  ,

0

( , )

( , , ),

, ,

i s i s i s

jz jz

x y

jz

x y z

j

x y z

 

 

 , ( )  ,  ,

13 0

( , )

( , , ) (

,

; 1, 2)

i s i i s i s

xx

A

zz

x y

xx

x y z

xx yy

 

 , ( , )

( )  , ( , )

0

,

55 0

( , , ) ( , , ;5, 4, 3),

1, 2

i s i s i i s i s

x x xz x

u

u

x y

zA

u

x y z

x y z

i

 , , 1 , 1 ( )

66

1

,

i s i s

i s x y

xy i

u

u

a

y

x

 

( ) ( ) ( ) ( )2 11 22 12

i i i i

a a

a

 

 , , 1 , 1  ,

0

,

, ,

i s i s

z

i s jx jy i s

jz

P

j

dz

j

x y z

x

y

 





 

 , ( )  , ( ) , 1 ( ) , 1 ( )  

13 11 12 11

( , , )

, ;1, 2

i s i s

i s i i s i x i y i s

xx zz i

u

u

x y z

A

B

B

x y

x

y

 

 

  

 , ( ) ( , ) , 1 55

0

( , ;5, 4)

z i s

i s i i s z

x xz

u

u

a

dz

x y

x

 

(1.11)

( ,i s1)

(5)

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 33 13 13 23 23 33

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 22 ( ) 12

3 13 1 23 2 11 ( ) 12 ( )

,

,

4, 5, 6

,

1, 2;

,

(1, 2)

i i i i i i i i kk kk

i i

i i i i i i i

j j j i i

A

a A

a A

a

A

a

k

a

a

A

a B

a B

j

B

B

 

 

( ) ( ) ( ) ( )

( ) 12 22 22 11 ( ) ( ) ( ) ( ) ( ) ( )

11 ( )

(1, 2),

33 13 11 23 22 33

i i i i

i i i i i i i

i

a

a

A

A

 

 

 

 

  

(1.10), (1.11) (1.5), (1.6)

A

( , )i s

,

B

( , )i s

,

 ,  ,  , ( , )

0

,

0

,

0

,

0

,

i s i s i s i s xz yz zz

u

x

( , ) ( , )

0

,

0

,

1, 2

i s i s y z

u

u

i

,

(1.1)–(1.4)

ё

i

1

i

2

.

2. ых ых .

(1.1), (1.2),

:

1

1

(1, ) (1, ) ( ) ( 2) 1 ( 2) 1

1 1 1

(1) 33

1

( , )

s

s s s s

x y

z

A

q

x y

q

q

x

y

z

    







 

1 1

(1, ) ( ) (1, )

1 33

(1, ) ( ) ( 2) ( 2)

1 1 1

1 1 1

( ) 33

1

, ,

( , )

s s s

s

s s s

x y

s

z

B

x y

q

x y

q

q

x

y

z

     

 

 







(2.1)  1,   13(1) 1   1   1  

0 (1)

1

( , )

( , ;1, 2)

s s s s s

xz x x y z

A

x y

F

F

F

F

x y

x

x

y







 1,   1   1  

0 (1) 1

1

( , )

s s s s

zz

x y

F

x

F

y

F

z

x

y





 

   

 

    1, 1,

(1, ) (1) (1, )

0 55 1 0 1

1, 1,

(1, ) (1) (1, )

0 33 1 0 1

,

(

) ( , ;5, 4)

,

(

)

s s

s s

x x xz x

s s

s s

z z zz z

u

x y

u

A

u

z

x y

u

x y

u

A

u

z

   

 

 

 

 

   1,

 1,  1,

( ) 1 1

1 1 1

( , )

s s s s

s

x x xx xy xz

F

z

z

x y

x

y

   





  

 

 

 

 

 

   1,

 1,

 1,

( ) 1 1

1 1 1 1

s s s s

s

z z xz yz zz

F

z

z

z

x

y

    





  

 

 

 

 

 

 

2 2 ( ) ( ) ( ) 13 23

1

,

1, 2;

0,1, 2

i i k i k

k

A

A

i

k

(6)

 0  1,0    1,

,

,

s s

0,

0

( , , )

x x

u

x

u

x x

u

x

s

x y z

     

  

 

a ё (1.3),(1.4) :

0

(2, ) (2, ) ( 2) (2, 2) 0 ( 2) ( 2) 0 ( )

1 2 1 2 1

(2) 33

1

s

s s s s s s

x x y y z

z

A

q

q

q

q

q

x

y

z

   









0

(2, ) (1, ) (2, ) (1, ) (1, ) (2, )

0 (1) (2)

33 33

1

1

s s s s s s

z

B

A

A

B



 

(2, ) ( ) (2) (2, ) 0

0 13 0

(2, ) ( ) ( ) 0 ( ) 0 0 (2)

0

( , ;13, 23)

1

s s s

xz xz zz

s s s s

zz zz xz yz

W

A

x y

x

W

W

W

x

y







(2.2)

 2, (1, )

(1)  1, (2)  2,

(1, ) (2, )

0 0 0 55 0 55 0

(

0

)

(

0

)

( , , ; , , ;5, 4, 3)

s s s s s s

x x xz xz x x

u

u

A

A

u

z

u

z

x y z u v w

 

 

  

 

( ) (1, ) (2, ) (1, 1) (2, 1) 0 (1, 1) (2, 1) 0

* *

( ) (1, ) (2, ) (1, 1) (2, 1) 0 (1, 1) (2, 1) 0

* * *

( , )

s s s s s s s

xz xz xz xx xx xy xy

s s s s s s s

zz zz zz xz xz yz yz

W

x y

x

y

W

x

y

   

   





 

 

 

 

 

 





 

 

 

 

 

 

, ё (1.10), (1.11) ё

(2.1),(2.2) ,

(

S

)

O

в а ых а ах щ ях

 ,

( )

0

, ,

, ,

S i s i

s

Q

x y z

Q

x y z

. (2.3)

,

ё

k

 

x y

,

h

k

const

,

k

0,1, 2

,

const,

k

 

const,

k

W

:

1

const,

 

*

1

,

q u

1

,

j

,

j

x y z

, ,

  

(2.4)

ё (2.1)–(2.4)

ё (1.10)–(1.11), ,

,

, :

2

h

z

(7)

(1) (1) (1) (1) (1)

(1) (1) (1) (1)

1 1 1 13 1 11 1

,

,

0

,

( , ;1, 2)

x x y y xz yz xy

zz xx

u

u

u

u

g z

h

gA

z

h

x y

 

     

  

  

  

(2.5)

2 (1)

2

1 1

(1) (1) 33 (1)

1 33 (1) 33 1 1 (1) 1

33 33

2

6

z z

z

h

z

h

u

u

gA

q

 

z

h

 

W



 

2

0 1 0 1 0

0 1 0

2 1 (2) (1) (2) (1) 1

33 33 33 33

2 0

2 2 1 1 0 1 0 2 (2)

33

2

,

(

)

2

h

z

h

h

h

h

h

z

h

h

q

W

h

z

W

q

q

h

h W

h

z W

 

   

(2.6)

(2) (2) (2) (2) (2)

1 0 1 2 0

(2) (2) (2) (2)

1 13 1 0 1 2 0 11 2

0,

,

, ( , ;1, 2),

xz yz xy zz x x

xx y y

g h

h

g z

h

u

u

gA

g h

h

g z

h

x y

u

u

     

  

 

  

 

  

2 (2)

2

0 0

(2) 33 (2)

2 33 (2) 33 0 (2) 2

33 33

(1)

0 1 0 1 0

2

6

(

),

(

),

(

)

z z

z z

z

h

z

h

u

u

gA

q

z

h

W

u

u

z

h

z

h

q

q z

h

 

 

  

, (2.5), (2.6) (2.4)

( ), .

,

z

 

2

( , )

x y

h

2

const

(2.6)

2

(

)

cal

Q

Q z

h

,

Q

 

( 2)

,

q

(2),

  

(2)xz

,

(2)yz

,

(2)zz ,

u

x(2)

,

u

(2)y ,uz( 2)

(2.7) [2,6,9,10], (2.5),

(2.6) (2.4)

:

1 1 1

(2) (2)

2 2 2 2

:

const,

( , )

const,

, ,

:

,

0 ( , ),

j

cal cal cal

xz xz xz zz

z

h

u

x y

j

x y z

z

h

q

q

x y

 

     

  

 

  

 

 

(2.8)

,

(

S

)

O

ё

.

(8)

А А

1. А А. ., . ., А. .

А GPS/

. А А . . 2003. .56. №3. .3-13.

2. Aghalovyan L.A., Gevorgyan R.S., Sahakyan A.V. Mathematical simulation of collision of arabian and euroasian plates on the base of GPS data // . А А . . 2005. .58. №4. .3-9.

3. А. .

. // . А А . .

2006. .59. №4. .24-31.

4. . ., . ., Ш . .

. .: , 1980. 286 .

5. . .

« А »

( ) // II . :

А . : 2010. I.

.182-186.

6. Aghalovyan L.A. On one class of three-dimensional problems of elasticity thory for plates //Proceedings of A. Razmadze Mathematikal Institute of Georgia. 2011. Vol.155, pp. 3-10.

7. А . А. А . :

. , 1997. 414 .

8. А .А., . .

, . : , 2005. 468 .

9. А .А., . ., . . ё

GPS

// А А . 2012. .112. №3. .264-270

10. А. . . .: , 1952. 392 .

11. . ., Э.А. А

. .: - , 1978. 224 .

:

− , . - . ,

А А. .: (37410) 270828; e-mail: gevorgyanrs@mail.ru

Referências

Documentos relacionados

Com a exceção parcial da Utopia de Morus, nas utopias literárias que analisamos até ao momento, os livros e as bibliotecas são considerados incompatíveis com a

Ntouyas, Boundary value problems for differential equations with fractional order and nonlocal conditions , Nonlinear Anal.. Bitsadze, On the theory of nonlocal boundary value

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

The structure of the remelting zone of the steel C90 steel be- fore conventional tempering consitute cells, dendritic cells, sur- rounded with the cementite, inside of

O presente trabalho tem como objetivo avaliar o padrão físico-químico, e as informações nutricionais contidas nos rótulos de cinco marcas distintas do queijo tipo petit

In this paper a semi-analytical approach for the analysis of laminated plates with general boundary conditions and distribution of loads is proposed.. The non-linear equations

The results obtained for displacements and stresses in square orthotropic, two-layer and three- layer laminated plates under non-linear thermal load are compared

By using these results and the monotone iterative technique, we obtain the existence of solutions of periodic boundary value problems for a class of impulsive neutral