• Nenhum resultado encontrado

Gabapentin attenuates neuropathic pain and improves nerve myelination after chronic sciatic constriction in rats

N/A
N/A
Protected

Academic year: 2018

Share "Gabapentin attenuates neuropathic pain and improves nerve myelination after chronic sciatic constriction in rats"

Copied!
7
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Neuroscience

Letters

j ou rn a l h om epa g e :w w w . e l s e v i e r . c o m / l o c a t e / n e u l e t

Research

paper

Gabapentin

attenuates

neuropathic

pain

and

improves

nerve

myelination

after

chronic

sciatic

constriction

in

rats

Carlos

C.

Câmara

a,b

,

Celina

V.

Araújo

b

,

Kalina

Kelma

Oliveira

de

Sousa

b

,

Gerly

A.C.

Brito

c

,

Mariana

L.

Vale

c

,

Ramon

da

Silva

Raposo

e

,

Fabiana

Evaristo

Mendonc¸

a

d

,

Bruno

S.

Mietto

d

,

Ana

Maria

B.

Martinez

d

,

Reinaldo

B.

Oriá

b,∗ aLaboratoryofNeurophysiology,FederalandRuralUniversityoftheSemiArid—UFERSA,Mossoro,RN,Brazil

bLaboratoryofTissuehealing,OntogenyandNutrition,DepartmentofMorphology,FacultyofMedicine,FederalUniversityofCeara,Fortaleza,CE,Brazil cLaboratoryofInflammationandCancer,DepartmentofPhysiologyandPharmacology,FacultyofMedicine,FederalUniversityofCeara,Fortaleza,CE, Brazil

dDepartmentofPathology,FacultyofMedicine,HUCFF,HealthScienceCenter,FederalUniversityofRiodeJaneiro,RiodeJaneiro,RJ,Brazil eExperimentalBiologyCore,UniversityofFortaleza,Fortaleza,CE,Brazil

h

i

g

h

l

i

g

h

t

s

•Gabapentinimprovesmyelinbasicproteinexpressionintheinjuredsciaticnerve.

•Gabapentinamelioratesneuropathicpainbehaviors.

•Gabapentinhasadualroleinimprovingneuropathicpainandnervemyelinationfollowingsciaticnerveinjury.

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received23February2015

Receivedinrevisedform11July2015

Accepted16September2015

Availableonline25September2015

Keywords:

Gabapentin

Sciaticnerve

Neuropathicpain

Nervemyelination

a

b

s

t

r

a

c

t

Gabapentin(GBP)isananti-convulsivedrugoftenusedasanalgesictocontrolneuropathicpain.This

studyaimedatevaluatingoralGBPtreatment(30,60,120mg/kg,60minpriortochronicconstriction

ofthesciaticnerve(CCSN)along15-daytreatmentpost-injury,12h/12h)bymonitoringspontaneous

andinduced-painbehaviorsinWistarratson5thand15thdayspost-injuryduringearlyneuropathic

events.CCSNanimalsreceivingsalinewereusedascontrols.Anotheraimofthisstudywastoevaluate

GBPeffectsonmyelinbasicprotein(MBP)onthe5thand15thdayspost-injuryandnerve

morphol-ogybytransmissionelectronmicroscopytoaddressnerveregeneration.Onthe5thand15thdays,GBP

(60mg/kg)reducedneuropathicpainbehaviors(scratchingandbiting)intheipsilateralpawand

allevi-atedmechanicalallodyniaincomparisonwiththeneuropathicsalinegroup.GBPsignificantlyincreased

climbingandrearingbehaviorsinCCSNandCCSN-freeanimalssuggestingincreasedmotoractivityrather

thansedation.Wefoundthree-foldsignificantincreaseinMBPexpressionbywesternblotsonthe15th

daywhencomparedtocontrols.Inaddition,GPB(60mg/kg)improvednerveaxonal,fiberandmyelinarea

15dayspost-surgery.Inconclusion,GBPalleviatedmechanicalandthermalallodyniaandspontaneous

pain-relatedbehaviorsandimprovedlaternervemorphology.OurfindingssuggestthatGBPimprove

nerveremyelinationafterchronicconstrictionofthesciaticnerve.

©2015ElsevierIrelandLtd.Allrightsreserved.

1. Introduction

Peripheralnerveinjury(PNI)isanescalatingproblem

world-wide mostly due to a growing prevalenceof societalviolence,

∗Correspondingauthorat:InstituteofBiomedicineandDepartmentof

Morphol-ogy,SchoolofMedicine,FederalUniversityofCeara.RuaCoronelNunesdeMelo,

1315,CEP:60430-270Fortaleza,CE,Brazil.

E-mailaddress:rbo5u@virginia.edu(R.B.Oriá).

occupational and traffic accidents, especially in more

densely-populated urban areas. PNI may lead to a chronic condition

associatedwithneuropathicpainandnervefunctionloss,witha

tremendousimpactinhospitalcostsandincapacity[1].

Although peripheral nerve regeneration is possible, current

treatmentisstillunsatisfactory,especiallyfortheelderly.Novel

therapies to accelerate nerve regeneration are needed in

asso-ciationwithbenefitsinreducing neuropathicpain.Mechanisms

underlyingpainreliefwiththeuseofanticonvulsantsarea

promis-http://dx.doi.org/10.1016/j.neulet.2015.09.021

(2)

ingtargetfortherapyimprovements[2],howevertodatenostudies

haveaddressedtheirpotentialdualbenefitinimprovingpainand

nerveregeneration.

The anticonvulsivant gabapentin (GBP) (1-(aminomethyl)

cyclohexaneaceticacid),onestructuralderivativeofthe

gamma-aminobutyricacid(GABA),isnowfurtherconsideredasaneffective

therapyforsomeformsofneuropathicandpost-surgicalpain[3].

GBP-specificinhibitionofcalcium–voltagedependent␣2␦subunits

[4]oractivationofproteinkinaseG-K+channels[5]hasbeen

impli-catedinreducingallodyniabyalteringneurotransmitterrelease.

Ourpreviousstudyhasdocumentedthebenefiteffectoforal

GBP (60 and 120mg/kg) treatment in improving heat-induced

hyperalgesiawithnervepro-inflammatory effectsina modelof

sciaticnerveconstrictioninWistarrats[6].However,thepotential

nerveregenerativeeffectofGBPhasbeenpoorlyexplored.

InthisstudyweexploredwhetherprolongedGBP treatment

improvessciaticnervemyelinationbyassessingnervemyelinbasic

protein (MBP) (a constitutive myelin protein)[7], spontaneous

motor-relatedactivity,andfinenervemyelinmorphology,

follow-ingsciaticnerveconstrictioninWistarrats.Inaddition,wediscuss

whetherbetternerveremyelinationandreducedmyelinprotein

debriscouldimproveneuropathicpainfollowingGBPtreatment.

2. Materialsandmethods

ProtocolsfromthisstudywereinaccordancewiththeBrazilian

CollegeforAnimalExperimentation(COBEA)andtheInternational

AssociationfortheStudyofPain(IASP)andwereapprovedbythe

AnimalCareandUseCommitteeofDepartmentofPhysiologyand

Pharmacology,FederalUniversityofCeara.

2.1. Animalstudies

160maleWistarratsweighingbetween250and300gfromthe

DepartmentofPhysiologyandPharmacologyvivariumatthe

Fed-eralUniversityofCearawereusedinthisstudy.Ratswerehoused

inatemperature-controlledroom(26±2◦C)withfreeaccessto

waterandchowdietina12h/12hlight/darkcycles.Allsurgical

procedureswereperformedinthelaboratoryofExperimental

Neu-rologyintheDepartmentofPhysiologyandPharmacologyatthe

FederalUniversityofCeara.

2.2. Sciaticnervechronicconstriction

Inordertoinducetheexperimentalneuropathy,weusedthe

chronicconstrictionofthesciaticnerve(CCSN)model,describedby

BennettandXie[8]andmodifiedbySommeretal.[9].Animalswere

anesthetized with intraperitoneal injection of tribromoethilene

(25mg/kg),following trichotomyand anti-sepsisof thesurgery

field.A15-mmlongitudinalincisionoftherightthigh,atthelevel

ofthefemoraltrocateroftheposteriorlimb,wasusedtoaccessand

exposethesciaticnerveaftergluteusandfemoralbicepsdissection.

Weusedthree4–0cat-gutlooseligaturesontherightpawsciatic

nerve,1-mmawayfromthesciatictrifurcationinducingaslight

nerveischemia.Intheleftthigh,thesciaticnervewasexposed,

butremaineduntouchedandsurgeryclosedafterwards.Skinand

muscularlayersweresuturedwitha5–0mononylonthread.

2.3. Drugsandtreatmentregimens

Gabapentin (GBP) (1-(aminomethyl) cyclohexaneacetic acid,

C9H17NO2)(Neurontin®

,Pfizer)capsulesweredissolvedin0.9%

salinesolutionandthengivenorallybygavageevery12hduring

eithera5or 15-daytreatmentcourse.GBPdosesof30,60 and

120mg/kgwereusedbasedonpreviousstudieswithgoodclinical

response[10].AsthemaximumGBPeffectoccurs60minafteroral

administration[11],thefirstdosewasgiven60minpriortothe

nervesurgeryandthelastdosewasgiven60minbeforebehavior

tests.

2.4. Neuropathicpainassessment

InordertoassesswhetherGBPtreatmentcouldameliorate

neu-ropathicpainfollowingsciaticnerveinjury,cohortanimalswere

evaluatedinspontaneousandinducedbehaviors.

2.4.1. Spontaneouspainbehaviors

Ratswerekeptinawoodencage(100×50×50cm)fora5-min

acclimationtimeandtesting.Theobservationswereconductedas

describedelsewhere[6].Eachexperimentaland controlratwas

observedduringatimeof30min.Positionedinfrontofthecage,

theobservercouldidentifyeachbehavioralcomponentandrecord

itusingacomputersoftware(Comporta®

)designedbyProf.

Mar-cusVale(FederalUniversityofCeara,Brazil).Experimenterswere

unawareoftheidentityoftheexperimentalgroups.

Thefirstobservationwasperformedbeforethesurgery

(base-line)and then onthe5th and 15thpost-surgery.Adeltamean

behaviorvaluewasderivedfrombaseline.Formeasurements(in

seconds),weconsideredthefollowingpain-relatedspontaneous

behaviors:(1)scratching:timespentraisingthehindleftorright

pawtoscratchpartsofthebodywithrapidmovementsofthepaw

andclaws;(2)biting:timespentpiercingtheskinwiththemouth

andteethontheleftorrightsideofthebody.

2.4.2. Inducedpainbehaviors

2.4.2.1. Mechanicalallodynia. InordertoassesstheGBP chronic

effectonCCSNmechanicalallodynia,thevonFreyassessmentwas

usedaccordingtoAzevedoandcolleagues[12].Briefly,the

test-ingconsistedofpokingthehindpawtoprovokeaflexionreflex

followed by a clearflinch response afterpawwithdrawal. Paw

stimulationwasrepeateduntiltheanimalpresentedthreesimilar

measurements(thedifferencebetweenthehighestandthe

low-estmeasurementshouldbelessthan10g).Animalsweretested

onthe5thand15thdaypost-CCSN.Theresultsarereportedasthe

withdrawalthreshold(g).

2.4.2.2. Coldacetoneallodynia.InordertoassesstheGBPchronic

treatment effect on CCSN-induced cold allodynia, the method

describedbyBennettandFlatters[13]wasused.Briefly,ratswere

placedinacryliccageswithawiregridfloor15–30minbeforethe

beginningofthetestsinaquietroom.Adrop(0.05mL)of

ace-tonewasplacedagainstthecenterofhindpawventralsideanda

stopwatchwasstarted.Responsestoacetoneweregradedtothe

following4-pointscale:0,noresponse;1,quickwithdrawal,flick

orstampofthepaw;2,prolongedwithdrawalorrepeatedflicking

ofthepaw;3,repeatedflickingofthepawwithlickingdirectedat

theventralsideofthepaw.Acetonewasappliedalternatelythree

timestoeachpawandtheresponsesscoredcategorically.Animals

weretestedonthe5thand15thdaypost-CCSN.

2.5. Spontaneousmotor-relatedbehaviors

InordertodifferentiateGBPtreatmentanalgesiceffectsfrom

sedation, we observed the control and experimental rats, as

describedabove(Section2.4.1),measuringtherearing(timespent

suspendingtheforefeetandsupportingthebodyonthehindpaws

andclimbingbehaviors(timespentclimbinga2-cmhighthreestep

(3)

2.6. MyelinnervemorphologyandMBPexpression

In order to investigate nerve remyelination following CCSN

injury,weassessultra-structuralmyelinfeaturesandnervefine

histologyandMBPexpressionbywesternblottingand

immuno-histochemistryonday15thpost-challenge.

2.6.1. Finenervehistologyandmorphometry

Anesthetizedratswereperfusedintracardiallywithasolution

containing4%paraformaldehydeand2%glutaraldehydein0.1M

phosphatebuffer(pH 7.4).After,a 5mm segment(5mmdistal

fromtheinjurysite)ofthe15thday-post-injurysciaticnervewas

removedandfixedwith2.5%glutaraldehydein0.1Mcacodilate

buffer(pH 7.4)for 2h and processedfor transmission electron

microscopy.Afterthat,segmentswerepost-fixedin1%osmium

tetroxideplus 0.8% potassium ferrocyanide and 5mM CaCl2 in

0.1Mcacodilatebuffer(pH7.4)during1h.Next,segmentswere

dehydrated in increasing concentrations of acetoneand finally

embeddedin Embed-812 resin (Electron Microscopy Sciences).

Semithin(1␮m)andultrathin(60␩m)sectionswereobtainedina

RMCMT-6000ultramicrotome.Thesemithinsectionswerestained

with1%toluidinebluesolutionandobservedandphotographed

underaZeissAxioskop2Pluslightmicroscopewith20×and40×

objectives.Theultrathinsectionswerecollectedoncoopergrids

andstained30mininuranylacetatefollowedby10mininlead

citrate.ElectronmicrographswereacquiredusingZeiss900

trans-missionelectronmicroscopeoperatedat120kV.

2.6.2. Nervemorphometry

Inordertoidentifymyelinatedfibers,fiveareaswere

systemati-callyselectedfromthesemi-thincrosssectionsofthenerveofeach

animalandwereimage-capturedinhighmagnificationby

Axiovi-sionRel.4.5(CarlZeissMicroimaging,Thornwood,NY,USA).The

totalof30areasfromeachgroupwasanalyzed.Thisquantification

wasperformedusingImageJavasoftware(Bethesda,MD,USA).

2.6.3. MBPimmunohistochemistry

Onthe15thdaypost-CCSN and underdeepanesthesia, rats

weretranscardiallyperfusedwithsalineandthenthedistalsciatic

nervesegmentwasharvested5mm-distaltotheligatures,

imme-diatelyimmersedinbufferedformaline(pH7.4)for24handsentto

thehistologycoreforimmunohistochemistryprocessing.

Immuno-histochemistryforMBP(anti-MBPdiluted1:200,SantaCruz,CA)

wasperformedusingthestreptavidin-biotin-peroxidasemethod

informalin-fixed,paraffin-embeddedtissuesections(4␮mthick)

aftercitratebufferantigenretrieval,accordingtomanufacturer’s

instructions.Immunolabelingwasvisualizedwiththechromogen

3,3-diaminobenzidine(DAB).Negativecontrolsectionswere

pro-cessedsimultaneously,asdescribedabovebutwiththeprimary

antibodybeingreplacedby5%PBS-BSA.Noneofthenegative

con-trolsshowedimmunoreactivity.Slideswerecounterstainedwith

Harry’shaematoxylin.

2.6.4. MBPimmunoblotting

A2.5cm-longnervetissueoftheproximalsciaticnervestump

washarvestedtoassesstheMPBonthe15thdayspost-surgery

andimmediatelysnap-frozeninliquidnitrogenandprocessedfor

westernblotting,asdescribedelsewhere[14].MBPhasbeenshown

tobehighlyexpressedintheproximalstumpthanthedistalone

14days-post-CCSN[15].

2.7. Statisticalanalyses

NormaldistributionwasassessedusingKolmogorov–Smirnov’s

test. Effects amongst groups were assembled using

one-way ANOVA with post-hoc Tukey for parametric data and

Kruskal–Walliswithpost-hocDunn’sfornon-parametricdata.In

nerve morphometry, we used Mann–Whitney test. Values are

shownasmean±SEM.

3. Results

3.1. GBPeffectonneuropathicpainbehaviors

After5-days of GBP treatment, all tested doses (30, 60 and

120mg/kg)causedsignificantreductionsinthescratching

behav-ioroftherightpaw(93,86.7,94.4,and83.6%,respectively)when

comparedtoneuropathicsalinegroup(p<0.01).GBP(60mg)lowed

thebitingbehavior(131.8%),asopposedtotheneuropathicsaline

group(p<0.01).InCCSN-freerats,thosebehaviorswerebarelyseen

(N=12).Onthe15thdaypost-surgery,allneuropathicpain-related

behaviors(scratchingandbiting)wereworse(∼2and10-foldmore,

respectively).GBP(60mg)markedlyimprovedthescratchingand

bitingbehaviors (76 and 73%,respectively) compared withthe

untreatedchallenged-group(Fig.1A–D).

3.1.1. GBPeffectonvonFrey’sandcoldacetoneallodynia

Onthe5thdaypost-constriction,allGBPdosescaused

signifi-cantincreaseintherightpawwithdrawalthresholdinrelationto

theneuropathicsalinegroup.GBPatdosesof60and120mgwere

responsibleforthemaximum effect,providingthreshold

catch-upof45.9%and57.7%,respectively,inrelationtotheneuropathic

salinegroup,Fig.1E(p<0.00001).Onthe5thdaypost-constriction,

thescoreforcoldallodyniawasreduced(42.2%)by120mgofGBP

incomparisonwiththeneuropathicsalinegroup.The30and60mg

dosesleadtoreductiontrendsbutneitherreachedastatistical

dif-ference(Fig.1G).Onthe15thday,GBPtreatment(60mg)improved

mechanicalandthermalallodyniacomparedwiththeuntreated

CCSN-group(p<0.01)(Fig.1FandH).GBPtreatmentdidnotinduce

significantdifferencesinthecontra-lateralCCSN-freepaw(datanot

shown).

3.2. GBPeffectonspontaneousmotor-relatedbehaviors

GBP(60mg)raisedthedeltascoresofrearingcomparedwith

the untreated CCSN-rats on day 5 post-nerve constriction. No

differences were found for the rearing behavior on the 15th

post-challenge.60and120mgofGBP-treatedCCSNratsshowed

significantincreaseinclimbingwhencomparedwiththe

neuro-pathicsalinegroup,p<0.05 ontheday5 post-surgery.AllGBP

testeddosesimprovedclimbing15dayspost-surgerycompared

withtheuntreatedchallenged-group(SupplementaryFig.1).

Supplementarymaterial related tothis article found, in the

onlineversion,athttp://dx.doi.org/10.1016/j.neulet.2015.09.021.

3.3. Nervemorphology

Onthe15thday,qualitativeobservationofsemi-thincross

sec-tionsofthesciaticnerve showedhighernumber ofmyelinated

fiberswithinthechallengedandGBP-treatedgroupasopposedto

thenervesoftheneuropathicsalinegroup.Ultra-thinnerve

cross-sectionsrevealedthicker and higherdensity ofmyelinsheaths.

Inaddition, thenerves oftheneuropathic salinegroupshowed

nervefiberswithsignsofdegeneration,includingseveralmyelin

ovoids,amongpreservedand/orregeneratedfibersandsomefibers

withthinmyelinlamellae.InjuredsciaticnervetreatedwithGBP

showed many preserved and/or regenerated fibers among few

myelinovoids(Supplementary Figs.2 and3).Furthermore,oral

GBP(60mg/kg)improvedby63.3,32.8and28.2%insciaticnerve

axonal and fiber areas and myelin area, respectively, in

CCSN-challenged rats when compared with untreated nerve-injured

(4)

Scratching (right paw)

Sham

Sal

30

60

12

0

0

10

20

30

40

50

GBP

*

*

*

#

A

5° d

ay

D

e

lta

tim

e

(s

.)

Biting

(righ

t paw)

Sham

Sal

30

60

12

0

-5

0

5

10

C

#

*

GBP

5°day

De

lt

a t

im

e

(

s.

)

Sham

Sa

l

30

60

12

0

-50

0

50

100

*

GBP

15° day

D

*

De

lt

a T

ime

(s

.)

Sham

Sal

30

60

120

0

20

40

60

80

#

*

B

GBP

15° day

De

lt

a T

ime

(s

.)

Fig.1.Effectofchronicgabapentin(GBP)treatmentonscratching(A,B),biting(C,D)behaviorsandonvonFrey’spressurestimulus(E,F),andcoldacetone(G,H)testing

oftheipsilateralhindpawinCCSN-ratsoneitherthe5◦or15thday.Atleastn=8animalspergroupwereused.GBP30,60,120mg/gwasgivenbydailygavage(12/12h).

Behavioraldata(mean±SEM)areexpressedindeltavalues.Inpressurestimulus,dataareexpressedinthreshold(g).Incoldstimulustest,dataareexpressedinscores.

(5)

Pressur

e stimulus

Sham

Sa

l

30

60

12

0

0

20

40

60

80

#

*

*

*

GBP

E

5°day

Th

re

sh

ol

d

(g

.)

15° day

Sham

Sa

l

30

60

12

0

0

20

40

60

80

GBP

*

*

#

F

Th

re

sh

ol

d (

g

.)

Cold stimulus (10°C)

Sham

Sal

30

60

120

0

2

4

6

8

10

GBP

*

#

15° day

H

Sc

or

e

Sham Sa

l

30

60

12

0

0

2

4

6

8

#

*

GBP

G

5° day

Sc

o

re

(6)

CCSN-challengedratswereworsecomparedwiththeshamgroup

(SupplementaryFig.4).TheGratiowasnotfounddifferentbetween

theGBP-treatedinjurednervesasopposed tothecontrols,

sug-gestingboththemyelinandtheaxonproportionallyimprovedin

diameter.

Supplementarymaterial related tothis article found, in the

onlineversion,athttp://dx.doi.org/10.1016/j.neulet.2015.09.021.

3.4. GBPeffectonthesciaticnerveMBPexpression

Atthetimepointofthe15thdaypost-injury,GBP(60mg/kg)

significantlyincreased(overthreefold,p<0.05)MBPnerve

expres-sion,ascomparedwiththeneuropathicsalinegroup.Inaddition,

theMBPimmunostainingwasmarkedlyseenintheGBP(60mg/kg)

treatedratsafter15daysoftreatmentfollowingsciaticnerve

con-striction(SupplementaryFig.5).Atthetimepointofthe5thday

post-injuryanincreasedinMBPnerveexpressionwasseeninthe

GBP(60mg)treatedgroupalbeitnotreachingstatistically

signifi-cance(datanotshown).

Supplementarymaterial related tothis article found, in the

onlineversion,athttp://dx.doi.org/10.1016/j.neulet.2015.09.021.

4. Discussion

Inthis study,weaddressedGBP effects onneuropathic pain

behavior (5th and 15thdaypost-sciatic ligature)and on nerve

myelinationparametersfollowingchronicsciaticnerve

constric-tioninrats.

Ourdatahaveshownreducedbitingandscratchingbehaviors

inchallengedrats,followingGBPtreatmentonthe5thand15th

daypost-nerveconstriction.Earlystudieshavedemonstratedthat

ipsilateralscratchingtotheinjuredhindlimbisarecognized

hall-markfeatureofneuropathicpain[16]withapeakonthe14thday

post-nerveconstriction[17].Bitinglikewisehasbeenimplicated

inneuropathicdistressbutwithadistinctevolutioninmodelsof

chronicarthritis-associatedneuropathy[18].

OralGBPtreatment(12/12h)atdosesof30, 60,and120mg

inducedsignificantreductionsinthescratchingtime(intheright

ipsilateralpaw)spentbytheneuropathicratsincomparisonwith

theuntreatedgroup.However,thisfindingwasnotseenina

dose-dependentmanner,in factthebesteffectwasseen witha GBP

doseof 30mg/kg.Interestingly,Kayser andChristensenfounda

benefitwiththesameGBPdose(30mg/kgi.p.)onthevocalization

thresholds(asupraspinal-derivedbehavior)followingsciaticnerve

constrictioninrats[11].Ontheotherhand,ourdatashowthatGBP

(60mg/kg)wasmoreeffectiveinreducingthebitingbehavior.

Bagriyaniketal.havefounddeficitsinmotor-relatedbehaviors

(openfieldandrotarodtest)14dayspost-nerveconstrictioninrats

[19].DivergingfromGustafssonetal.findingsthatshowdecreased

locomotionandrearingbehaviorsafteracuteandcumulativedoses

ofGBP(200␮mol/kg,∼40mg/kg)[20],wefoundthatprolonged

GBPtreatmentincreasedmotor-relatedbehaviordeltascores

(rear-ingandclimbing),ascomparedtocontrolsthereforesuggesting

thatoralGBPdidnotinducesedativeeffectsintheseanimals.

How-ever,wecannotruleoutanexcitatoryeffectofGBPenhancingthese

behaviors.Morestudiesareneededtodissectbetterthesefindings.

In accordance withour data, LaBuda and Little [10] used a

spinalnerve(L5)ligaturemodelandfoundincreasedpaw

with-drawn threshold(tactile von Frey) withGBP treatment(30, 60

and120mg/kgi.p.)ascomparedwiththesalinecontrolafter1h

post-surgery.Theanti-allodynicGBPeffectcouldbeexplainedby

blockageofthe␣2␦intheCav2.1calciumchannelsubunits[21].In

addition,GBPcansuppressinvivoandinvitroectopicdischargesin

thesciaticnerveafferentfibersfromneuropathicanimalsbutnot

fromnormalanimals[22].

MBPandPLPconstitute85%oftheproteinfoundinthemyelin

sheathandhelptostabilizethemyelinstructurescaffoldingthe

lipid component [23]. Setton-Avruj et al. studied the temporal

course of MBP nerve expression (3, 7 and 14 days), after

sci-aticnerveconstrictionin adultrats,distallytotheligature,and

foundthat therewas amaxiumpeak of MBPexpression seven

dayspost-constriction,reducingthereafter.Intheproximalnerve

stump, a maximum peak of MBP was found on the 14th day

post-constriction[24].SimilarlytoSetton-Avruj findings,aMBP

redistribution was seen in the distal stump of injured nerves,

suggesting an increased cellularphagocytosis and scatteringof

MBP debris. MBP redistribution maybe ongoing during

simul-taneous processes of distal Wallerian degeneration and nerve

regeneration.Noteworthy,axon-releasedMBPmaybedigestedby

metaloproteinase-9togenerateMBP84-104andMBP68-86

frag-mentpeptidesthatarestronglyimmunogenic,activatingT-cells

andcausingT-cell-mediatedmechanicalallodynia[25].Our

pre-vious[6]andcurrentfindings suggestthatGBP-induced myelin

debrisremovalfromtheinjurednervesiteandbetterregenerating

axonscouldbebeneficialtoimproveneuropathicpainbyreducing

MBPdigestedfragmentsofthenervemillieu.

MacrophagesandSchwanncellsbothcooperateduringmyelin

degeneration,removingmyelinandaxondebristhatmayfacilitate

nerveregeneration[26].Inaddition,accordingtoHall(1978),rapid

Schwanncellproliferation(3–4dayspost-nerveinjury)iskey

fac-tortopromoteaxonalregeneration.Removalofmyelindebrisby

macrophage-likeactivatedcellsisanimportantfactor

beneficiat-ingnerverecoveryaftersciaticnerveconstriction,asmyelindebris

couldbeinhibitorytonerveregeneration, sinceseveral

myelin-associatedinhibitorsofaxonregenerationhavebeenfoundinthe

peripheralmyelin[27,28].

Onestudyhasfoundnonerveregenerativeeffectwithchronic

injectedpregabalin,aGBPanalogous,(10mg/kgbydaily

subcuta-neousinjection)atthe21thdayfollowingsciaticnervecrush[29],

thismaybeduetoadifferentdoseused.Inlightofourfindings,

Machadoetal.havedocumentedbenefitsofa highdoseoforal

GBP(300mg/kg)inimprovingtheareaanddensityofmyelinated

fibers30daysfollowingstretch-inducednerveinjuryinWistarrats

[30].

Morestudiesarewarrantedtoappreciate inmoredetail the

mechanisms,time-courseandfinehistologyofmyelinremovaland

remodelingduringGBPpro-myelinationeffectsintheirassociation

withtheameliorationofneuropathicpain.

5. Conclusion

In summary, altogether our findings reinforce the analgesic

effectsofGBPandsuggestabeneficialroleofGBPonnerve

mor-phologyfollowingsciaticnerveinjury,throughmodulationofMBP

expressionandmyelinremodeling.

Funding

ThisstudywassupportedbyFUNCAPandCNPq.

References

[1]C.Perez,A.Navarro,M.T.Saldana,M.Figueras-Balsells,M.Munoz-Tuduri,J. Rejas,Costsavingsassociatedwithearlyinitiationofpregabalininthe managementofperipheralneuropathicpain,Clin.J.Pain29(2013)471–477.

[2]Y.B.Martin,G.Herradon,L.Ezquerra,Uncoveringnewpharmacological targetstotreatneuropathicpainbyunderstandinghowtheorganismreacts tonerveinjury,Curr.Pharm.Des.17(2011)434–448.

[3]J.M.Zakrzewska,Medicalmanagementoftrigeminalneuropathicpains, ExpertOpin.Pharmacother.11(2010)1239–1254.

(7)

[5]T.Mixcoatl-Zecuatl,F.J.Flores-Murrieta,V.Granados-Soto,Thenitric oxide-cyclicGMP-proteinkinaseG-K+channelpathwayparticipatesinthe antiallodyniceffectofspinalgabapentin,Eur.J.Pharmacol.531(2006)87–95.

[6]C.C.Camara,H.F.Ramos,A.P.daSilva,C.V.Araujo,A.S.Gomes,M.L.Vale,A.L. Barbosa,R.A.Ribeiro,G.A.Brito,C.M.Costa,R.B.Oria,Oralgabapentin treatmentaccentuatesnerveandperipheralinflammatoryresponses followingexperimentalnerveconstrictioninWistarrats,Neurosci.Lett.556 (2013)93–98.

[7]M.Simons,J.Trotter,Wrappingitup:thecellbiologyofmyelination,Curr. Opin.Neurobiol.17(2007)533–540.

[8]G.J.Bennett,Y.K.Xie,Aperipheralmononeuropathyinratthatproduces disordersofpainsensationlikethoseseeninman,Pain33(1988)87–107.

[9]C.Sommer,A.Lalonde,H.M.Heckman,M.Rodriguez,R.R.Myers,Quantitative neuropathologyofafocalnerveinjurycausinghyperalgesia,J.Neuropathol. Exp.Neurol.54(1995)635–643.

[10]C.J.LaBuda,P.J.Little,Pharmacologicalevaluationoftheselectivespinalnerve ligationmodelofneuropathicpainintherat,J.Neurosci.Methods144(2005) 175–181.

[11]V.Kayser,D.Christensen,Antinociceptiveeffectofsystemicgabapentinin mononeuropathicrats,dependsonstimuluscharacteristicsandleveloftest integration,Pain88(2000)53–60.

[12]M.I.Azevedo,A.F.Pereira,R.B.Nogueira,F.E.Rolim,G.A.Brito,D.V.Wong,R.C. Lima-Junior,R.R.deAlbuquerque,M.L.Vale,Theantioxidanteffectsofthe flavonoidsrutinandquercetininhibitoxaliplatin-inducedchronicpainful peripheralneuropathy,Mol.Pain9(2013)53.

[13]S.J.Flatters,G.J.Bennett,Ethosuximidereversespaclitaxel-and

vincristine-inducedpainfulperipheralneuropathy,Pain109(2004)150–161.

[14]H.C.Pan,D.Y.Yang,Y.C.Ou,S.P.Ho,F.C.Cheng,C.J.Chen,Neuroprotective effectofatorvastatininanexperimentalmodelofnervecrushinjury, Neurosurgery67(2010)376–388.

[15]C.P.Setton-Avruj,J.B.Aquino,C.J.Goedelman,E.F.Soto,M.J.Villar,P0and myelinbasicprotein-likeimmunoreactivitiesfollowingligationofthesciatic nerveintherat,Neurochem.Res.27(2002)1293–1303.

[16]R.C.Kupers,D.Nuytten,M.DeCastro-Costa,J.M.Gybels,Atimecourse analysisofthechangesinspontaneousandevokedbehaviourinaratmodel ofneuropathicpain,Pain50(1992)101–111.

[17]L.M.Batista,I.M.Batista,J.P.Almeida,C.H.Carvalho,S.B.Castro-Costa,C.M. Castro-Costa,Preemptiveanalgesiceffectoflidocaineinachronic neuropathicpainmodel,Arq.Neuropsiquiatr.67(2009)1088–1092.

[18]C.M.DeCastro,S.P.De,J.Gybels,H.J.Van,Adjuvant-inducedarthritisinrats:a possibleanimalmodelofchronicpain,Pain10(1981)173–185.

[19]H.A.Bagriyanik,N.Ersoy,C.Cetinkaya,E.Ikizoglu,D.Kutri,T.Ozcana,L.G. Kamanga,M.Kiray,Theeffectsofresveratrolonchronicconstrictioninjuryof sciaticnerveinrats,Neurosci.Lett.561(2014)123–127.

[20]H.Gustafsson,K.Flood,O.G.Berge,E.Brodin,L.Olgart,C.O.Stiller,Gabapentin reversesmechanicalallodyniainducedbysciaticnerveischemiaand formalin-inducednociceptioninmice,Exp.Neurol.182(2003)427–434.

[21]J.Hendrich,A.T.VanMinh,F.Heblich,M.Nieto-Rostro,K.Watschinger,J. Striessnig,J.Wratten,A.Davies,A.C.Dolphin,Pharmacologicaldisruptionof calciumchanneltraffickingbythealpha2deltaligandgabapentin,Proc.Natl. Acad.Sci.U.S.A105(2008)3628–3633.

[22]H.L.Pan,J.C.Eisenach,S.R.Chen,Gabapentinsuppressesectopicnerve dischargesandreversesallodyniainneuropathicrats,J.Pharmacol.Exp.Ther. 288(1999)1026–1030.

[23]A.Asipu,G.E.Blair,Regulationofmyelinbasicprotein-encodinggene transcriptioninratoligodendrocytes,Gene150(1994)227–234.

[24]C.P.Setton-Avruj,J.B.Aquino,C.J.Goedelman,E.F.Soto,M.J.Villar,P0and myelinbasicprotein-likeimmunoreactivitiesfollowingligationofthesciatic nerveintherat,Neurochem.Res.27(2002)1293–1303.

[25]H.Liu,S.A.Shiryaev,A.V.Chernov,Y.Kim,I.Shubayev,A.G.Remacle,S. Baranovskaya,V.S.Golubkov,A.Y.Strongin,V.I.Shubayev,Immunodominant fragmentsofmyelinbasicproteininitiateTcell-dependentpain,J. Neuroinflammation.9(2012)119.

[26]K.Hirata,H.Mitoma,N.Ueno,J.W.He,M.Kawabuchi,Differentialresponseof macrophagesubpopulationstomyelindegradationintheinjuredratsciatic nerve,J.Neurocytol.28(1999)685–695.

[27]S.Shim,G.L.Ming,Rolesofchannelsandreceptorsinthegrowthconeduring PNSaxonalregeneration,Exp.Neurol.223(2010)38–44.

[28]M.E.Vargas,B.A.Barres,WhyisWalleriandegenerationintheCNSsoslow? Annu.Rev.Neurosci.30(2007)153–179.

[29]E.L.Whitlock,A.Moradzadeh,D.A.Hunter,S.E.Mackinnon,Pregabalindoes notimpactperipheralnerveregenerationaftercrushinjury,J.Reconstr. Microsurg.23(2007)263–268.

Imagem

Fig. 1. Effect of chronic gabapentin (GBP) treatment on scratching (A, B), biting (C, D) behaviors and on von Frey’s pressure stimulus (E, F), and cold acetone (G, H) testing of the ipsilateral hind paw in CCSN-rats on either the 5 ◦ or 15th day

Referências

Documentos relacionados

O processo de aposentadoria afigura-se como um fenômeno multifacetado que ocasiona transformações em diferentes esferas da vida, abrangendo desde a identidade

Key words: Allodynia; Neuropathic pain; Neuronal nitric oxide synthase; Peripheral neuropathy; Sciatic nerve transection; Spinal

Entre os anos de 1970 e 2016 os filmes com grande público (acima de 500.000 espectadores) foram predominantemente dirigidos por homens (98%). Sequer um diretor não branco

Intentou identificar e analisar possibilidades de colaboração entre professores de Design (integrantes do Departamento de Design da Univille) e artesãs dos projetos que

Chronic constriction injury (CCI) of sciatic nerve resulted in significant development of noxious thermal hyperalgesia, indicated by decrease in left hind paw

In the present study, Vernonia cinerea attenuated chronic constriction injury of sciatic nerve induced behavioral [i.e., heat (paw and tail) hyperalgesia, cold chemical

Biochemically, the tissue thio-barbituric acid reactive species, super-oxide anion content (markers of oxidative stress) and total calcium levels were measured. Chronic

Known lncRNA gene rno-Cntnap2 and novel lncRNA AC111653.1 were involved in neuropathic pain of DRGs after spared sciatic nerve injury.. They contributed to peripheral nerve