• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.26 número2

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.26 número2"

Copied!
4
0
0

Texto

(1)

RevistaBrasileiradeFarmacognosia26(2016)180–183

w ww.e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Antileishmanial

metabolites

from

Lantana

balansae

Eliana

M.

Maldonado

a,b

,

Efrain

Salamanca

c

,

Alberto

Giménez

c

,

Olov

Sterner

a,∗

aCentreforAnalysisandSynthesis,LundUniversity,Lund,Sweden

bCentrodeTecnologíaAgroindustrial,SanSimónUniversity,Cochabamba,Bolivia

cInstitutodeInvestigacionesFármacoBioquímicas(IIFB),SanAndrésUniversity,LaPaz,Bolivia

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received5March2015 Accepted9November2015 Availableonline27January2016

Keywords:

Flavonoids

Lantanabalansae

Leishmaniaamazonensis

L.braziliensis

12-oxo-phytodienoicacid

a

b

s

t

r

a

c

t

Elevencompounds,12-oxo-phytodienoicacid(1),persicogenin(2),eriodictyol3′,4,7-trimethylether

(3), phytol (4), spathulenol (5), 4-hydroxycinnamic acid (6), onopordin(7), 5,8,4′-trihydroxy-7,3

-dimethoxyflavone(8),quercetin(9),jaceosidin(10),and8-hydroxyluteolin(11),wereisolatedfroman ethanolextractofLantanabalansaeBriq.,Verbenaceae,thatwasfoundtopossessantileishmanial activ-ity.ThestructuresofthecompoundsweredeterminedbyNMRspectroscopyandHRmassspectrometry, and1,2,3,7,8and9wereinvestigatedforantiprotozoalactivitytowardpromastigotesofLeishmania amazonensisandLeishmaniabraziliensis.Compound1wasshowntobethemostpotent,withtheIC50

values2.0␮MtowardL.amazonensisand0.68␮MtowardL.braziliensis,althoughlesspotentthanthe positivecontrolAmphotericinB.Allcompoundshavebeenreportedpreviously,butthisisthefirstreport oftheisolationofacyclopentenonefattyacid(1)andflavanones(2and3)fromaLantanaspecies.

©2016SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

Theknowledgeof thetraditional usesof plants totreat dif-ferent conditions has not only been helpful in the search for newbiologicallyactivecompounds,butalsocontributedto pre-servetheinformationobtaineddirectlyfromthepeoplelivingin isolatedruralcommunities.Basedonsuchknowledge,extensive phytochemicalstudiesofdifferentLantanaspecies,particularlyL. camara,have ledtotheidentificationoflantadenes(pentacyclic triterpenoids), flavonoids and phenylpropanoids as the charac-teristicsecondarymetabolitesofthisspecies.Thebiologicaland pharmacologicalevaluation ofcrude extracts,essential oils and isolatedcompoundshaveshownthattheypossessabroadrange ofbiologicalactivities,forexampleantiprotozoal(antiplasmodial, antimalarial,leishmanicidal),antiviral,antioxidant, antiprolifera-tiveandcytotoxicactivities(Ghisalberti,2000;Grace-Lynnetal., 2012;SousaandCosta,2012).

LantanabalansaeBriq.,Verbenaceae,isaperennialshrubwitha pungentodorthatgrowsinthemountainregionofCochabamba, Bolivia, where it is locally known as “k’ichita”. An infusion of freshleavesofL.balansae isusedin thetraditionalmedicineto treatdigestivedisordersandmusclespasms(personal communi-cationwithlocalpeoplewheretheplantwascollected).Previous

∗ Correspondingauthor.

E-mail:olov.sterner@science.lu.se(O.Sterner).

studiesofL.balansaehavereportedtheantimicrobialactivityof themethanolextract(Salvatetal.,2004)andthechemical com-positionofitsessentialoil(DeVianaetal.,1973;SenaFilhoetal., 2012).Aspartofoursearchforbioactivesecondarymetabolites fromthenativefloraofBolivia,anethanolextractofL.balansaewas assayedforleishmanicidalactivitytowardLeishmania amazonen-sisandLeishmaniabraziliensis.Astheextractdisplayedsignificant activitytowardbothspeciesofLeishmaniaitwasselectedforamore detailedstudy.Herein,wewishtoreportthesecondarymetabolites isolatedfromL.balansaeaswellastheleishmanicidalactivitiesof sixmetabolites.

Materialsandmethods

General

1Dand2DNMR spectrawererecordedatroomtemperature withaBrukerAvanceII400oraBrukerAvance500 spectrome-ter.Thechemicalshifts(ı)arereportedinppmrelativetosolvent signals(ıH7.16andıC128.0forC6D6,ıH2.05andıC 206.0for acetone-d6,andıH2.49andıC39.5forDMSO-d6),whilethe cou-plingconstants(J)aregiveninHz.HR-ESI-MSexperimentswere performedwithaWatersQ-TOFMicrosystemspectrometer,using H3PO4forcalibrationandasinternalstandard.Vacuumliquid chro-matography(VLC)separationswerecarriedoutonMercksilicagel 60G(Merck),whilecolumnchromatography(CC)wasperformed usingsilicagel60(230–400mesh,Merck)andgelpermeationon

http://dx.doi.org/10.1016/j.bjp.2015.11.007

(2)

E.M.Maldonadoetal./RevistaBrasileiradeFarmacognosia26(2016)180–183 181

SephadexLH-20(GE-Healthcare).AnalyticalTLCplateswere visu-alizedwithUVlightat254nmandsprayingwithvanillinfollowed byheating.PreparativeTLC(PTLC)wasrunon20cm×20cm glass-coatedplates(1mmthickness,Analtech).

Plantmaterial

TheaerialpartsofLantanabalansaeBriq.,Verbenaceae,were collectednearIndependencia,Cochabamba,Boliviaatcoordinates 17◦11.17S6643.58Wandanelevationof2789m.Voucher

spec-imens,taxonomicallyidentifiedbyLic.ModestoZárate,arekeptat “HerbarioForestalMartínCárdenas”,Cochabamba,underaccession numberMZ-3946.

Extractionandisolation

The air-dried and ground leavesand flowers of L. balansae (1308g) wereextractedtwiceatroomtemperatureby macera-tionin95%EtOHfor48h.Afterfiltrationthecombinedsolutions wereconcentratedunderreduced pressuretoyield136.6gof a darkresidue.Thecrudeorganicextractwassuspendedina mix-tureofH2O:MeOH(9:1,v/v,500ml)andextractedfourtimeswith 500mlhexanefollowedbytheextractionwithethylacetate(four times,500ml).Afterevaporationofthesolvents,thetwofractions (23.5and43.6g,respectively)werefractionated.VLC chromatog-raphy(hexane:CH2Cl21:0to0:1)ofthehexaneextractyieldedten majorfractions(A–J).FractionE(3.0g)wassubjectedtoVLC (hep-tane:EtOAc1:0to8:2)whichgaveninesubfractions(E1–E9).E4 (582.5mg)waspurifiedbyCConSephadexLH-20(CHCl3:MeOH 1:1)toyield4(39.3mg)and5(43.0mg).F(1.2g)wasfractionated by Sephadex LH-20CC (CHCl3:MeOH1:1) yielding six subfrac-tions(F1–F6).Compound10(3.3mg)wasobtainedpurefromF5 (53.0mg).G (485.0mg) and H (789.0mg) were fractionatedby SephadexLH-20CC(CHCl3:MeOH1:1)toyieldeleven(G1–G11) andfive(H1–H5)subfractions,respectively.Compound2(9.0mg) wasobtainedfromG8and3(7.7mg)fromG11.Sequential purifi-cationofH3(510.0mg)bySephadexLH-20CC(CHCl3:MeOH1:1) and VLC(PE:EtOAc1:0 to7:3) yielded 1(26.1mg). Purification of theEtOAC extract (8.0g)by VLC (CH2Cl2:Me2CO 1:0 to0:1) yieldedsevenmajorfractions(A–G).C(1.4g)wassubjectedtoCC onSephadexLH-20(MeOH)togivefifteensubfractions(C1–C15), fromwhichcompounds7(6.4mg),11(4.6mg)and9(4.1mg)were obtainedpurefromC10,C14andC15,respectively.C8andC11 werepurifiedbyPTLC(CH2Cl2:Me2CO8:2)togive8(3.3mg)and6 (5.2mg).

12-Oxo-phytodienoicacid(1) Colorlessoil;1H(400MHz,C

6D6)ıH2.14(H-2,2H,t,7.4Hz),1.50 (H-3,2H,tt,7,7Hz),1.10(H-4,2H,m),1.06(H-5,2H,m),1.06(H-6, 2H,m),1.13(H-7,2H,m),1.06(H-8,2H,m),2.26(H-9,1H,m),6.65 (H-10,1H,dd,5.8,2.6Hz),6.00(H-11,1H,dd,5.8,2.2Hz),1.85 (H-13,1H,ddd,7.8,4.5,2.2Hz),2.50(H-14a,H,m),2.34(H-14b,1H,m), 5.33(H-15,1H,dtt,11,7,1Hz),5.24(H-16,1H,dtt,11,7,1Hz),1.97 (H-17,2H,ddq,7,7,1Hz),0.89(H-18,3H,t,7.5Hz);13C(100MHz, C6D6)ıc179.9(C-1),34.1(C-2),24.9(C-3),29.2(C-4),29.7(C-5), 27.5(C-6),29.3(C-7),34.5(C-8),46.9(C-9),166.1(C-10),133.1 (C-11),209.8(C-12),51.5(C-13),28.5(C-14),125.9(C-15),133.8 (C-16),20.9(C-17),14.4(C-18);HR-ESI-MSm/z293.2148[M+H]+ (caldc.forC18H29O3293.2117);[␣D20]+60.7(c0.89,CDCl3).

Persicogenin(2)

Colorlessoil;1H(400MHz,C6D6)ı

H 4.70 (H-2,1H,dd,12.8, 3.1Hz),2.50(H-3a,1H,dd,17.1,12.8Hz),2.30(H-3b,1H,dd,17.1, 3.1Hz),6.21(H-6,1H,d,2.3Hz),6.08(H-8,1H,d,2.3Hz),6.62 (H-2′,1H,d,2.1Hz),6.35(H-5,1H,d,8.4Hz),7.03(H-6,1H,dd,8.4,

2.1Hz),3.09(OMe-7,3H,s),3.08(OMe-4′,3H,s),12.84(OH-5,1H,

brs),5.47(OH-3′,1H,s);13C(100MHz,C

6D6)ıc79.0(C-2),43.4 (C-3),196.2(C-4),165.2(C-5),95.3(C-6),168.3(C-7),94.5(C-8), 163.3(C-9),103.8(C-10),132.5(C-1′), 113.3(C-2),146.5(C-3),

147.0(C-4′),110.1(C-5),118.0(C-6),55.1(OMe-7),55.3(OMe-4);

HR-ESI-MSm/z317.1046[M+H]+(caldc.forC

17H17O6317.1025).

Eriodictyol3′,4,7-trimethylether(3) Colorlessoil;1H(400MHz,C

6D6)ıH4.76(H-2,1H,dd,13.1, 2.9Hz),2.62(H-3a,1H,dd,17.1,13.1Hz),2.39(H-3b,1H,dd,17.1, 2.9Hz),6.25(H-6,1H,d,2.2Hz),6.16(H-8,1H,d,2.2Hz),6.69(H-2′,

1H,d,2Hz),6.52(H-5′,1H,d,8.8Hz),6.68(H-6,1H,dd,9,2Hz),3.07

(OMe-7,3H,s),3.36(OMe-4′,3H,s),3.40(OMe-5,3H,s),12.91

(OH-5,1H,brs);13C(100MHz,C

6D6)ıc79.7(C-2),43.9(C-3),196.6(C-4), 165.7(C-5),95.6(C-6),168.6(C-7),94.9(C-8),163.7(C-9),104.2 (C-10),131.8(C-1′),111.0(C-2),150.8(C-3),150.6(C-4),112.2

(C-5′),119.4(C-6), 55.4(OMe-7), 55.9(OMe-4), 55.9(OMe-5);

HR-ESI-MSm/z331.1207[M+H]+(caldc.forC

18H19O6331.1182).

Onopordin(7)

Yellowpowder;1H(500MHz,Acetone-d

6)ıH6.58(H-3,1H,s), 6.60(H-6,1H,s),7.50(H-2′,1H,d,2.2Hz),6.99(H-5,1H,d,8.3Hz),

7.47(H-6′,1H,dd,8.3,2.2Hz),3.87(OMe-8,3H,s),12.25(OH-5,1H,

brs);13C(125MHz,acetone-d

6)ıc165.4(C-2),103.8(C-3),183.6 (C-4),157.7(C-5),94.8(C-6),154.0(C-7),132.2(C-8),154.1(C-9), 105.8(C-10),123.9(C-1′),114.2(C-2),146.6(C-3),150.3(C-4),

116.7(C-5′),120.2(C-6),60.8(OMe-8);HR-ESI-MSm/z331.0685

[M+H]+(caldc.forC

16H13O7317.0661).

5,8,4′-Trihydroxy-7,3-dimethoxyflavone(8) Yellowpowder;1H(500MHz,acetone-d

6)ıH6.71(H-3,1H,s), 6.64(H-6,1H,s),7.65(H-2′,1H,d,2.0Hz),7.01(H-5,1H,d,8.3Hz),

7.62(H-6′,1H,dd,8.3,2.0Hz),3.87(OMe-7,3H,s),3.99(OMe-3,3H,

s),13.25(OH-5,1H,brs);13C(125MHz,acetone-d

6)ıc165.4(C-2), 103.9(C-3),183.7(C-4),157.6(C-5),94.8(C-6),132.1(C-7),153.9 (C-8),157.0(C-9),105.8(C-10),123.7(C-1′), 110.5(C-2), 148.9

(C-3′),151.5(C-4),116.4(C-5),121.4(C-6),60.7(OMe-7),56.6

(OMe-3′);HR-ESI-MSm/z331.0826[M+H]+ (caldc.for C17H15O7 331.0818).

Quercetin(9)

Yellowpowder;1H(500MHz,Acetone-d

6)ıH6.26(H-6,1H,d, 2.0Hz),6.53(H-8,1H,d,2.0Hz),7.83(H-2′,1H,d,2.2Hz),6.99

(H-5′,1H,d,8.5Hz),7.69(H-6,1H,dd,8.5,2.2Hz),12.17(OH-5,1H,

brs);13C(125MHz,acetone-d

6)ıc164.9(C-2),136.7(C-3),176.6 (C-4),162.3(C-5),99.1(C-6),146.9(C-7),94.4(C-8),157.8(C-9), 104.2(C-10),123.8(C-1′),115.8(C-2),145.8(C-3),148.3(C-4),

116.3(C-5′),121.5(C-6);HR-ESI-MSm/z303.0546[M+H]+(caldc. forC15H11O7303.0505).

Leishmanicidaldetectionassay

Theantileishmanial assaywasperformedusinga colorimet-ricmethod-XXT(Salamancaetal.,2008).Briefly,theactivitywas measuredinvitro oncultures of theLeishmania parasitein the promastigote forms, of complex L. amazonensis (clon 1: Lma, MHOM/BR/76/LTB-012)andcomplexL.braziliensis(strandM2904 C192RJA)thatwerecultivatedat26◦CinSchneidermedium(pH

6.8)supplementedwithinactivated(byheatingto56◦Cfor30min)

bovinecalfserum(10%).Parasitesinlogarithmicphaseofgrowth, ataconcentrationof1×106parasites/ml,wereseededinthewells of96-wellplates.Solutionsofcompoundstobeassessedat con-centrationrangeof0.09–100␮g/mlwereadded.DMSO(1%)and amphotericinB(0.5␮g/ml)wereusedasnegativeandpositive con-trolsduringtheevaluations.Allassayswereperformedintriplicate andthemicrowellplateswereincubatedfor72hat26◦C.After

(3)

182 E.M.Maldonadoetal./RevistaBrasileiradeFarmacognosia26(2016)180–183

withPMS(Sigma–Aldrich,0.06mg/ml)wasadded(50␮l/well),and theplateswerekeptat26◦Cforanother4h.Theopticaldensity

ofeachwellwasdeterminedwithaStatFax(Model2100series platereader)at450nm,andtheIC50valueswerecalculatedusing Microsoft’sExcel2000program.

Resultsanddiscussion

Asdescribed in the Experimental partof the crude ethanol extractafterliquid–liquidpartitionyieldedthehexaneandethyl acetate fractions,from which the elevencompounds were iso-latedandidentifiedas:12-oxo-phytodienoicacid(1)(Bohlmann et al., 1983), persicogenin (2) (Pisutthanan et al., 2006), eri-odictyol 3′,4,7-trimethyl ether (3) (Fernandez et al., 1988),

phytol (4) (Hasan et al., 1991), spathulenol (5) (Vieira et al., 2013), 4-hydroxycinnamic acid (6) (Pan and Lundgren, 1995), onopordin(7)(Reynaud and Raynaud,1984), 5,8,4′

-trihydroxy-7,3′-dimethoxyflavone(8)(WhalenandMabry,1979),quercetin

(9)(Slowingetal.,1994),jaceosidin(10)(Ulubelenetal.,1979), and8-hydroxyluteolin(11)(Taskovaetal.,2008).Thepresenceof terpenes(4and5)andflavonoids(7–11)inthisspeciesisin agree-mentwithpreviousstudiesofthegenus,however,thisisthefirst reportoftheisolationofacyclopentenonefattyacid(1)andthe flavanones(2and3)fromaLantanaspecies.Alargenumberof sec-ondarymetaboliteshavebeenreportedfromthegenusLantana, andthishasbeenexcellentlyreviewedbySousaandCosta(2012). Thestructuresofallisolatedcompoundswereelucidatedbya combinationofhighresolutionmassspectrometryandhighfield NMRspectroscopy.ForallcompoundsCOSY,NOESY,HMQCand HMBC2DNMRspectrawererecordedandanalyzed.Inthecase thattheNMRdatapreviouslywasreportedinthesamesolvent, thecomparisonwiththepublisheddatawasalsousedtoidentify thecompounds.

Phytooxylipins(Blee,1998)maypossesspotentphytohormone activities(Böttcher and Pollmann, 2009;Pollmann, 2009).They arederivedfromoxidizedC16andC18fattyacidprecursorsthat areabundantinthecellularmembranesofhigherplants(Gfeller etal.,2010),bytheoctadecanoidpathway(Mithöferetal.,2004). Phytooxylipinsplayanimportantroleinplantresponseto vari-ousenvironmentalstressconditions,andrecentlyitwasshown that 12-oxo-phytodienoic acid (1) inhibits the proliferation of humanbreast cancercells by targeting cyclinD1 (Altiok et al., 2008).Flavonoidsarethelargestgroupofnaturalphenolic com-poundsinhigherplants,andmanystudieshaveshownthatthey

Table1

InvitroleishmanicidalactivityonpromastigoteformsofLeishmaniassp.

IC50(␮g/ml)a

L.amazonensis L.braziliensis

EtOHextract 6.0±0.2 4.9±1.2

Hexanefraction 6.1±1.3 1.3±0.3

EtOAcfraction 9.9±0.5 5.3±1.0

1 0.60±0.1(2.0␮M) 0.20±0.01(0.68␮M)

2 >100 90±4.2(285␮M)

3 >100 >100

7 22±4.2(70␮M) 16±0.46(51␮M)

8 14±1.81(42␮M) 2.7±0.2(8.2␮M)

9 20±0.77(66␮M) 41±2.7(136␮M)

Controlb 0.21±0.06(0.23␮M) 0.08±0.04(0.087␮M)

aDataareexpressedasmeanstandarddeviationofthreedeterminations. bAmphotericinBwasusedaspositivecontrol.

exhibitabroadrangeofbiologicalactivities.Examplesare anti-inflammatory, antitumor,antibacterial, antileishmanialand free radicalscavengingactivities(Greccoetal.,2010;Mittraetal.,2000; SamuelssonandBohlin,2010).

ThehexaneandethylacetateextractsofL.balansaeboth pos-sessedactivitytowardthepromastigotesofL.amazonensisandL. braziliensis,withIC50valuesbetween1and10␮g/ml(seeTable1 fordetails).Duetolimitedtestingcapacitywedecidedto evalu-atetheantileishmanialactivityofaselection ofthecompounds obtainedfromtheseextracts,compounds1–3and 7–9,andthe resultsarepresentedinTable1.Themostpotentcompoundwas foundtobe1. Althoughit is less potentcompared tothe pos-itive control amphotericin B, the antileishmanial activity of 1

is neverthelessinteresting withthe IC50 values 2.0␮M toward L.amazonensisand0.68␮MtowardL.braziliensis.The cyclopen-tenonemoietyof1possessingan␣,␤-unsaturatedcarbonylgroup

(4)

E.M.Maldonadoetal./RevistaBrasileiradeFarmacognosia26(2016)180–183 183

andflavones/flavonolsisthelackoftheC-2/C-3doublebondinthe former,affectingboththemolecularformaswellasthe conjuga-tion.However,withoutdetailedinformationaboutthemechanism of action it isdifficult torationalize anySAR’s. Compound8 is slightly morepotentcompared to7and 9,especially towardL. braziliensis.Ofthethree,8 isthemostlipophilicwhich maybe importantforitsabilitytoreachthetarget.3-Methoxyquercitin haspreviouslybeenshowntobemorepotenttowardpromastigote formsofL.amazonensisthanquercetin(Taleb-Continietal.,2004), sothisappearstobeatrend.Theinvitroandinvivoantileishmanial activityofquercetin(9)hasbeenextensivelystudy,andtheresults presentedhereareinagreementwithpreviousdata(daSilvaetal., 2012).

Authors’contributions

EMMhavecontributedtoplantcollection,carriedoutthe lab-oratorywork,analysisoftheNMRdataandwrotethemanuscript. ESandAGperformedthebiologicalstudies.OSsupervisedthe lab-oratorywork,interpretedtheNMRdataandwrotethemanuscript. Alltheauthorshavereadthefinalmanuscriptandapprovedthe submission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

Thefinancial support of theSwedish International Develop-mentAgency(SIDA)inaframeofcollaborationagreementbetween LundUniversity (Sweden)and SanSimónUniversity (Bolivia)is gratefullyacknowledged.WethanktoLic.ModestoZáratefor iden-tifiyingtheplant.

References

Altiok,N.,Mezzadra,H.,Patel,P.,Koyuturk,M.,Altiok,S.,2008.Aplantoxylipin, 12-oxo-phytodienoicacid,inhibitsproliferationofhumanbreastcancercells bytargetingcyclinD1.BreastCancerRes.Treat.109,315–323.

Blee,E.,1998.Phytooxylipinsandplantdefensereactions.Prog.LipidRes.37,33–72. Bohlmann, F.,Jakupovic,J.,Ahmed, M.,Schuster,A., 1983. Sesquiterpene lac-tonesandotherconstituentsfromSchistostephiumspecies.Phytochemistry22, 1623–1636.

Böttcher, C., Pollmann, S., 2009. Plant oxylipins: plant responses to 12-oxo-phytodienoic acid are governed by its specific structural and functional properties.FEBSJ.276,4693–4704.

daSilva,E.R.,Maquiaveli,C.C.,Magalhães,P.P.,2012.Theleishmanicidalflavonols quercetinandquercitrintargetLeishmania(Leishmania)amazonensisarginase. Exp.Parasitol.130,183–188.

DeViana,M.E.L.,Talenti,E.C.J.,Retamar,J.A.,1973.EssentialoilsofLantanabalansae. EssenzeDeriv.Agrum.43,299–306.

Fernandez,C.,Fraga,B.M.,Hernandez,M.G.,Arteaga,J.M.,1988.Flavonoidaglycones fromsomeCanaryIslandsspeciesofSideritis.J.Nat.Prod.51,591–593.

Gfeller,A.,Dubugnon,L.,Liechti,R.,Farmer,E.E.,2010.Jasmonatebiochemical path-way.Sci.Signal.3,1–7,http://dx.doi.org/10.1126/scisignal.3109cm3. Ghantous,A.,Gali-Muhtasib,H.,Vuorela,H.,Saliba,N.A.,Darwiche,N.,2010.What

madesesquiterpenelactonesreachcancerclinicaltrials?Drug.Discov.Today 15,668–678.

Ghisalberti,E.L.,2000.LantanacamaraL.(Verbenaceae).Fitoterapia71,467–486. Grace-Lynn,C.,Darah,I.,Chen,Y.,Latha,L.Y.,Jothy,S.L.,Sasidharan,S.,2012.Invitro

antioxidantactivitypotentialoflantadeneA,apentacyclictriterpenoidof Lan-tanaplants.Molecules17,11185–11198.

Grecco,S.S.,Reimao,J.Q.,Tempone,A.G.,Sartorelli,P.,Romoff,P.,Ferreira,M.J.P., Favero,O.A.,Lago,J.H.G.,2010.Isolationofanantileishmanialand antitry-panosomalflavanonefrom theleavesofBaccharisretusa DC.(Asteraceae). Parasitol.Res.106,1245–1248.

Hasan,M.,Burdi,D.K.,Ahmad,V.U.,1991.DiterpenefattyacidesterfromLeucas nutans.J.Nat.Prod.54,1444–1446.

Mithöfer,A.,Maitrejean,M.,Boland,W.,2004.Structuralandbiologicaldiversity ofcyclicoctadecanoids,jasmonates,andmimetics.J.PlantGrowthRegul.23, 170–178.

Mittra, B., Saha, A., Chowdhury, A.R., Pal, C., Mandal,S., Mukhopadhyay, S., Bandyopadhyay,S.,Majumder,H.K.,2000.Luteolin,anabundantdietary com-ponentisapotentanti-leishmanialagentthatactsbyinducingtopoisomerase II-mediated kinetoplast DNA cleavage leading to apoptosis. Mol. Med.6, 527–541.

Pan,H.,Lundgren,L.N.,1995.PhenolicextractivesfromrootbarkofPiceaabies. Phytochemistry39,1423–1428.

Pisutthanan,N.,Liawruangrath,B.,Liawruangrath,S.,Bremner,J.B.,2006.Anew flavonoidfromChromolaenaodorata.Nat.Prod.Res.20,1192–1198.

Pollmann,S.,2009.Plantoxylipins:theversatilefunctionsofcyclicoctadecanoids andjasmonates.FEBSJ.276,4665.

Reynaud,J.,Raynaud,J.,1984.PresenceofonopordininDoronicumgrandiflorumLam. (Compositae).Pharmazie39,126.

Salamanca,E.C.,Ruiz,G.,Ticona,J.C.,Giménez,A.,2008.Métodocolorimétrico-XXT: comoevaluacióndealtorendimientodesustanciasconactividadleishmanicida. Biofarbo16,21–27.

Salvat,A.,Antonacci,L.,Fortunato,R.H.,Suarez,E.Y.,Godoy,H.M.,2004. Antimi-crobialactivityinmethanolicextractsofseveralplantspeciesfromnorthern Argentina.Phytomedicine11,230–234.

Samuelsson,G.,Bohlin,L.,2010.DrugsofNaturalOrigin:ATreatiseof Pharmacog-nosy.SwedishPharmaceuticalPress,Stockholm,Sweden.

SenaFilho,J.G.,Rabbani,A.R.C.,dos,S.S.T.R.,Cruz,D.S.A.V.,Souza,I.A.,Santos,M.J.B.A., Romariode,J.J.,Nogueira,P.C.D.L.,Duringer,J.M.,2012.Chemicaland molecu-larcharacterizationoffifteenspeciesfromtheLantana(Verbenaceae)genus. Biochem.Syst.Ecol.45,130–137.

Slowing,K.,Sollhuber,M.,Carretero,E.,Villar,A.,1994.Flavonoidglycosidesfrom Eugeniajambos.Phytochemistry37,255–258.

Sousa,E.O.,Costa,J.G.M.,2012.GenusLantana:chemicalaspectsandbiological activities.Rev.Bras.Farmacogn.22,1115–1180.

Taleb-Contini,S.H.,Salvador,M.J.,Balanco,J.M.F.,Albuquerque,S.,deOliveira,D.C.R., 2004.Antiprotozoaleffectofcrudeextractsandflavonoidsisolatedfrom Chro-molaenahirsuta(asteraceae).Phytother.Res.18,250–254.

Tasdemir, D.,Kaiser,M., Brun, R., Yardley, V., Schmidt,T.J., Tosun,F., Ruedi, P.,2006.Antitrypanosomalandantileishmanialactivitiesofflavonoidsand theiranalogues:invitro,invivo,structure–activityrelationship,and quanti-tativestructure–activityrelationshipstudies.Antimicrob.AgentsChemother. 50,1352–1364.

Taskova, R.M., Kokubun,T., Grayer, R.J., Ryan, K.G., Garnock-Jones, P.J.,2008. FlavonoidprofilesintheHeliohebegroupofNewZealandVeronica (Plantagi-naceae).Biochem.Syst.Ecol.36,110–116.

Ulubelen,A.,Miski,M.,Neuman,P.,Mabry,T.J.,1979.FlavonoidsofSalviatomentosa (Labiatae).J.Nat.Prod.42,261–263.

Vieira, I.J.C.,Azevedo, O.D.A.,Jorgeanede,S.J., Braz-Filho,R.,Goncalves,M.D.S., Francisco, D.A.M., 2013. Hirtinone, a novel cycloartane-type triterpene and other compounds from Trichilia hirta L. (Meliaceae). Molecules 18, 2589–2597.

Referências

Documentos relacionados

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

This is the first report on the isolation and identification of endophytic bacteria from Jacaranda decurrens Cham.. Key words: Endophytic bacteria, Jacaranda decurrens

parts of Lippia species with partially known chemical compositions, four partition fractions, six compounds and a mixture of four interconverting flavanones previously isolated from

The constituents of the apolar fraction of fruit latex of Clusia species have been investigated for the first time and showed in all species, independent of the taxonomic

Tendo este facto em conta e após a revisão de vários estudos, a percentagem de doentes que após a cirurgia reconstrutiva do LCA com enxerto O-T-O apresenta Lachman negativo

28 Globalmente, os resultados obtidos neste trabalho, em particular para a linha celular 293 FLEX GFP, demonstram que o silenciamento sucessivo de HIF1, PDK1 e PDK3

Various studies have reported the chemical composition of essential oils of species of the genus Lantana collected in different places and origins.. Cited among

This study presented the first report of the isolation, genetic identification and phenotypic diversity of Rhizobium species associated with Phaseolus vulgaris