• Nenhum resultado encontrado

Magnesium oxide prepared via metal–chitosan complexation method : application as catalyst for transesterification of soybean oil and catalyst deactivation studies.

N/A
N/A
Protected

Academic year: 2021

Share "Magnesium oxide prepared via metal–chitosan complexation method : application as catalyst for transesterification of soybean oil and catalyst deactivation studies."

Copied!
7
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Journal

of

Power

Sources

j ou rn a l h o m e pa g e :w w w . e l s e v i e r . c o m / l o c a t e / j p o w s o u r

Magnesium

oxide

prepared

via

metal–chitosan

complexation

method:

Application

as

catalyst

for

transesterification

of

soybean

oil

and

catalyst

deactivation

studies

Gizelle

I.

Almerindo

a

,

Luiz

F.D.

Probst

a

,

Carlos

E.M.

Campos

b

,

Rusiene

M.

de

Almeida

c,∗

,

Simoni

M.P.

Meneghetti

c

, Mario

R.

Meneghetti

c

,

Jean-Marc

Clacens

d

,

Humberto

V.

Fajardo

e aDepartamentodeQuímica,UniversidadeFederaldeSantaCatarina,88040-900,FlorianópolisSC,Brazil

bDepartamentodeFísica,UniversidadeFederaldeSantaCatarina,88040-900,FlorianópolisSC,Brazil cInstitutodeQuímicaeBiotecnologia,UniversidadeFederaldeAlagoas,5702-970,MaceióAL,Brazil

dLaboratoiredeCatalyseenChimieOrganique(LACCO),UniversitédePoitiers,UMRCNRS6503,40AvenueduRecteurPineau,86022PoitiersCedex,France eDepartamentodeQuímica,UniversidadeFederaldeOuroPreto,35400-000,OuroPretoMG,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received17March2011

Receivedinrevisedform5May2011 Accepted12May2011

Available online 19 May 2011 Keywords: Magnesiumoxide Chitosan Ethanol Biodiesel

a

b

s

t

r

a

c

t

Asimplemethodtopreparemagnesiumoxidecatalystsforbiodieselproductionbytransesterification

reactionofsoybeanoilwithethanolisproposed.Themethodwasdevelopedusingametal–chitosan

complex.Comparedtothecommercialoxide,theproposedcatalystsdisplayedhighersurfaceareaand

basicityvalues,leadingtohigheryieldintermsoffattyacidethylesters(biodiesel).Thedeactivationof

thecatalystduetocontactwithCO2andH2Opresentintheambientairwasverified.Itwasconfirmed

thattheactivecatalyticsiteisahydrogenocarbonateadsorptionsite.

© 2011 Elsevier B.V.

1. Introduction

Magnesium oxide (MgO) is a potential catalyst for various reactions due to the unique basic character of its surface, as demonstrated by an isoelectric point of around 12 [1–7]. For thisreasonMgOcancatalyzethetransesterificationreactionsof vegetableoilstobiodieselwithshort-chainalcohols.Beinga het-erogeneouscatalyst,MgOcouldimprovethesynthesismethods byeliminatingtheadditionalcostsassociatedwithconventionally usedhomogeneouscatalysts[8–12].Inthisregard,the heteroge-neouscatalystsareeconomicallyandecologicallyimportantwhen comparedwithhomogeneouscatalystsbecausetheyare environ-mentallybenign,mucheasiertoseparatefromliquidproducts,they facilitatethepurificationstages,canbereused,arenon-corrosive, havehighthermalstabilityandpresentfewerdisposalproblems

[11].

Manytypesof heterogeneouscatalystsfor theproductionof biodieselcanbefoundintheliterature,forexample,alkalineearth oxidesandseveralalkalinemetalcompoundssupportedon alu-minaorzeolite[11].Manyofthesecatalystshavehighefficiency

∗ Correspondingauthor.Tel.:+558232141773;fax:+558232141384. E-mailaddress:rusiene@hotmail.com(R.M.deAlmeida).

andactivityinthetransesterificationreaction,however,under con-ditionsofhightemperatureandpressure,andwithlongreaction times.

Therefore,itisofinteresttoinvestigatethepossibilityof replac-ing the homogeneous base catalysts by solid base catalysts in transesterificationreactionsassociatedwithlowertemperatures andshorterreactiontimesthanthosenormallyfoundinthe lit-eratureforheterogeneouscatalysts.Intheliterature,highmethyl esteryieldswiththeuseofheterogeneouscatalystsarealso associ-atedwiththereactionoccurringathightemperatures(170–250◦C) andwithlongerreactiontimes,inacontinuousorbatchreactor

[8].However,publishedstudyshowedthatnanocrystallineMgO catalystscanbeusedeffectivelyasheterogeneouscatalystsinthe methylictransesterificationofvegetableoilsatlowtemperatures

[1].

Anotherimportantfactoristhepossibilitytostorethecatalysts andguaranteetheircatalyticactivityforimmediateuse.However, basecatalystscanlosetheiractivityoncontactwithambientairdue totheadsorptionofCO2andH2Oatthesurfaceofthesolidas

car-bonatesandhydroxylgroups[13].Granadosetal.[14]investigated theeffectofCO2 inairontheactivityofCaOinthe

transesterifi-cationofsunfloweroil.ThisCaOcatalystgraduallylostitsactivity becauseitssurfacesiteswerepoisonedbycontactwithCO2and

H2Oinair.However,theeffectsofH2OandCO2onthecatalytic

0378-7753© 2011 Elsevier B.V. doi:10.1016/j.jpowsour.2011.05.030

Open access under the Elsevier OA license.

(2)

propertiesofbasecatalystsandthedeactivationmechanismhave notbeenfullyinvestigated[15].

Morespecifically,shortchainalcohols(methanolorethanol)are normallyusedintheproductionofbiodiesel,however,few stud-iesinvolvingheterogeneouscatalysisintheproductionofethylic biodieselarefoundintheliterature[16].Ethanolhasseveral advan-tagescomparedtomethanol,whichisgenerallyobtainedfromraw materialsoffossilorigin,withlowtoxicity, producingbiodiesel witha greatercetaneindex and withgreater lubricity,but the mostimportantis probablyitsrenewable origin[17–19]. How-ever,ethanol is less reactive,requiring a greater excess of this alcoholtoobtainyieldssimilartothoseobtainedwithmethanol. Furthermore,longerreactiontimesarerequired,higher temper-atures,anhydridealcohol,andoilwithlowwatercontentforthe separationofglycerol[20].

TheobjectiveofthisstudywastoprepareMgOcatalystsforthe transesterificationreactionofsoybeanoilwithethanolforthe pro-ductionofbiodiesel.InthispaperweverifiedthepotentialofMgO asatransesterificationcatalyst,preparedusingametal–chitosan complexationmethod,andcomparedittothatofacommercial magnesiumoxide.Thedeactivationofthecatalystpreparedusing themethodhereproposedduetocontactwiththeCO2andH2O

presentinambientairwasalsoverified.

2. Experimental

2.1. Samplepreparationandcharacterization

FortheMgOextrudatepreparation,15.3gofchitosan(Aldrich) weredissolved in 300mLof CH3COOH solution (10%,v/v) and

31.8gofMg(NO3)2·6H2O(Vetec)weredissolvedindistilledwater.

Anaqueoussolutionofmagnesiumsalt(Mg)wasthenaddedto thepolymersolutionunderstirring.ThechitosanmonomertoMg molarratiowas1.5–2.0.TheMg–chitosansolutionwasaddedto aNH4OHsolution(50%,v/v)undervigorousstirring,intheform

ofextrudates,withaperistalticpump.Thegelextrudatesformed wereremovedfromtheNH4OHsolutionanddriedatambient

tem-peraturefor120h.TheMgOsamplewasobtainedbycalciningthe driedsamplesat550◦Cinairflowfor4hwithaheatingrateof 5◦Cmin−1.

Inthiscontext,theMgOpreparedasdescribedabovewas com-paredwithcommercialMgOobtainedfromRiedel-deHaën(99.9% purity).Theseweredesignatedasfreshcatalysts,sincethecatalytic testwascarriedoutimmediatelyaftercalcination.Inorderto ver-ifytheeffectofstorageonthedeactivationofthecatalystobtained usingthemethoddescribedabove,itwasexposedforaperiodof 180daysinambientairtoextendthecarbonationandhydration processes.ThiscatalystwascalledMgO(stored).

Infrared spectrawere obtainedfrom 400to 4000cm−1; the samples (2mg dried chitosan and Mg–chitosan samples) were mechanicallyblendedwith200mgofKBr.Thedatawererecorded usinganFTPerkin-Elmer16PCinfraredspectrophotometer.

The thermogravimetric analysis (TGA) was performed with a Shimadzu TGA-50 thermobalance using 11mg of sample (Mg–chitosan)withaheatingrateof10◦Cmin−1 andairflowof 50mLmin−1.

Samples were characterized by N2 adsorption/desorption

isothermsobtainedat thetemperatureof liquid nitrogenusing an automated physisorption instrument (Autosorb-1C, Quan-tachromeInstruments).Priortothemeasurements,thesamples wereoutgassedinavacuumat200◦Cfor2h.Specificsurfaceareas werecalculatedaccordingtotheBrunauer–Emmett–Teller(BET) method,andtheporesizedistributionswereobtainedaccording totheBarret–Joyner–Halenda(BJH)methodfromtheadsorption data.

Temperatureprogrammeddesorption(TPD)ofCO2

measure-mentswereperformedusingaQuantachromeChemBET3000. The crystalline structure of the dried powder sample was determinedbyX-raydiffraction(XRD)withaPanAnalytical diffrac-tometer (Xpert PRO model) using Cu K␣ (=1.5418 ˚A) as the incidentradiation,operatingat40kVand30mA.Tobetterdefine thestructuralparametersobtainedfromtheXRDpatternaRietveld analysisprocedurewasperformedusingtheGSASsoftware pro-gram and a starting model based on information given onthe ICSDcardnumber52026[21–23].Theaveragecrystallitesizeand microstrainwerecalculatedbysubtractingtheinstrumentalline broadeningcontributionusingtheyttriumoxidestandardandthe formalismpresentedbyLarsonandVonDreele[21].

Thesample morphology wasobserved onscanning electron micrographs,obtainedwithaPhilipsXL30scanningelectron micro-scopeoperatingatanacceleratingvoltageof20kV.

Thermogravimetricanalysiscoupledwithmassspectrometry (TG-MS)wereperformedonaSDTQ600apparatusfromTA Insru-mentscoupledbyaheatedcapillarycolumnwithaPrismaQMS200 massspectrometerfromBalzers.TomeasuretheamountofCO2

(m/z=44)andH2O(m/z=18)formed,thesampleswereheatedto

900◦C(heatingrate:10◦Cmin−1)underadriedair(100mLmin−1).

2.2. Catalytictest–transesterificationexperiments

Alltransesterification reactionswerecarriedoutin a250mL closedbatchreactorequippedwithatemperature-controlledbath, refluxcondenser and amagnetic stirreroperating at 1000rpm. Thereactionswerenormallyperformedat150◦Cduring3hwith ethanol:oil:catalystmolarratioof600:100:5.Soybeanoil (com-mercialgrade)wassuppliedbyBungeAlimentosS.Aandwasused asreceived.Afterofreaction,thereactionmixturewaswashed threetimeswithdistilledwaterandcentrifugedat5000rpmfor 10min.

Inordertoquantitativelyevaluatetheleachingofsolidbase catalystunderthereactingcondition,fattyacidethylesters frac-tionwassentforelementalanalysisviaflameatomicabsorption analysis(FLLA).

2.3. Analyticalprocedures

Thefattyacidethylesters(FAEEs)obtainedfromthe transester-ificationreactionweredeterminedbygaschromatographyusinga Varian3400CXinstrument,equippedwithacapillaryinjection sys-temoperatingat240◦C,withasplitratioof100:1andsamplesize of1␮L.AnapolarcapillarycolumnVF-1ms(FactorFour),with2.2m length,0.32mminternaldiameterand0.1mmfilmthickness,was employedandthecolumntemperatureprogramwas:initial tem-peratureof50◦C(1min),15◦Cmin−1to180◦C,7◦Cmin−1to230◦C and30◦Cmin−1to245◦C.Thedetectionsystemwasequippedwith aflameionizationdetector(FID)operatingat250◦C.Thecarriergas washighpurityhydrogen.

Theyield(%FAEEs)wasquantifiedinthepresenceoftricaprylin as the internal standard. Approximately0.15g of the products obtainedusingthetransesterificationproceduredescribedin Sec-tion2 wasweighedin a vial.Anamountof1mLof tricaprylin solution (0.01g/100mL hexane) was added. This solution was injectedintothechromatographicapparatusandthepeakareas ofthecompoundswereintegrated.

Each experiment was run twiceand thevalue obtained for eachsamplewastheaverageoftwoinjections.Thebiodieselyield (%FAEEs)wascalculatedasintheEq.(1).

%FAEEs= mtricaprylinA ABftricaprylin

(3)

where,mtricaprylinistheweightoftheinternalstandard,ABthepeak

areaofFAEEs,ftricaprylintheresponsefactor,Atricaprylinthepeakarea

oftheinternalstandard,andmsthesampleweight.

Thefreefattyacidsfoundinthesoybeanoil(characterizedas oleicacid,inthepercentagesgivenintheAOCSofficialmethodCa 5a-40)totaled0.1%.

3. Resultsanddiscussion

3.1. Samplecharacterization

Theinfrared spectraforchitosan (Cht)and theMg–chitosan composite(Mg–Cht)takenbeforethecalcinationprocess(Fig.1) wereanalysed inorder toobtaininformation onthefunctional groupsthatparticipateinthebindingorinteractionwithMgin theintermediatestageoftheporousMgOextrudatepreparation.

Inpolymericassociationshydroxylgroupsabsorbintheformof abroadbandataround3400cm−1[24].Thebandsintheregion of3440cm−1 in thetwo spectraareassociated withstretching of the OH groups overlapped with N–H stretching of the chi-tosanbiopolymer.Therewasnodisplacementinrelationtothe wavenumberindicating thattheintermolecular interactions,by way of thebiopolymer hydrogen bonds,were maintained. The decreaseintheintensityofthebandin3440cm−1 onthe spec-trumforthecompound(Mg–chitosan)isdue totheinteraction ofMgwiththeoxygenatomsofthehydroxylgroupsaswellas of theaminegroups of thebiopolymer boundtothe glycoside ring.Inaddition,bandsat 1650and 1600cm−1 onthechitosan spectrumwere,respectively,associatedwiththeC Ostretching vibrationofsecondaryamidegroupsfromthepartially deacety-latedchitinresiduesandwiththeN–Hdeformationvibrationsof theprimaryaminesofchitosan[25].Thereductionofthesebands oftheMg–chitosancomplexisrelatedtotheinteractionofMgwith carbonylgroupsfromthepartiallydeacetylatedchitinresiduesas wellastheinteractionofthemanganeseionwithaminegroups. Duetotheincompletedeacetylationofchitosan(90%)mentioned previouslythebandat1380cm−1,whichisattributedtotheC–H deformationoftheCH3group,isassociatedwiththefew

remain-ingacetamidegroupspresentinthepolymericchain[25].Itcan thus benoted that theamine groups of chitosan are themain effectivebondingsitesforthemetallicions,resultingincomplexes stabilizedbycoordination.Nitrogenelectronspresentintheamine

500 1000 1500 2000 2500 3000 3500 4000 0 20 40 60 80 100 Cht-Mg Cht Transmittance (%) Wavenumber (cm-1)

Fig.1.Infraredspectraofchitosan(Cht)andchitosan–Mg(Mg–Cht)composite beforeheat-treatmentprocess.Inset:chemicalstructureofchitosan.

800 600 400 200 0 0 50 100 Cht-Mg Cht Mass (%) Temperature (ºC) 1000 800 600 400 200 0 -0,020 -0,015 -0,010 -0,005 0,000 Mg-Cht Cht DTG Temperature (ºC)

a

b

Fig.2. Thermogravimetricanalysisofchitosan(Cht)andchitosan–Mg(Cht–Mg).

andN-acetylaminegroupscanestablishcoordinatecovalentbonds withmetalionsandsomehydroxylgroupspresentinchitosancan actasdonors[26].Theinfraredspectra(IR)confirmthe modifi-cationofcertaincharacteristicregionsofthefunctionalgroupsof thebiopolymer,mainlythosewhicharesusceptibletointeraction withtheMgsalt,withoutmodifyingthesemicrystallinechitosan structure.

Thethermogravimetric(TGA/DTG)profilesareshowinFig.2a andb.Itcanbeseenthattheeliminationofresidualmaterialis dependentonthesamplecomposition(chitosanorMg–chitosan composite).Thepresenceofmagnesiumleadstotheremovalof carbonaceous materialsat lowertemperatures. TheTGA profile suggestsatemperatureof550◦Cforthetotaleliminationofthe residualmaterialoftheMg–chitosancompoundand580◦Cforthe purechitosan.TheTGAandIRresultsconfirmtheformationofa novelmaterial.

AssummarizedinTable1,thepreparationmethodledtoa sam-plewithbettertexturalproperties,suchasspecificsurfacearea and pore volume,than thecommercialsample(MgO(C)). Thus, thebiopolymermustbeusedwiththeprecursormaterial,which iseliminatedduringthethermaltreatmentgeneratingthepores (215 ˚A)thatcontributetotheobservedincreaseinsurfacearea[27]. Thesurfaceareaandporevolumeareconsideredtobeimportant parametersaffectingtheoverallperformanceofacatalyst.

(4)

Table1

TextureparameterscalculatedfromN2adsorptionisothermsandcatalytic perfor-mancesatethanol:oil:catalystmolarratioof600:100:5,at150◦C/3h.

Catalyst SBET(m2g−1) VBJH(cm3g−1) %FAEEs

MgO* 54.4 0.292 75

MgO(C)* 14.2 0.024 30

MgO(stored) 40 0.250 14

SBET=specific surface area; VBHJ=pore volume; MgO(C)=commercial oxide; %FAEEs=biodieselyield.

* Freshcatalysts.

TheXRDpatternofthefreshMgOpowder(Fig.3)showsvery strong,slightlybroadenedpeaks,consistentwithnanometric-sized fcc MgO crystals (space group Fm-3m) with lattice parameters (4.22203 ˚A).TheaveragesizeandmicrostrainoftheMgO crystal-liteswere150 ˚Aand1.4%,respectively.

Scanningelectronmicroscopy(SEM)wascarriedoutinorder toobservethemorphologiesofthesamplesobtained(MgOfresh). TheSEMimageshowninFig.4revealsthatthesampleprepared usingthemethodheredevelopedhasaporousaspect,consistent withthehighervaluesforspecificsurfaceareaandporevolume obtainedfromthephysicalmeasurementofN2.Duringthe

calci-120 100 80 60 40 20 0 8 16 Intensity (x 10 3 cts) 2 θ (degrees)

Fig.3.XRD:experimental(noisyline)andcalculated(thickline)XRDpatternsof freshMgOsampleproducedbymetal–chitosancomplexationmethod.Greyline representsthedifferencebetweenexperimentalandcalculatedpatterns.

Fig.4. Scanningelectronmicroscopy(SEM)imageofMgO.

Fig.5.Scanningelectronmicroscopy(SEM)imagefortheMgO(stored).

nationsteptheeliminationofvolatilematerialsoccurs,andcavities areproducedasaresultoftheirremoval.Atthesametime,asolid rearrangementtakesplace,formingthecrystallinematrix. How-ever,thesamplestoredforaperiodof180daysinambientairdoes notshowthesameaspect,asshowninFig.5,possiblyduetothe chemisorptionofCO2andH2Oatthesurfacesitesas

hydrogeno-carbonatespecies.

TG-MScouplinganalysesof MgOand MgO(C)are presented in Figs. 6–8. Fig. 6 representsthe catalysts weight loss, while

Figs.7and8representthethermalevolutionofCO2(m/z=44)and

H2O(m/z=18)respectively.Fig.6showstwomajorweightloss,

oneat120◦Ccorrespondingtohydrationwaterlossasconfirmed inFig.8;andanotherbetween300◦Cand400◦C.Thislastweight losswasbetterunderstoodthankstoMSanalyses.ConsideringCO2,

weobservedadesorptionat380◦CforMgO(C)andMgO(Fig.7).We alsoobservedH2Odesorptionpeaksatthesametemperaturethat

forCO2forallthesolids(Fig.8).ThisdesorptionofbothCO2and

H2Oatthesametemperatureprovesthatthenatureofthebasic

sitesarehydrogenocarbonates.ThebiggerH2Odesorptionpeak

ofMgOcorrespondstohydroxyl groups.Athighertemperature, MgO(C)exhibitstwo otherCO2 desorptionpeaks;oneat450◦C

correspondingtomoderatebasicsiteandanotherathigher tem-perature(600◦C)correspondingtostrongbasicsites.Thesetwolast CO2desorptionsoccurswithoutlossofwater,indicatingthatthe

natureoftheadsorbedsitesiscarbonates.Noneofthese“chitosan MgO”exhibitcarbonatetypeadsorptionsites,butonly hydrogeno-carbonateones,whichis reallyunusualforMgO type catalysts. These“chitosanMgO”aretheninterestingtoperformreactionsthat needmoderatebasicityasthetransesterificationreaction. More-over,theabsenceof strongbasicsites couldpreventsomeside reactionsandthentheformationofby-products.

3.2. Catalytictesting

The preliminaries results obtained from the catalytic tests (%FAEEs)areshowninTable1.Itcanbeobservedthatthematerials areactive,formingFAEEswithpercentagesof30–75%forthefresh catalysts,at3hofreaction.

Thecatalyticactivityexhibitedbythistypeofoxideisrelatedto thepresenceofbasicBrøsntedsitesinthesurfaceofthematerial

[28,29].Thesesitesonthemagnesiumoxidearestrongenough,pKa isaround16,togeneratealcohoxideswhicharetheactivespecies ontransesterificationunderbasicreactionconditions[30,31].

(5)

-0.2 -0.1 0.0 0.1 Temperature Difference (°C/mg) 60 70 80 90 100 Weight (%) 800 600 400 200 0 Temperature (°C) MgO––––––– MgO (c)– – – –

Fig.6. TG-DTAanalysisofMgOandMgO(C).

Thisstudyrevealedgoodcorrelationsbetweenthepresenceof basicsitesinthecatalysts,asshowninFig.7,withtheexception oftheMgO(stored)sampleusedtoverifytheeffectofstoragein ambientair.ThecatalystMgO(stored)wasstoredinambientairfor aperiodof180dayswhichledtoadecreaseinthecatalystactivity

Fig.7. m/z=44(CO2)TG-MSanalysisofMgOandMgO(C).

Fig.8.m/z=18(H2O)TG-MSanalysisofMgOandMgO(C).

becauseofthepoisoningofthesamplebycarbonation/hydration oftheactivesites[15].TheyieldofFAEEsdecreasedfrom75%to 14%forthefreshandstoredcatalysts,respectively.

AstudyonthespecificadsorptionofCO2,CO2+H2Oas

per-formedtobetterunderstandthenatureofthepoisoningof the catalyticsites(Figs.9and10).WhenafreshlycalcinedMgOwas analysedbyTG-MS,nodesorptionofH2OorCO2 wereobserved,

exceptalowphysisorbedwaterpeakunder100◦Cwhichisdue toexperimentalartifact(refreshmentoftheovenbyundriedair). Whena freshlycalcined MgO wasexposedtoCO2 during 15h,

noCO2 adsorptionwasdetectedwhilewhenbothCO2 andH2O

were simultaneouslyputin contact with thesame freshly cal-cinedMgO duringonly3h,both ofthem wereadsorbed.Ifthe MgOstaysunderambientairmorethan2monthafterits calci-nation,thesameadsorptionis observedwithmoreintensity.It provesthatthepoisoningofthecatalystisduetotheformation ofhydrogenocarbonatesonthebasiccatalyticsitesofMgO.Only thebasicsitescorrespondingtohydrogenocarbonatesadsorption aretheninvolvedinthecatalytictranseterificationofsoybeanoil byethanol.Wecanthussuggestthatthestorageofthecatalyst underdryaircouldbesufficienttoavoiditspoisoning.Theseresults areconsistentwiththecharacteristicsoftheMgOcatalyst,which hasbasicssites,thisbeingarequirementforthereaction.Inthis regard,Henriquesandco-workers[8]alsoshowedthatMgO,as wellasmixedoxides,areefficientcatalystsforthe transesterifi-cationofvegetableoils,usingmethanolasanalcoholysisagent. Theyreportedafattyacidmethylesteryieldofover60%at130◦C for7hreactiontime.Theuseoftheconventionalmicrocrystalline MgOcatalystinthemethylic transesterificationofsunfloweroil reportedlyledtoaconversionof80%at220◦C[1].

It isimportanttoremarkthatthecatalyticactivityishigher forMgO,sinceCO2 poisoningissloweroverMgOincomparison

withMgO(C).IntheMgO(C)strongbasicLewissitesarepresented and theatmosphericCO2 reactsvery quicklytoformless

reac-tivecarbonatedspecies.InthecaseofMgO,theatmosphericCO2

reactsslowlywithmoderateBrönstedsitespresented,to gener-atehydrogenocarbonatesinthepresenceofwatertraces.Thisis confirmedbythestoragestudy,discussedabove.

Itisworthnotingthatalongwiththeethylicalcoholusedinthe reactionbeingofrenewableorigin,thecatalystwassynthesized fromchitosan,whichisabiomaterial.

(6)

Fig.9.m/z=18(H2O)TG-MSanalysisof“chitosanMgO”.(a)Directlyaftercalcinationsoftheprecursor,(b)directlyaftercalcinationsoftheprecursorthenadsorptionof CO2during15hat30◦C,(c)directlyaftercalcinationsoftheprecursorthenadsorptionofbothCO2andH2Oduring3hat30◦C,(d)2monthofstorageaftercalcinations (MgO(stored)).

Fig.10. m/z=44(CO2)TG-MSanalysisof“chitosanMgO”.(a)Directlyaftercalcinationsoftheprecursor,(b)directlyaftercalcinationsoftheprecursorthenadsorptionof CO2during15hat30◦C,(c)directlyaftercalcinationsoftheprecursorthenadsorptionofbothCO2andH2Oduring3hat30◦C,(d)2monthofstorageaftercalcinations (MgO(stored)).

4. Conclusions

ThemethoddescribedhereinforthepreparationoftheMgO cat-alystsviametal–chitosancomplexation,ledtoasignificantincrease intheirsurfaceareaandthebasicity.Thesecharacteristicsprovide arelativelyhigherconversiontofattyacidethylesterswhen com-paredwithacommercialoxide.However,solidbasecatalystsare susceptibletobepoisonedbysomecomponentsinairsuchasCO2

andH2Oastheycaninteractwithbasesitesanddecreasecatalyst

activity.

Inthisstudy,higherconversionsforthefreshcatalystswere associated withlowertemperaturesand shorter reaction times thanthosenormallyfoundintheliterature.Thisindicatesthegreat potentialforthedevelopmentofheterogeneouscatalystsforthe productionofethylicbiodiesel,allowingconversionsequivalentto thoseobtainedwithhomogeneouscatalyststobeachievedunder viablereactionconditionsfromacommercialpointofview.

WealsoprovedthatbothCO2andH2Oarenecessarytopoison

thecatalyst.Therefore,catalystactivationorproperstorageis

nec-essarytomaintaincatalystactivityandsuchstudiesareunderway inourresearchgroup.Thisstudyopensanewapproach,employing heterogeneousbaseMgOcatalystsforbiodieselproductionusing ethanolasthealcoholysisagent.

Whenmagnesiumoxideisemployedfortransesterificaionof vegetable oil withethanol, it is possible that leaching of solid basecatalystoccurs.Theamountofleachedmagnesiumcoming fromthecatalystpreparedusingthemetal–chitosancomplexation methodreached0.18%duringthebiodieselformation.

Acknowledgements

The authors gratefully acknowledge CNPq and FAPEMIG for financialsupport.

References

[1]M.Verziu,B.Cojocaru,J.Hu,R.Richards,C.Ciuculescu,P.Filip,V.I.Parvulescu, GreenChem.10(2008)373–381.

(7)

[2]M.A.Aramendia,V.Borau,C.Jiménez,J.M.Marinas,J.R.Ruiz,F.J.Urbano,Appl. Catal.A:Gen.244(2003)207–215.

[3]S.Bancquart,C.Vanhove,Y.Pouilloux,J.Barrault,Appl.Catal.A:Gen.218(2001) 1–11.

[4]D.Gulková,O. ˇSolcová,M.Zdraˇzil,MicroporousMesoporousMater.76(2004) 137–149.

[5]B.Q.Xu,J.M.Wei,H.Y.Wang,K.Q.Sun,Q.M.Zhu,Catal.Today68(2001)217– 225.

[6]V.K.Díez,C.R.Apesteguía,J.I.DiCosimo,J.Catal.240(2006)235–244. [7] L.Wang,J.Yang,Fuel86(2007)328–333.

[8]W.M.Antunes,C.O.Veloso,C.A.Henriques,Catal.Today133(2008)548–554. [9] H.J.Kim,B.S.Kang,M.J.King,Y.M.Park,D.K.Kim,J.S.Lee,K.Y.Lee,Catal.Today

93(2004)315–320.

[10] A.A.Kiss,A.C.Dimian,G.Rothenberg,EnergyFuels22(2008)598–604. [11]X.Liu,H.He,Y.Wang,S.Zhu,Catal.Commun.8(2007)1107–1111. [12] R.M.Almeida,L.K.Noda,N.S.Gonc¸alves,S.M.P.Meneghetti,M.R.Meneghetti,

Appl.Catal.A:Gen.347(2008)100–105. [13] H.Hattori,Chem.Rev.95(1995)537–558.

[14]M.L.Granados,M.D.Z.Poves,D.M.Alonso,R.Mariscal,F.C.Galisteo,R. Moreno-Tost,J.Santamaría,J.L.G.Fierro,Appl.Catal.B:Environ.73(2007)317–326. [15] S.Yan,M.Kim,S.O.Salley,K.Y.SimonNg,Appl.Catal.A:Gen.360(2009)

163–170.

[16]A.C.Pinto,L.L.N.Guarieiro,M.J.C.Rezende,N.M.Ribeiro,E.A.Torres,W.A.Lopes, P.A.P.Pereira,J.B.Andrade,J.Braz.Chem.Soc.16(2005)1313–1330.

[17]H.V.Fajardo,L.F.D.Probst,Appl.Catal.A:Gen.306(2006)134–141. [18]N.L.V.Carreno,I.T.S.Garcia,C.W.Raubach,M.Krolow,C.C.G.Santos,L.F.D.

Probst,H.V.Fajardo,J.PowerSources188(2009)527–531.

[19]J.R.D.Lima,R.B.daSilva,C.C.M.daSilva,L.S.S.dosSantos,J.R.dosSantos,E.M. Moura,C.V.R.deMoura,Quim.Nova30(2007)600–603.

[20]U.Schuchardt,R.Sercheli,R.M.Vargas,J.Braz.Chem.Soc.9(1998)199–210. [21]A.C.Larson,R.B.VonDreele,GeneralStructureAnalysisSystem(GSAS),Los

AlamosNationalLaboratoryReportLAUR,USA,2004,pp.86–748. [22]B.H.Toby,J.Appl.Cryst.34(2001)210–213.

[23] InorganicCrystalStructureDatabase(ICSD),Gmelin-Institutf¨urAnorganische ChemieandFachinformationszentrum,FIZ,Karlsruhe,2007.

[24] A.O.Martins,E.L.daSilva,E.Carasek,N.S.Gonc¸alves,M.C.M.Laranjeira,V.T.de Fávere,Anal.Chim.Acta521(2004)157–162.

[25] T.C.Coelho,R.Laus,A.S.Mangrich,V.T.deFávere,M.C.M.Laranjeira,React. Funct.Polym.67(2007)468–475.

[26] B.Song,W.Zhang,R.Peng,J.Huang,T.Nie,Y.Li,Q.Jiang,R.Gao,ColloidsSurf. B70(2009)181–186.

[27] H.V.Fajardo,A.O.Martins,R.M.deAlmeida,L.K.Noda,L.F.D.Probst,N.L.V. Car-reno,A.Valentini,Mater.Lett.59(2005)3963–3967.

[28] D.Gulková,O.Solcová,M.Zdrazil,MicroporousMesoporousMater.76(2004) 137–149.

[29]B.C.Gates,CatalyticChemistry,FirstEd.,JohnWiley&Sons,NewYork,1992. [30]W.T.Reichle,J.Catal.94(1985)547–557.

Referências

Documentos relacionados

A sua Teologia Moral tinha como objectivo principal a libertação dos pobres e do povo, em geral, da opressão por parte de um rigorismo jansenismo (legalista), propiciando

Hydrogen production by thermo catalytic decomposition of methane on Ni-based catalysts: influence of operating conditions on catalyst deactivation and carbon characteristics.

To investigate the effect of adsorption of catalysts on the walls of MCM-41 and MCM-48, the CoPc/MCM-41 and CoPc/MCM-48 catalysts were also prepared by physical adsorption and

In this work, the reusability of the catalyst was tested only for babassu oil It was used a molar ratio of methanol to oil of 6:1 and 1% of catalyst based of mass oil, a reaction

The influence of several experimental parameters, such as catalyst concentration, reaction temperature, and tin precursor, as well as the reuse of the catalysts, were investigated

Desta forma, procurou-se, também, caracterizar o perfil psicomotor dos alunos, bem como a compreensão da leitura e da escrita e a correlação entre o perfil motor e as variáveis

Initially, the effect of the use of the mixture of immobilized commercial lipases was investigated in the reactions of transesterification of soybean oil with ethanol carried out

Abstract – An efficient solid acid catalyst (Ce/Kaolin clay) was prepared and investigated for transesterification of cottonseed oil to fatty acid methyl esters (FAME).. The